
LarKC
The Large Knowledge Collider

a platform for large scale integrated reasoning and Web-search

FP7 – 215535

D1.4.1

Initial Framework for Measuring and Evaluating
Heuristic Problem Solving

Zhisheng Huang (VUA), Annette ten Teije (VUA), Frank van Harmelen (VUA),
Gaston Tagni (Coordinator, VUA), Hansjorg Neth (MPG), Lael Schooler (MPG),

Sebastian Rudolph (AIFB, University of Karlsruhe), Pascal Hitzler (AIFB,
University of Karlsruhe), Tuvshintur Tserendorj (FZI Karlsruhe), Yi Huang
(Siemens), Danica Damljanovic, Angus Roberts (University of Sheffield)

Document Identifier: LarKC/2008/D1.4.1
Class Deliverable: LarKC EU-IST-2008-215535
Version: version 1.0.0
Date: September 30, 2009
State: final
Distribution: public

Initial Framework for Measuring and Evaluating Heuristic Problem Solving

Executive Summary

One of the key aspects in the development of LarKC is how to evaluate the per-
formance of the platform and its constituent components in order to guarantee
that the execution of a pipeline will match the user’s needs and provide the de-
sired solutions (answers) to the user’s queries. Therefore, in this deliverable, the
first in a series three documents concerned with the definition of a Framework
for Measuring and Evaluating Heuristic Problem Solving, we make the first steps
towards defining such framework by considering the theoretical foundations and
principles of evaluation and measurement theory, discussing several important as-
pects related to the process of evaluating LarKC and its platform and, reporting
on several dimensions and methods by which the components of the platform and
the platform itself can be evaluated. Our primary interest in the context of this
deliverable is a formative evaluation framework that is designed by the members
of the LarKC project and aims to identify project strengths and weaknesses, fo-
cus managerial and research efforts, and measure progress towards achieving the
project goals. Such a framework can also serve as the foundation for a subsequent
summative evaluation.

Deliverable 1.4.1 i

Initial Framework for Measuring and Evaluating Heuristic Problem Solving

Document Information

IST Project
Number

FP7 – 215535 Acronym LarKC

Full Title Large Knowledge Collider
Project URL http://www.larkc.eu/
Document URL
EU Project Officer Stefano Bertolo

Deliverable Number 1.4.1 Title Initial Framework for Measuring and Evaluating
Heuristic Problem Solving

Work Package Number 1 Title Conceptual Framework

Date of Delivery Contractual M18 Actual 30-September-09
Status version 1.0.0 final !
Nature prototype " report ! dissemination "
Dissemination
Level

public ! consortium "

Authors (Partner)

Gaston Tagni, Zhisheng Huang, Frank van Harmelen, Annette ten Teije (VUA),
Hansjörg Neth, Lael J. Schooler (MPG), Sebastian Rudolph, Pascal Hitzler
(AIFB, University of Karlsruhe), Tuvshintur Tserendorj (FZI Karlsruhe), Yi Huang
(Siemens), Danica Damljanovic, Angus Roberts (University of Sheffield)

Resp. Author

Gaston Tagni E-mail gtagni@cs.vu.nl
Partner VUA, MPG,

Siemens, Univer-
sity of Sheffield

Phone +31 20 59 87753

Abstract
(for dissemination)

One of the key aspects in the development of LarKC is how to evaluate the per-
formance of the platform and its constituent components in order to guarantee
that the execution of a pipeline will match the user’s needs and provide the de-
sired solutions (answers) to the user’s queries. Therefore, in this deliverable, the
first in a series three documents concerned with the definition of a Framework
for Measuring and Evaluating Heuristic Problem Solving, we make the first steps
towards defining such framework by considering the theoretical foundations and
principles of evaluation and measurement theory, discussing several important as-
pects related to the process of evaluating LarKC and its platform and, reporting
on several dimensions and methods by which the components of the platform and
the platform itself can be evaluated. Our primary interest in the context of this
deliverable is a formative evaluation framework that is designed by the members
of the LarKC project and aims to identify project strengths and weaknesses, fo-
cus managerial and research efforts, and measure progress towards achieving the
project goals. Such a framework can also serve as the foundation for a subsequent
summative evaluation.

Keywords Heuristic Problem Solving, Evaluation Framework, Measurement, Evaluation, For-
mative Evaluation

Deliverable 1.4.1 ii

Initial Framework for Measuring and Evaluating Heuristic Problem Solving

Project Consortium Information

Acronym Partner Contact
Semantic Technology Institute Innsbruck
http://www.sti-innsbruck.at

Prof. Dr. Dieter Fensel
Semantic Technology Institute (STI)
Innsbruck, Austria
E-mail: dieter.fensel@sti-innsbruck.at

AstraZeneca AB
http://www.astrazeneca.com/

Bosse Andersson
AstraZeneca
Lund, Sweden
E-mail: bo.h.andersson@astrazeneca.com

CEFRIEL SCRL.
http://www.cefriel.it/

Emanuele Della Valle
CEFRIEL SCRL.
Milano, Italy
E-mail: emanuele.dellavalle@cefriel.it

CYCORP, RAZISKOVANJE IN EKSPERI-
MENTALNI RAZVOJ D.O.O.
http://cyceurope.com/

Dr. Michael Witbrock
CYCORP, RAZISKOVANJE IN EKSPERIMEN-
TALNI RAZVOJ D.O.O.,
Ljubljana, Slovenia
E-mail: witbrock@cyc.com

Hchstleistungsrechenzentrum, Universitaet
Stuttgart
http://www.hlrs.de/

Georgina Gallizo
Hchstleistungsrechenzentrum, Universitaet
Stuttgart
Stuttgart, Germany
E-mail : gallizo@hlrs.de

Max-Planck-Institut fur Bildungsforschung
http://www.mpib-berlin.mpg.de/
index js.en.htm

Dr. Lael Schooler,
Max-Planck-Institut fr Bildungsforschung
Berlin, Germany
E-mail: schooler@mpib-berlin.mpg.de

Ontotext Lab, Sirma Group Corp.
http://www.ontotext.com/

Atanas Kiryakov,
Ontotext Lab, Sirma Group Corp.
Sofia, Bulgaria
E-mail: atanas.kiryakov@sirma.bg

SALTLUX INC.
http://www.saltlux.com/EN/main.asp

Kono Kim
SALTLUX INC
Seoul, Korea
E-mail: kono@saltlux.com

SIEMENS AKTIENGESELLSCHAFT
http://www.siemens.de/

Dr. Volker Tresp
SIEMENS AKTIENGESELLSCHAFT
Muenchen, Germany
E-mail: volker.tresp@siemens.com

THE UNIVERSITY OF SHEFFIELD
http://www.shef.ac.uk/

Prof. Dr. Hamish Cunningham
THE UNIVERSITY OF SHEFFIELD
Sheffield, UK
E-mail: h.cunningham@dcs.shef.ac.uk

VRIJE UNIVERSITEIT AMSTERDAM
http://www.vu.nl/

Prof. Dr. Frank van Harmelen
VRIJE UNIVERSITEIT AMSTERDAM
Amsterdam, Netherlands
E-mail: Frank.van.Harmelen@cs.vu.nl

THE INTERNATIONAL WIC INSTITUTE,
BEIJING UNIVERSITY OF TECHNOLOGY
http://www.iwici.org/

Prof. Dr. Ning Zhong
THE INTERNATIONAL WIC INSTITUTE
Mabeshi, Japan
E-mail: zhong@maebashi-it.ac.jp

INTERNATIONAL AGENCY FOR RESEARCH
ON CANCER
http://www.iarc.fr/

Dr. Paul Brennan
INTERNATIONAL AGENCY FOR RESEARCH ON
CANCER
Lyon, France
E-mail: brennan@iarc.fr

Deliverable 1.4.1 iii

Initial Framework for Measuring and Evaluating Heuristic Problem Solving

Table of Contents

1 Introduction 2

2 Theory of Evaluation 4
2.1 Conceptual Clarifications . 4

2.1.1 Measurement and Evaluation 4
2.1.2 Heuristic Problem Solving 6

2.2 Applications to LarKC . 9
2.2.1 Measurement and Evaluation of LarKC 9
2.2.2 Heuristic Problem Solving in LarKC 15
2.2.3 Evaluation of Heuristic Problem Solving 16

2.3 Summary . 17

3 Evaluation of Identify and Select Plug-ins 19
3.1 Speed . 19
3.2 Accuracy . 20
3.3 Datasets . 21
3.4 Intrinsic evaluation . 21
3.5 Extrinsic evaluation . 22

3.5.1 Evaluation in the Genome Wide Association Study scenario 22
3.5.2 Evaluation in the Monograph scenario 23

3.6 Workflow-based evaluation . 23

4 Evaluation of Transformation Plug-ins 24
4.1 Overview . 24
4.2 The Transformation Approach . 24
4.3 Efficiency . 25
4.4 Quality . 25
4.5 Scalability . 26
4.6 Robustness . 26
4.7 Summary . 27

5 Evaluation of Reason Plug-ins 28
5.1 Introduction . 28

5.1.1 Application to Semantic Web 30
5.1.2 Contributions of this Chapter 30

5.2 A Framework for Approximate Reasoning 32
5.2.1 Input and Output Spaces 32
5.2.2 Error functions . 33
5.2.3 Algorithms . 33
5.2.4 Defects . 34
5.2.5 Comparing algorithms after termination 35

5.3 Extending the Framework to Anytime Algorithms 36
5.3.1 Properties of anytime algorithms 36
5.3.2 Performance profiles . 37
5.3.3 Comparing Anytime Algorithms 39

5.4 Anytime Algorithms by Composition 40

Deliverable 1.4.1 iv

Initial Framework for Measuring and Evaluating Heuristic Problem Solving

5.5 An Example . 41
5.6 Summary . 44

6 Conclusion 46
References . 47

Deliverable 1.4.1 v

FP7 – 215535

Deliverable 1.4.1

List of Abbreviations

TTB Take the Best
RDF Resource Description Framework

1

FP7 – 215535

Deliverable 1.4.1

1 Introduction

The LarKC project is concerned with large scale semantic reasoning and more
specifically aims at providing a platform for massive, distributed and incomplete
reasoning that will remove the scalability barriers imposed by current Semantic
Web reasoning systems. Such a platform is realized through a pluggable architec-
ture consisting of several plug-in types: Identify, Select, Transform, Reason and
Decide plug-ins, each of which is responsible for solving a specific type of (sub)
problem. For an overview of the platform and the initial operational framework
the reader is referred to Deliverable 1.2.1.

One way to describe the LarKC platform is to think of it as a problem-solving
engine that employs multiple techniques and methods to provide solutions, in the
form of answers to SPARQL-like queries, to problems (queries) initiated by users
and applications. According to this view, solutions to a problem are computed
by executing a workflow whose activities perform specific tasks, i.e. solve specific
(sub) problems, and contribute in this way to finding a solution to the problem
at hand. Each activity is carried out by a plug-in type and each plug-in may
use different problem-solving strategies to achieve its goal, some of which may
depend on the type of plug-in, e.g. the use of standard methods used in the area
of information retrieval for implementing selection plug-ins.

From this point of view, one of the key aspects in the development of LarKC is
how to evaluate the performance of the platform and its constituent components
in order to guarantee that the execution of a workflow will match the user’s needs
and provide the desired solutions (answers) to the user’s queries. Therefore, in this
deliverable, the first in a series three documents concerned with the definition of a
Framework for Measuring and Evaluating Heuristic Problem Solving, we make the
first steps towards defining such framework by considering the theoretical foun-
dations and principles of evaluation and measurement theory, discussing several
important aspects related to the process of evaluating LarKC and its platform
and, reporting on several dimensions and methods by which the components of
the platform and the platform itself can be evaluated. Our primary interest in the
context of this deliverable is a formative evaluation framework that is designed
by the members of the LarKC project and aims to identify project strengths and
weaknesses, focus managerial and research efforts, and measure progress towards
achieving the project goals. Such a framework can also serve as the foundation for
a subsequent summative evaluation.

Structure of the document. This document is structured as follows: in Chap-
ter 2 we provide a clarification of the deliverable’s main concepts and an overview
over the specific challenges presented by the evaluation of the LarKC project and
platform. This chapter clarifies the notions of measurement, evaluation and heuris-
tic problem solving—both in general and in the specific context of the LarKC
project. In this chapter we also identify and discuss an initial set of quantita-
tive dimensions that we think need to be measured in order to evaluate LarKC.
Such metrics include robustness, speed, accuracy, scalability, usability and user
satisfaction and quality and impact. After introducing the basic notions and prin-
ciples of evaluation theory, chapters 3, 4 and 5 report on a series of techniques
and quantitative dimensions or criteria that can be used for the purposes of eval-

2

FP7 – 215535

Deliverable 1.4.1

uating identify, transform and reason plug-in types. More specifically, Chapter 3
includes a specification of different criteria and techniques for evaluating selection
and retrieval plug-in types. In the same way, in Chapter 4 we explore a series of
evaluation criteria and measures that can be utilized to evaluate the quality of the
transformation plug-ins within the LarKC platform and then, in Chapter 5 we lay
the foundations for a statistical approach to evaluating approximate and anytime
reasoning algorithms as they play a prominent role in achieving and implementing
heuristic problem solving methods. Finally, Chapter 6 reports the conclusions.

3

FP7 – 215535

Deliverable 1.4.1

2 Theory of Evaluation

The purpose of this chapter is to provide a clarification of the deliverable’s main
concepts and an overview over the specific challenges presented by the evaluation
of the LarKC project and platform (Fensel et al., 2008). As this deliverable is
entitled “Initial framework for measuring and evaluating heuristic problem solving”
we will first clarify the notions of measurement, evaluation and heuristic problem
solving—both in general (Section 2.1) and in the specific context of the LarKC
project (Section 2.2).

2.1 Conceptual Clarifications

2.1.1 Measurement and Evaluation

As the notions of measurement and evaluation are closely related we will treat
them in the same section.

Measurement is defined as the act or process of assigning numbers to phenom-
ena according to a rule (according to WordNet at http://wordnetweb.princeton
.edu), as well as the result of such an act or process. Obtaining the magnitude of
a quantity, such as the duration of a time interval or the mass of an object, pre-
supposes a unit of measurement, such as a second or a kilogram. Consequently, a
crucial part of measuring something consists in designing and choosing the correct
metrics and appropriate standards.

When measurement provides the basis for a judgment concerning the value,
merit or significance of some process or project we speak of evaluation. Thus,
evaluation contains measurement as a critical part: Both measuring and evaluating
require specific standards or criteria to quantify some dimension, but whereas
measurement is neutral evaluation contains an additional attribution of value that
relates the level of observed achievement to pre-defined objectives.

Generally speaking, the purpose of evaluation is to provide answers to questions
like ‘Is it any good?’, ‘What is it good for?’ and ‘How good is it really, i.e.,
relative to its original goals and compared to available alternatives?’ The common
element of all these questions is the attribution of value, whereas the questions
get progressively more specific by implying practical uses and particular goals
and constraints. The generic “it” in all questions can refer to a particular thing,
method or class of methods, a product, policy or paradigm, or—as in the case of
LarKC—a multi-year research effort.

More formally, evaluation is the systematic determination of the value, merit or
significance of a practice, process or project in relation to explicitly defined stan-
dards. The process of evaluation typically serves multiple functions (Stockmann,
2000):

1. Knowledge: An explicit definition of standards and the collection of quan-
titative and qualitative data generates knowledge and enables new insights
about the degree to which the project or platform provides the desired func-
tionality.

4

FP7 – 215535

Deliverable 1.4.1

2. Control : Additional knowledge enables the allocation of management ef-
forts, the discovery and correction of deficits, as well as the identification of
strengths.

3. Communication: Enable a continuous dialog between project partners, po-
tential and actual user communities, various stakeholders and the public.

4. Legitimization: Provide a rationale why the original investments (in terms
of research efforts and monetary funds) were justified and help to allocate
future resources.

An important distinction in evaluation theory is that between summative and
formative evaluations (Scriven, 1991). Although evaluations are always intended as
a basis for both assessment and improvement, some focus more on the assessment
aspect whereas others aim more towards continuous adjustments and improvement:

• summative evaluation provides information on the overall efficacy or effi-
ciency of a product or process. Conducting a summative evaluation requires
identifying large-scale patterns in performance and comparing quantitative
and qualitative measurements to pre-defined standards in order to obtain
an overall judgment. Summative evaluations are often carried out by an ex-
ternal authority and aim to gain closure and a retrospective appraisal of a
project’s merit and achievements. By contrast,

• formative evaluation is a process of ongoing feedback on performance. The
distinctive features of this type of evaluation are to identify aspects of per-
formance that need to improve and to offer corrective suggestions while the
project is still in progress. Formative evaluations are often carried out in-
ternally (i.e., by the partners that design and collaborate on a project), rely
on multiple iterative cycles in which performance assessments are compared
to pre-defined objectives and aim to approach the desired standards in mul-
tiple steps. Consequently, any formative evaluation is closely related to the
process of benchmarking in process management and software engineering.

An informal way of contrasting both subtypes of evaluation is attributed to
Robert Stakes (according to Scriven, 1991, p. 69): “When the cook tastes the soup,
that’s formative; when the guests taste the soup, that’s summative.” Table 2.1
summarizes the main features of both types of evaluation on several dimensions.

The dichotomous distinction between formative and summative evaluations
has been criticized as being too limited, particularly with respect to projects that
generate new knowledge or develop new systems or interventions (Patton, 1996).
Rather than trying to categorize an evaluation effort as being of a particular type
we believe that the value of the distinction between summative and formative
evaluations consists in providing useful dimensions that allow to plan, design and
improve measurements and the evaluation process.

A related dichotomy is the distinction between intrinsic and extrinsic evalu-
ations. The distinction presupposes that the evaluated component is part of a
greater whole and assumes two different perspectives. Whereas an intrinsic eval-
uation assesses the performance of a single component in isolation (and assumes

5

FP7 – 215535

Deliverable 1.4.1

Type of evaluation:
Dimension summative: formative:

main function: assessment improvement
evaluator: external: internal:

users or sponsors researchers, developers and
program managers

evaluatee: product (running system) process (system develop-
ment and improvement)

time perspective: retrospective concurrent
frequency: once, upon completion multiple iterative cycles

Table 2.1: Basic features of summative vs. formative evaluations.

that all external factors are held constant) an extrinsic evaluation views a com-
ponent as part of a larger system and assesses the component with regards to its
overall functionality.

2.1.2 Heuristic Problem Solving

The object or process to be evaluated according to this deliverable’s title is “heuris-
tic problem solving”. This raises the questions: What is meant by “heuristics”
and why or when is the use of heuristics indicated or successful?

What defines a heuristic? Based on the Greek term for “serving to find out
or discover” heuristics have been invoked in so many meanings and contexts that
some researchers (e.g., Shah & Oppenheimer, 2008) claim that the word has
become arbitrary and lost its meaning. Although it is true that the notion of
heuristics has experienced a mixed history (see Gigerenzer, Todd, & the ABC re-
search group, 1999; Gigerenzer & Brighton, 2009, for overviews) and has been used
differently in different disciplines (e.g., in biology, computer science, engineering,
physics, and psychology) we think that heuristics have often been misunderstood
or underestimated and deserve to be rehabilitated.

On the most general level, the notion of a heuristic is used almost interchange-
ably with “method” and refers to a procedure that aims to increase the prob-
ability of solving some problem. On this vague level, heuristics may be simply
rules-of-thumb, intuitive judgments or educated guesses that use experience-based
techniques for problem solving, learning and discovery.

In the context of mathematical and computational problems heuristics are of-
ten invoked when an optimal solution is either practically infeasible or principally
unknown. For many problems for which an optimal solution is either computa-
tionally intractable or cannot be proven to be correct heuristic methods (such as
hill-climbing, simulated annealing, or tabu search) provide approximate solutions
that are good enough for practical purposes (e.g., in terms of speed, required ac-
curacy and computational efforts). Many such heuristics can be shown to suffer
from specific weaknesses (like the susceptibility of hill-climbing to get stuck on
local maxima) or to approximate an optimal solution, given sufficient time and
computational power (like Q-learning algorithms in machine learning).

6

FP7 – 215535

Deliverable 1.4.1

Interestingly, one of the standard textbooks on Modern heuristics (Michalewicz
& Fogel, 2004)—an updated edition of Polya’s classic text How to solve it, 1947)—
does not even define the meaning of heuristics, but uses the term generically to
describe any method that is suited to solve a given problem. Practically, the
book describes ways to analyze problems and an arsenal of algorithms that yield
acceptable solutions with limited computational resources.

A common thread in these treatments is that heuristics may yield satisfactory
solutions, but are ultimately only second-best strategies for cases for which an op-
timization method is lacking. This assumption of an inferior nature of heuristics is
even retained by explicit advocates of heuristics. For instance, Zanakis and Evans
(1981) blur the terminological boundaries by recommending heuristic “optimiza-
tion” and state that the use of heuristics is “desirable and advantageous” (p. 85)
under the following circumstances:

1. Inexact or limited data contains errors larger than the “sub-optimality” of a
good heuristic.

2. A simplified model (or inaccurate representation) is used.

3. A reliable exact method is not available.

4. An exact method is available, but it is computationally infeasible.

5. To improve the performance of an optimizer by providing initial solutions
and narrowing down the search space.

6. There is a repeated need to solve the same problem, making speed more
important than accuracy.

7. A heuristic solution is satisfactory.

8. Heuristics are simple and understandable, so that users are more likely to
adopt a method.

9. Heuristics serve as a learning device to gain new insights.

10. Other resource limitations (e.g., of time or budget) enforce the use of heuris-
tics.

Clearly, heuristics in this sense are mainly defined by the absence of some
desirable state (better data or models, more time, larger budget, etc.), are merely
indicated when no superior techniques are available and yield only second-best
solutions when compared to the results of optimization techniques. Despite their
uses, heuristics yield merely quick-and-dirty solutions for pragmatically minded
people.

Given this heritage, it may not be surprising that a tradition within cognitive
psychology has attributed irrational elements of human judgment to the use of
heuristics. Just as many computer scientists and engineers viewed heuristics as
computational shortcuts that yield suboptimal solutions the heuristics-and-biases
framework championed by Tversky and Kahneman (1974) has nurtured the impres-
sion that the use of heuristics by naive humans is responsible for many erroneous
or irrational decisions.

7

FP7 – 215535

Deliverable 1.4.1

In contrast to these negative views of heuristics, the Center for Adaptive Be-
havior and Cognition of Berlin’s Max-Planck Institute for Human Development
defines heuristics as effective and efficient solution methods that ignore informa-
tion. Unlike optimization methods, which are attempting to maximize some cri-
terion, heuristics aim to satisfice, i.e., they choose the first option that exceeds an
aspiration level. This definition preserves key elements of Herbert Simon’s char-
acterization of methods of heuristic search as examples of rational adaptation and
as “methods for arriving at satisfactory solutions with modest amounts of compu-
tation” (Simon, 1990, p. 11) and emphasizes the positive potential of heuristics
to guide information search and modify problem representations to facilitate solu-
tions.

It would be premature to interpret the use of terms like “satisfactory” and
“modest” as a confirmation of the aforementioned skepticisms against the use
of heuristics. Numerous studies of naturalistic decision scenarios and simulated
environments have shown that heuristics neither need to be poor surrogates for
optimization methods nor merely yield second-best solutions (see Gigerenzer et
al., 1999; Gigerenzer, 2000; Gigerenzer & Selten, 2001; Gigerenzer, 2008, for
overviews).

An example of a simple heuristic that demonstrably outperforms many more
elaborate strategies is the Take-The-Best (TTB) heuristic introduced by Gigeren-
zer and Goldstein (1996). When two objects (e.g., cities) are compared on some
dimension (e.g., population) and both objects are recognized and characterized by
various cues (e.g., the presence of a university, a major league soccer team, an ex-
position site, etc.) TTB describes a process to choose one of the options. Assuming
that cues are inspected sequentially in order of decreasing validity (defined as the
probability of a correct response based on the cue) TTB makes a choice based on
the first cue that discriminates between both objects. For instance, when asked to
determine whether Hamburg or Heidelberg is bigger TTB would first consider the
most valid cue, say, the presence of a university. As both cities have a university
the search inspects the next most valid cue, e.g., the soccer team cue. As only
Hamburg has a major league team it will be chosen as the more populous city.

TTB ignores information as cues with less predictive validity then the first dis-
criminating one (e.g., the presence of an exposition site) are not even considered.
Furthermore, TTB is non-compensatory as potentially conflicting information on
multiple cues is never integrated. Despite its fast and frugal nature (by essentially
betting on one good reason) TTB frequently outperforms much more elaborate
decision strategies like multiple regression (see Czerlinski, Gigerenzer, & Gold-
stein, 1999; Goldstein & Gigerenzer, 2002; Martignon & Hoffrage, 1999, 2002, for
analyses).

One reason for the success of TTB is that it is adapted to stable structures
in the environment (e.g., the fact that bigger cities tend to have universities and
soccer teams) and enabled by evolved psychological capacities (e.g., recognition
memory for cities and cues that are regularly mentioned in the media). Such
an intimate match between environmental structure and human capacities is an
instance of ecological rationality (Gigerenzer et al., 1999). A second reason for the
remarkable success of simple heuristics is that more information or computation
does not necessarily yield better results. Although a more complex theoretical
model can achieve a better fit to an existing data set, using less information can

8

FP7 – 215535

Deliverable 1.4.1

yield more robust predictions when dealing with fundamentally uncertain systems
(e.g., forecasting the weather or stock market trends).

Our example of TTB also dispels the prejudice that heuristics are merely vague
rules of thumbs or malleable labels that can be accommodated to any kind of post-
hoc explanation. While this criticism may apply to so-called heuristics like ‘avail-
ability’ or ‘representativeness’ (which are really just verbal labels) TTB has been
formulated as an explicit and precise process model that contains three building
blocks:

1. a search rule: Consider cues in order of decreasing validity,

2. a stopping rule: Terminate search at the first cue that discriminates between
the available options, and a

3. decision rule: Choose the option with the higher criterion value on the dis-
criminating cue.

Consequently, TTB can be formally analyzed, computationally implemented
and subjected to rigorous tests that compare and contrast its predictions with
those of alternative strategies (see Czerlinski et al., 1999; Gigerenzer & Brighton,
2009, for such tests).

In summary, simple yet precise heuristics that are ecologically rational can be
powerful methods and indispensable cognitive processes on par with logic and prob-
ability theory (Polya, 1947; Gigerenzer, 2008). Rather than being mere crutches
and kluges, heuristics can be viewed as adaptive tools that are tailored to specific
classes of problems and can outperform optimization strategies with respect to
computational efforts and performance outcomes. A view of mind as an adap-
tive toolbox (as proposed by Gigerenzer et al., 1999; Gigerenzer & Selten, 2001)
demonstrates how heuristics can successfully exploit evolved mental capacities and
environmental structure and can succeed without trading off effectiveness against
efficiency. Given this existence proof of homo heuristicus (Gigerenzer & Brighton,
2009) we need to ask to what extent heuristics can contribute fruitfully to the
engineering challenges of the LarKC project.

2.2 Applications to LarKC

Whereas the previous section defined and described the concepts of measurement,
evaluation and heuristic problem solving in general terms this section addresses the
question how these notions can or need to be instantiated in the specific context
of the LarKC project.

2.2.1 Measurement and Evaluation of LarKC

Measuring the performance of LarKC will be challenging. As we have seen in
Section 2.1.1 any act measurement requires appropriate metrics and standards of
measurement. Prior to any technical discussion regarding the instrumentation of
the LarKC platform and its components it needs to be determined which quan-
tities need to be measured on which criteria in order to determine its degree of

9

FP7 – 215535

Deliverable 1.4.1

success. The difficulties are aggravated by the fact that LarKC is a complex en-
tity, consisting of multiple sub-components that need to interact with each other
to produce a result. Identifying the source of a particular success or failure thus
faces a credit assignment problem.

Whereas some quantities and criteria may be fairly general (like speed, accu-
racy, robustness) others may only apply to certain sub-components (e.g., the level
of recall of a selector or soundness of a reasoner). Furthermore, it is conceivable
that a particular component works perfectly well in the context of some other
components, but fails or performs sub-optimally when used with different source
data or in combination with different components. Before we can devise ways of
dealing with this complexity we need to address the question: What are the main
objectives of the LarKC project and how can progress towards these objectives be
evaluated?

In contrast to the simple dichotomous view exemplified by Table 2.1 (see
Page 6) a project of the magnitude of LarKC requires a hybrid and multi-layered
type of evaluation. On a very general level any EU-sponsored project implements
some mechanisms that bear the characteristics of summative evaluations (e.g., a
thorough review and approval process by subject-matter experts external to the
project) but also elements of formative evaluations (e.g., the internal quality re-
view of deliverables by colleagues, partners of other work packages and the project
management). Although such elements of evaluation that are already built into
the management and administration of the LarKC project regularly take stock of
the project’s current status, provide important pointers to needs and weaknesses
and thus shape the future direction of the project, they do not yet constitute an
evaluative effort that is suited to determine the success or failure of LarKC.

The main goal of the current document and one of the missions of work pack-
age 1 (WP 1) is to develop a framework for the measurement and evaluation of
the LarKC platform and its elements of heuristic problem solving. As this con-
stitutes an internal endeavor that primarily focuses on iterative improvement this
evaluation is mainly of a formative nature, but an apparatus to identify strengths
and weaknesses and measure various performance aspects will eventually facilitate
the summative evaluation of the project as well.

As has been stated in Section 2.1.1 any evaluative judgment on a project must
be based on a project’s original goals. In the context of the LarKC project, its
degree of success needs to be evaluated in relation to the project’s specific con-
straints and criteria. Specifically, judging the success and effectiveness of LarKC
necessitates the clarification of three components (Figure 2.1):

1. objectives, i.e., an explicit definition of the project goals;

2. metrics, i.e., measuring the degree of achievement of these objectives on some
quantifiable criteria; as well as an

3. assessment of value, i.e., some integrative judgment the extent to which its
goals have been achieved or, alternatively, which goals have been achieved
to what extent.

We will consider each of these points in turn to address the question how LarKC
can be evaluated.

10

FP7 – 215535

Deliverable 1.4.1

1. Objectives:
What are the goals of the project?

2. Metrics:
How can performance be measured?

3. Value:
To what degree have the goals been achieved?

Figure 2.1: Basic steps of the evaluation process.

Objectives of LarKC

Given the scope of the LarKC project it is no surprise that its goals are complex
and multi-faceted.

As an European Union Framework 7 program that aims to provide a technolog-
ical infra-structure and combines a creative vision with innovative engineering to
push beyond what is currently possible LarKC shares many general goals with sim-
ilar projects. Such general goals include providing an intellectual framework that
allows the application of semantic technologies to real-world problems and creating
the technical infrastructure that enables the desired functionality. The characteris-
tics of this infrastructure can be measured by parameters—such as speed, accuracy
and cost-effectiveness (in terms of the ratio between the quality of an answer to a
query and the computational resources invested)—and will partly depend on the
state-of-the-art of current hardware and software resources.

Beyond these general factors an evaluation of the LarKC platform will need to
take into account LarKC-specific goals. According to its vision, LarKC is poised
to provide a platform for massive distributed incomplete reasoning that removes
the scalability barriers of existing reasoning systems for the semantic web. In
contrast to existing semantic web applications LarKC aims to move beyond the
current state-of-the-art of webscale reasoning. By developing new methods of data
selection, transformation and semantic reasoning, employing cognitively inspired
approaches and building a distributed platform that uses both high-performance
computing clusters and a network of interlinked machines LarKC promises a level
of scalability beyond what has been possible so far. As such a platform can hardly
be developed in a contextual vacuum LarKC’s leadership has included designated
use-cases (dealing with the topics of urban computing, early clinical development
and the production of carcinogenesis reference materials) that allow to assess and
demonstrate the project’s potential through practical applications.

According to Fensel et al. (2008, p. 2) the major objectives of LarKC are:

1. Design an integrated pluggable platform for large-scale semantic computing.

2. Construct a reference implementation for such an integrated platform for
large-scale semantic computing, including a fully functional set of baseline
plug-ins.

11

FP7 – 215535

Deliverable 1.4.1

3. Achieve sufficient conceptual integration between approaches of heteroge-
neous fields (logical inference, databases, machine learning, cognitive sci-
ence) to enable the seamless integration of components based on methods
from these diverse fields.

4. Demonstrate the effectiveness of the reference implementation through ap-
plications in services that require data-aggregation (e.g. in the area of ur-
ban computing), meta-analysis of scientific literature in cancer research, and
data-integration and -analysis in early clinical development and the drug-
discovery workflow.

In addition to the requirements dictated by the questions addressed in the
use cases two aspects that are of central importance to the mission of the LarKC
project are robustness (both with respect to failures of components and incomplete,
uncertain or noisy data) and scalability (the ability to provide a given functionality
on different and potentially very large amounts of data). Thus, any effort to
evaluate the project will need to take these aspects into consideration.

Finally, the explication of the project goals need to address the issue of LarKC’s
audience. Ultimately, the usefulness of any practical project depends on it being
used productively by a community of users. If LarKC is to succeed it is because
multiple social groups are contributing to it and will begin using the platform for
tasks that include or transcend the ones currently envisaged. Beyond the interests
of the project sponsors, we can distinguish between the following stakeholders:

• LarKC researchers: The various teams of developers involved in the LarKC
project;

• Early adopters: Researchers not funded by the LarKC-grant, but using the
platform or some of its components for related projects.

• LarKC users: People conducting searches in an area of one of the use cases.

• Long-term adopters are researchers or businesses that transfer LarKC or
some of its components to other domains or develop business models on the
basis of LarKC-based technology.

Of particular interest for evaluation purposes are the experiences of LarKC
users and long-term adopters. Rather than being interested in the platform devel-
opment itself these user groups will primarily care about the usability of LarKC
and the utility of the obtained results for their own purposes. In addition to the
sheer number of users and adopters their satisfaction and willingness to invest into
using LarKC will be a valuable indicator of LarKC’s degree of success.

Metrics

Based on the general and specific goals identified in the previous section we can
identify a first set of quantitative dimensions that need to be measured in order
to evaluate LarKC. Such dimensions are:

12

FP7 – 215535

Deliverable 1.4.1

1. Speed refers to how quickly is some particular step or query is completed.
Although measuring duration seems relatively simple, speed partly depends
on the nature of the query, the amount of data considered and the computing
resources employed. Thus, to make measurements of speed comparable they
need to be expressed in relative terms, e.g., by computing the ratio of time
to data (RDF triples) or time, data and computational resources (number of
cluster nodes used to compute a solution to a query).

2. Accuracy concerns the quality of a result. Importantly, this measure de-
pends on the type of component investigated. For instance, in the context of
selection and retrieval plug-ins the typical accuracy measures are precision
and recall (see the following chapter). By contrast, traditional measures of
accuracy in the context of reasoning modules are soundness and complete-
ness (see the subsequent chapter). In addition, the specific requirements of
LarKC to deal with large amounts of potentially inconsistent and incomplete
data sets will require non-standard extensions to these traditional measures.
Novel reasoning techniques like approximate reasoning and anytime perfor-
mance proles (see also Deliverable 4.7.1 for initial ideas on measuring and
evaluating these techniques).

3. Robustness is the ability of a process to yield meaningful results despite
potential breakdowns of components and uncertain, incomplete or noisy data.
A measurement of robustness can be conducted in several ways:

(a) by intentionally lesioning the system (by disabling parts of or removing
entire components, e.g., particular selector or reasoning plug-ins);

(b) by degrading the data repositories or data integrity on which a process
operates;

(c) by constraining the temporal or computational resources of a particular
computation.

4. Scalability refers to the platform’s ability to provide a given functionality for
different and potentially very large amounts of data. Any measurement of
scalability will have to vary the size of the available data (e.g., in millions of
RDF triples) and assess changes in speed, accuracy, robustness or quality as
a function of this change.

5. Usability and user satisfaction are measures that address the needs and goals
of LarKC adopters and users. Initially, usability can be operationalized as
the number of people that use and adopt the platform to their purposes. As
the number of users and adopters grows it will be instructive to query these
communities about their levels of satisfaction and suggestions for further
improvements.

6. Quality and impact are overall measures of the “goodness” of a thing, process
or project—its degree of success and excellence. For practical purposes,
quality can be defined in terms of the other measures, i.e., as having high
values on the dimensions of speed, accuracy, robustness and scalability, as
well as having a large community of satisfied adopters and users. Scientific

13

FP7 – 215535

Deliverable 1.4.1

impact can be measured by the number of project-related publications and
citations.

Just as accuracy can refer to different aspects depending on the particular
object whose accuracy is to be assessed we need to distinguish between different
levels of analysis for the other metrics as well. Specifically, we could measure the
quantities just described on the following levels:

1. the overall platform, including many different data repositories, workflows,
plug-ins and user queries;

2. a particular use case, involving multiple workflows and plug-ins;

3. a particular workflow or configuration;

4. a particular plug-in;

5. a particular solution to a particular query.

Determining the appropriate level of analysis will depend on the details of
a particular question. If the platform instrumentation allows measurement and
assessment on the most fine-grained level it will be possible to abstract to the
more general levels (but see some complications described in Section 2.2.2 below).

Assessment of Value

An overall assessment of value of the LarKC project is no longer part of the for-
mative evaluation by its partners and contributors but will be achieved through a
summative evaluation by its reviewers and sponsor. Beyond the project’s scientific
impact its practical value can be quantified by the number of adopters and active
users. Ultimately, the usefulness of the project will be determined by its uses and
users.

Using User Feedback Rather than just providing final judgments on the overall
merit of a project user feedback can be used productively during the development
process. A convenient way of collecting evaluative user feedback is to automat-
ically prompt users to submit quality ratings upon the completion of a query.
For instance, simple Likert scales (that ask for a numeric value between 0 and
10 or prompt the user to point to a value on a linear scale) could be provided
for certain key dimensions, like response speed, quality of the obtained solution,
and overall satisfaction with the system. As the number of data points obtained
would grow with a growing user community it may be possible and—to minimize
user annoyance—advisable to sample only a sub-set of all users and prompt them
only with a sub-set of dimensions. However, if the content of the original query,
information about the system setup that produced a given response and these rat-
ings were logged in a global database such user feedback could provide valuable
pointers towards the strengths and weaknesses of platform components. A type
of experiment could be to swap in and out particular components and observe the
effects of this manipulation of the user feedback.

Another way of using human judgments to improve the LarKC system is to
employ several alternative workflows in parallel and let users choose between the

14

FP7 – 215535

Deliverable 1.4.1

results obtained. Side-by-side comparisons of this kind are sometimes implemented
to compare the results of different search engines,1 but they could also be used to
compare the results of different system configurations, such as different plug-ins
or data repositories.

Openness for Unexpected Uses It is often said that an assessment of quality
or value is as much of an art as a science and requires both experience and wisdom.
Given the scope of LarKC, it is not just possible but likely that not all practical
consequences and uses of LarKC were foreseen and foreseeable from the start.
Any evaluative effort needs to be open to the fact that some of LarKC’s uses are
currently unknown. We need to keep an open mind and adapt our ongoing efforts
of evaluation to new objectives as the project unfolds.

2.2.2 Heuristic Problem Solving in LarKC

Just as the performance of the LarKC platform needs to be measured on multiple
dimensions and levels the notion of heuristics is embedded in LarKC in multiple
ways.

Heuristic Plug-Ins

On the level of individual plug-ins developers use and implement heuristics in the
sense of strategies that are computationally efficient and yield satisfactory results.
Granular reasoning (as described in LarKC Deliverable 2.3.1 and Zhong et al.,
2008) can be considered a heuristic method to facilitate reasoning by zooming
into a subject matter on different levels of resolution. Likewise, techniques for
approximate reasoning and anytime reasoning (as described in this document and
Deliverable 4.7.1) constitute heuristic approaches that dispense with some of the
requirements of classical logic in the service for computational or practical pur-
poses. One way to evaluate these techniques is by comparing their results with
alternative results obtained from different reasoners. A difficulty of such compar-
isons is that different methods are likely to differ on multiple dimensions. For
instance, some Reasoner A may yield a more complete set of statements than
an alternative Reasoner B but may simultaneously require more time or be more
volatile with respect to inconsistent or noisy data. Unless there is an explicit norm
how the different dimensions of completeness, speed and robustness are to be in-
tegrated it is unclear which reasoner is superior. As the solution to such trade-offs
also depend on the sources of data, the selection and transformation of data prior
to the reasoner and a particular use case a cautious approach is to not attempt an
integration, but measure all dimensions separately.

Heuristic Deciders

A second sense in which LarKC will implement aspects of heuristic problem solv-
ing is in the rules that determine the duration for which processes continue to
run. Although stopping rules were previously mentioned as a key component of

1See e.g., http://blindsearch.fejus.com and http://www.blackdog.ie/google-bing/
for a comparison between alternative search engines (validity of URLs verified on 2009-09-08).

15

FP7 – 215535

Deliverable 1.4.1

a well-defined heuristic (see page 9 above) they also constitute genuine heuristics
in themselves. As the time and complexity of many computations increases with
the size of the data set to-be-searched rules that decide when to stop searching or
when to interrupt one task in favor of another are increasingly important. If a plot
of performance increases as a function of time on some critical dimension shows
the characteristics of diminishing returns it may be possible to increase the overall
efficiency of the system by implementing heuristic stopping rules (see Deliverables
4.2.1 and 4.2.2 for examples of such rules). As before, a critical evaluation of the
success of such rules requires that their benefits (e.g., in computational efficiency)
are traded-off against their costs (e.g., loss of some data). As the weights of such
a trade-off cannot be specified a priori and independently of a specific problem
our current recommendation is to measure all available aspects of the problem and
determine their integration when the need arises in a particular context.

Heuristic Workflows

A third way in which the LarKC platform employs a form of heuristic problem
solving is the way in which multiple components are assembled in order to respond
to a user query. Regardless whether a particular workflow was hand-coded by a
developer or designed on-the-fly by an automated LarKC decider the workflow
itself can be considered a heuristic strategy with the goal to discover a solution
(or solutions) to the given problem.

The very notion of a plug-in makes it apparent that a choice between multi-
ple alternative components immediately poses a selection and credit assignment
problem. For instance, if a particular problem could be addressed by n alternative
selectors and m alternative reasoners there exist n× m alternative workflows that
involve exactly one of each plug-in types. To assess the performance characteristics
of each of these workflows is no trivial matter, especially since it is possible that
the effects of sequential plug-ins are not merely additive (e.g., the total execution
time is equivalent to the sum of all component times) but may be subject to man-
ifold interactions (e.g., when a particular Reasoner works well with the output
of a specific Selector A, but poorly with the output of another Selector B). As
such interactions cannot always be foreseen when designing Selectors A and B the
prudent approach with regards to evaluation is to instrument all components and
measure and compare different workflows once the components are in place and
used repeatedly to solve practical problems.

2.2.3 Evaluation of Heuristic Problem Solving

As heuristics are methods or procedures to solve problems the evaluation of LarKC’s
heuristic components can be based on the same same principles, metrics and meth-
ods that have already been outlined above (see Section 2.2.1, pages 9ff.). Never-
theless, we will highlight three methodologies that are of particular importance for
the evaluation of heuristic problem solving:

1. Comparison with alternative methods: For heuristics that provide computa-
tional short-cuts to arrive at satisfactory results at low costs (in terms of
the time or computing resources invested) it is always instructive to quantify

16

FP7 – 215535

Deliverable 1.4.1

both the benefits and costs of the heuristic compared to alternative meth-
ods, e.g., an established optimization method, multiple (sizes of) data sets,
different system configurations, or the results of alternative strategies.

2. User feedback : To assess the degree to which different values on multiple pa-
rameters (like speed, recall, precision etc.) matter to real-world applications
it will be important to incorporate evaluative user feedback (as outlined in
Section 2.2.1, page 14).

3. Cross-validation: If a large number of problems with expert solutions exist
for a particular use case the methodology of cross-validation would facilitate
both platform design and evaluation. In an initial design phase, developers
would receive a random sub-set of all problems to design and fine-tune a
LarKC workflow that yields results that resemble the expert solutions as
closely as possible. In a second test phase, the resulting workflow could be
evaluated on its responses to the remaining problems that were not available
to the developer during the design phase. This cyclical process of test-adjust-
test can be subdivided into smaller steps and implicitly reflects the standard
approach of most developers. But in project of the scale of LarKC—in
which the responsibilities about use case content and platform design are
distributed across multiple people and research groups—it may be useful to
explicitly install a collaborative cross-validation effort.

2.3 Summary

In this chapter we clarified the concepts of measurement, evaluation and heuristic
problem solving and explicated their meaning in the context of the LarKC project.

Any large-scale evaluative effort serves multiple functions and the interests of
many stakeholders. Our primary interest in the context of this deliverable is a
formative evaluation framework that is designed by the members of the LarKC
project and aims to identify project strengths and weaknesses, focus managerial
and research efforts, and measure progress towards achieving the project goals.
Such a framework can also serve as the foundation for a subsequent summative
evaluation.

Key components of an evaluation are the identification of objectives, metrics,
and the attribution of value to the measurements obtained. With respect to LarKC
we outline important project goals and key dimensions on which the platform’s
performance can be quantified. With respect to evaluative judgments we argue
that the negotiation of trade-offs between multiple dimensions should be addressed
at a later point, when they can be informed by a larger user base. At the current
stage of the project the main focus should be on instrumenting the components
of the platform and collecting the associated measurements in a systematic way.
As the usefulness of LarKC will be determined by its users and uses we emphasize
the importance of incorporating user feedback throughout the development and
evaluation of the project.

The notion of heuristic problem solving is used in many different contexts and
meanings. We identify several usages and outline three ways in which the concept
can be applied to LarKC: as methods used in plug-in design, as stopping rules

17

FP7 – 215535

Deliverable 1.4.1

implemented in deciders, and as workflows that are configured to solve particular
problems. The evaluation of heuristic problem solving follows the same methods
and principles as evaluation in general.

18

FP7 – 215535

Deliverable 1.4.1

3 Evaluation of Identify and Select Plug-ins

This chapter includes a specification of different criteria and techniques for evalu-
ating selection and retrieval plugins. The role of retrieval and selection in LarKC
is to dynamically reduce or expand the data set we are working with depending
on factors such as cost of processing or confidence in result. In other words, the
task is to return all those triples from a repository which are the most relevant to
the context (e.g., reasoning history). To do this we exploit methods from Informa-
tion Retrieval (IR), machine learning, cognitive science, and stream management
systems.

Although there is a similarity between the selection task in LarKC and classic
IR, it is important to note that unlike IR which deals with documents, selection
tasks deal with structured data only, i.e. RDF triples. Therefore, we cannot use
classical IR evaluation measures, without adapting them. Moreover, evaluation
of selection and retrieval plugins in LarKC is a complex process as it requires
addressing several challenges (detailed discussion available in D2.1.2 Selection:
Experimental Apparatus, Chapter 5):

• The LarKC platform will be used for different scenarios and will be applied
to various usecases. Therefore evaluation needs to be complete in this sense.

• It is very hard to measure the success of selection plugins, as it can only
be measured with respect to a task that has obvious relevance for humans.
However, it is not feasible for humans to transfer the original KB and the
subset into their minds in order to judge the relevance of the subset. In
this sense, evaluating subsetting in isolation becomes unreilable. However,
evaluating more concrete tasks which depend on subsetting sounds feasible.

• Further emphasizing the problem described in the previous point, RDF
knowledge bases are not written in a language understandable for humans.
It is very hard for general population or domain experts from the specific
field to understand and evaluate the structure represented as RDF triples.

• To the best of our knowledge, established 3rd party evaluation programmes
do not exist for the task such as selection in LarKC.

In the rest of this chapter, we discuss evaluation measures such as speed and
accuracy, followed by datasets, and a more detailed discussion on the evaluation
of selection plugins within the project usecases.

3.1 Speed

Measuring speed in the context of the selection plugins means measuring number
of statements per second. This measure cannot be observed in isolation, and needs
to

• be expressed relative to computational resource usage,

• consider the relevance of the output subset expressed through accuracy.

19

FP7 – 215535

Deliverable 1.4.1

With regards to the types of statements which are covered by this measure, we
consider:

• number of statements per second considered for inclusion in the output sub-
set, or/and

• number of statements per second which have been removed.

3.2 Accuracy

As selection and ranking problems bear a number of similarities to that of Infor-
mation Retrieval (IR) we will exploit a number of evaluation methods from that
field, namely precision and recall.

Precision measures the number of correctly identified items as a percentage of
the number of items identified. In other words, it measures how many of the
items that the system identified were actually correct, regardless of whether
it also failed to retrieve correct items. The higher the Precision, the better
the system is at ensuring that what has been identified is correct.

Recall measures the number of correctly identified items as a percentage of the
total number of correct items. In other words, it measures how many of the
items that should have been identified actually were identified, regardless of
how many spurious identifications were made. The higher the Recall rate,
the better the system is at not missing correct items.

When measuring accuracy of the selection task, recall is more important than
precision. The reason is the subsetting task being the first step which is performed
before other processes. If the subsetting task removes relevant triples, the following
processes will be less accurate and may provide only approximate solutions which
in turn affects the quality of answers computed by the workflow.

However, traditional IR measures such as precision and recall need to be
adapted in order to suit the selection and retrieval task in LarKC, which deals
with RDF triples, not documents. More precisely, in order to calculate these mea-
sures, we need to know the size of the dataset in advance, and the exact set that
solves the query. Even if we perform these types of measurements on the small test
sets, this would require manual checking the relevance of RDF triples. As we have
discussed before, humans might not be able to correctly assign the relevance to
the RDF triples as although the triple could seem irrelevant for a human, it might
be crucial for the successful operation of a subsequent plugin such as a reasoner.
Moreover, the KB can change over time, which means that the relevant subset
might change as well. All these reasons make the expectations from humans to
judge the relevance of a huge RDF subset unrealistic.

Therefore, as we need to involve humans and design human-understandable
tasks in order to evaluate the subsetting in LarKC, we will conduct extrinsic task-
based evaluation based on the usecases so that we can express the relevance on a
more abstract level, without engaging users in the process of understanding and
judging the relevance of the RDF subset. An extrinsic evaluation evaluates the
component as part of a complete system, in its actual use case setting. This is
discussed later in Section 3.5.

20

FP7 – 215535

Deliverable 1.4.1

We will also consider intrinsic evaluation. An intrinsic evaluation is designed
to test a single component in isolation, holding all external factors constant, and
independently of its actual use. Details are discussed later in Section 3.4

As the use cases are major providers of test data for the LarKC platform, we
will first describe the datasets with which the evaluation will be performed.

3.3 Datasets

The life sciences are a major producer of data, information, and knowledge at ter-
abyte scales and above. Witness the vast quantities of raw genome data produced
by the many species specific genome projects, the ontologies built to help describe
this data (some of the largest ontologies built to date), and the burgeoning gene-
and prote- omics literature. The datasets that we use in LarKC therefore provide
good vehicles on which to test notions of “web-scale” and “ceiling free” reasoning.

We will make use of two major data sources when performing cancer research
use case evaluations:

• A large triple store (Linked Life Data - LLD), as described in D7b.1.1a
“Requirements summary and data repository”, Section 6.2. LLD will be a
primary, single resource in the intrinsic evaluation of selection and retrieval
plugins. For extrinsic evaluation, it will be used in combination with other
data sources.

• A corpus of annotated biomedical literature, as described in D7b.1.1a “Re-
quirements summary and data repository”, Section 6.3.1 and Section 6.3.2.
We will annotate the full 20 million abstracts of PubMED/MEDLINE 1.
When represented as triples in LLD, this will provide further material, par-
ticularly for the extrinsic evaluations discussed below.

In addition, the use case is a source of end-user queries, that may be of use
in both extrinsic evaluations, and in providing queries for intrinsic evaluation of
selection and retrieval plugins. Example queries are described in D7b.1.1a “Re-
quirements summary and data repository”, Section 5.3.4.

3.4 Intrinsic evaluation

An intrinsic evaluation is designed to test a single component in isolation, holding
all external factors constant. The evaluation is independent of actual use, and
does not involve any objective measure of usefulness, or any subjective measure
of end user satisfaction. This gives a measure of performance with respect to the
components functionality, independent of utility. For example, a selection plugin
may be evaluated against a synthetic dataset, with synthetic queries.

For intrinsic evaluation, we will concentrate on the most straightforward deriva-
tions of IR precision and recall metrics, together with computational efficiency.
These metrics will be measured with respect to triple selection across evaluation
data sets. Wherever possible, these datasets will be drawn from the use cases.
Datasets may, however, need to be specific to a particular plugin.

1 http://www.ncbi.nlm.nih.gov/pubmed/

21

FP7 – 215535

Deliverable 1.4.1

Each plugin will be evaluated within a fixed configuration of the LarKC sys-
tem. For each plugin evaluation, we will use a comparison against a baseline to
show relative changes in performance for each parameter. For this purpose, the
baseline plugins defined in Deliverable D2.2.1, 2.5.1 “Month 12 Selection Compo-
nents (report accompanying two software deliverables)” will be used. Evaluation
will proceed as follows:

1. Define a fixed configuration of the LarKC platform.

2. For each evaluation dataset and for each baseline plugin

(a) Run evaluation queries over baseline plugins

(b) Log evaluation metrics

(c) For each evaluation plugin

i. Run evaluation queries over evaluation plugin

ii. Log evaluation metrics

iii. Compute change in metrics

3.5 Extrinsic evaluation

An extrinsic evaluation evaluates the component as part of a complete system, in
its final use setting. Tipically, this would be conducted as a task-based evaluation
with subjects, who will be asked to perform the specific tasks using the system.
The measures we can derive from such an evaluation are:

• effectiveness – the ability of users to complete tasks using the system, and
the quality of output of these tasks i.e. was the same task faster, cheaper,
or more accurate?

• efficiency – the level of resource consumed in performing tasks i.e. the time
the subjects spent on the task, and

• satisfaction – the user’s subjective reaction to using the system

We will consider two use case scenarios from the cancer research use case,
detailed below.

3.5.1 Evaluation in the Genome Wide Association Study
scenario

The Genome Wide Association Study (GWAS) scenario is desccribed fully in
D7b.1.1a “Requirements summary and data repository”, Chapter 3.

In GWAS, samples are tested from thousands of subjects with the disease in
question, and thousands of disease-free controls. Each sample is tested with many
hundreds of thousands of gene markers. If a marker is found more frequently in
disease samples as opposed to control samples, then perhaps genes close to that
marker are associated with the disease. Unfortunately, the statistical power of
the technique is limited. This is overcome by using larger and larger numbers of

22

FP7 – 215535

Deliverable 1.4.1

experimental samples and controls. The aim of LarKC in GWAS is to find the
prior probability that a given gene is associated with a disease, and to improve the
statistical power of GWAS data analysis on small numbers of samples, through
using this prior in a Bayesian model. The prior is calculated using:

• A set of keywords selected by domain experts to represent the disease

• All research literature abstracts in MEDLINE, semantically annotated

• A selection of biomedical knowledge sources in LLD, as described above

• A set of queries relating the keywords, literature and knoweldge sources

The use case may be evaluated by virtue of the fact that we have an existing
non-LarKC method, and existing experimental data. We aim to use LarKC on
subsets of the existing experimental data, and determine if this subset could be
used to produce the same results as the full set using the existing non-LarKC
method. Our measure will be the percentage of data required for LarKC to produce
the same results as the non-LarKC method. We will use multiple (100) random
selections of datasets.

3.5.2 Evaluation in the Monograph scenario

The Monograph scenario is described fully in D7b.1.1a “Requirements summary
and data repository”, Chapter 2.

The IARC monographs are a series of volumes evaluating potential carcino-
gens. They are definitive, and encyclopaedic. Each monograph is based on a
review of: all published human and animal studies; representative studies of the
molecular basis of carcinogenesis. Monograph scientists identify: all relevant pa-
pers for review; relevant international experts to carry out the review and write
the monograph. Monograph scientists currently use typical IR methods to search
for the relevant literature. The aim of LarKC is to improve retrieval by the use of
semantic annotation and network analysis techniques.

Evaluation of this scenario will make use of a task-based as described in the
deliverable “D7b.1.1b Iteration evaluation methodology and report template”. The
methodology will make use of a Likert System Usability Scale, along which users
will be asked to score performance and ease of obtaining results for a LarKC
assisted literature search, and for a non-larKC assisted literature search.

3.6 Workflow-based evaluation

Evaluation of the selection task within LarKC platform will enable us to get an
objective view of the task quality by comparing:

• the workflow speed/resource consumption with and without selection, and
also

• the accuracy of the result of the workflow with and without selection

23

FP7 – 215535

Deliverable 1.4.1

4 Evaluation of Transformation Plug-ins

In this chapter we explore some evaluation criteria and measures that can be uti-
lized to evaluate the transformation techniques and plug-ins developed in LarKC.
At first we give an overview of the transformation techniques and plug-ins. Then
we briefly review related machine learning algorithms and show the workflow of
the approach applied for the transformation plug-ins. Afterwards, we provide an
insight into the evaluation in terms of efficiency, quality, robustness and scalability
and discuss some state-of-the-art evaluation methods in areas of machine learning
and information retrieval. Since there is no established executable transformation
plug-in yet, we focus on the evaluation criterion and measures which we used by
now in our experimental tests. Finally we conclude the chapter. Note that WP3
“Abstraction and Learning” consists of two parts: Machine Learning and Data
Streaming and that here we solely concern the former whereas the latter will be
described in another separated chapter.

4.1 Overview

The objective of WP3 is to contribute scalable solutions to abstraction and learning
to LarKC. Abstraction concerns the derivation of suitable data representations for
reasoning and learning, while for learning we will extend existing machine learning
algorithms to be applicable in the LarKC framework and explore suitable reasoning
tasks in context of the LarKC use cases.

The techniques and plug-ins developed in WP3 can be used to transfer conve-
nient semantic knowledge base (KB) into probabilistic semantic KB, where RDF
statements contain certain probability how likely they might exist or be true. This
transformation could be considered as inductive materialization by using machine
learning. Traditionally, machine learning requires a domain expert for the fea-
ture definition, for the selection and the application of learning algorithms and
for the interpretation of the results. The eventual goal of plug-ins of WP3 is a
machine learning approach that is appropriate to the data situation on SW but
that is as easy to use as logical reasoning. We summarize the challenges of the
transformation techniques and plug-ins in LarKC as follows:

• They should scale well with the size of the SW.

• They should deal with sparse data and missing information.

• The statements and their probabilities, which are predicted by machine learn-
ing, should easily be integrated into SPARQL-type querying.

• They should be “push-button” requiring a minimum of user intervention.

4.2 The Transformation Approach

A number of algorithms have been successfully proposed in the past decade for
learning in Semantic Web (SW), many of which are based on recent work in statis-
tical relational learning. Two families of approaches are special worth to mention:

24

FP7 – 215535

Deliverable 1.4.1

global probabilistic models (e.g. Markov Logic Networks) and conditional models
(e.g. Inductive Logic Programming). Each of them has strength and weakness.
We pursue a compromise between two families of models. As in some of the
global probabilistic models, we introduce probabilistic nodes whose states reflect
the truth value of the corresponding statements. We derive a data matrix for
model training. Such a data matrix is typically high-dimensional and sparse. We
apply matrix completion techniques for estimating the missing information.

How does this learning approach work? Given a semantic KB, user defines
the statistical unit and the population. Based on the definition RDF triples are
transformed into data matrix with two dimensions: Rows are statistical units (key
entities), while columns represent features of the data. This RDF-to-matrix trans-
formation can be considered, from machine learning point of view, as a preprocess-
ing step. We perform sub sampling and feature collection by using SPARQL-like
queries and we achieve feature reduction afterwards. With the data matrix we
train models and apply the models to estimate statements for the unknown en-
tries in the sampled data matrix (transduction) and more importantly to estimate
unknown statements in the whole population (induction). The estimated prob-
abilistic statements can be stored in the KB as weighted triples, so that they
can be retrieved together with existing statements via SPARQL-like queries. The
approach is proposed in (Tresp, Huang, Bundschus, & Rettinger, 2009).

4.3 Efficiency

So far we have got a notion of the learning approach. The most time consum-
ing step in the workflow is the model training. However, the training is usually
processed offline (not in runtime). The estimation of the probability of unknown
but potentially true statements can be done online or offline. It depends on con-
crete application scenarios. In case of inductive materialization, for example, we
perform both training and prediction offline, so that the efficiency of querying is
not debased. Since the approach is based on matrix completion techniques, pre-
dicting the truth value of a certain statement takes often time in O(n) complexity
order where n is the dimensionality of the features. Some probabilistic generative
models might need longer time to do prediction and it is dependent on various
factors: again dimension of features, program language, implementation of models
and of course the intrinsic characters of models. In any case, we can evaluate
the efficiency of the transformation plug-ins by using any standard criterium. For
instance, how many statements are estimated per second.

4.4 Quality

In WP3 we take open world assumption which means that no existing statements
are unknown but not false. Therefore the task here is to estimate the probability of
potential statements by exploring regularities in the semantic data using machine
learning. In order to evaluate the performance of learnt models we split data into
training set and test set by randomly selecting some known statements for test and
setting the corresponding matrix entries to zero, to be treated as unknown. In the
test phase we then predict all unknown statements, including the test statements.

25

FP7 – 215535

Deliverable 1.4.1

The test statements should obtain a higher likelihood value, if compared to the
other unknown entries. Sorting statements by descending estimated probability
we get a rank list in that the test statements should appear in top positions.

In our preliminary experiments we use the normalized discounted cumulative
gain (NDCG) (Jarvelin & Kekalainen, 2000) to evaluate the quality of rank list
predicted by learning models. NDCG is calculated by summing over all the gains
along the rank list R with a log discount factor as NDCG(R) = Z

∑
k(2

r(k) −
1/ log(1 + k)), where r(k) denotes the target label for the k-th ranked item in R,
and Z is chosen such that a perfect ranking obtains value 1. To focus more on
the top-ranked items, we also consider the NDCG@n which only counts the top n
items in the rank list. These scores are averaged over all functions for comparison.
The better an algorithm, the higher would the test statement be ranked.

In general, there is a number of methods in areas of machine learning and
information retrieval to evaluate the quality of predictive models. However, as we
assume that unobserved statements are unknown, there are no negative examples
(false) at all and many evaluation methods are not appropriate in this case. For
example, precision and recall mentioned in Chapter 3, as well as accuracy and F1

measure. The latter is a combination of precision and recall, formulated as F1 =
2∗precision∗recall/(precision+recall), because precision and recall are negative
correlated. Another family of evaluation measures are based on the residual error.
They are suitable in case of numeric truth values of statements (e.g. movie ratings
from one to five stars) instead of binary values. An example in this family is the
rooted mean squared error (RMSE) which is a good measure of the differences
between estimations and true values. The RMSE is calculated by drawing the
square root of the average squared error on each residual.

4.5 Scalability

The size of the training data set is under the control of the user by means of defining
the population and the statistical unit. Thereby the data matrix is typically
independent or only weakly dependent on the overall size of given semantic KB
and in consequence the time consume and feasibility of model training is essentially
independent of the overall size of the KB. The learning approach presented in
Section 4.2 achieves scalability via two means. First, sub sampling techniques lead
to scalable solutions. Second, scalable algorithms can deal with large data matrix
and are only sensitive to the number of non-zero entries. Theoretically we can
say that the transformation plug-ins will be scalable to arbitrary size of data. If
the size of the population becomes really huge and the characteristics of the test
set becomes very different from the characteristics of the training set prediction
becomes harder: e.g., random people in the world do not have friends in common.

4.6 Robustness

To evaluate the robustness of a certain machine learning model one normally tests
the model based on more than one data sets from different domains. Taken one
data set, one can use cross validation repeating data split (training data set and
test data set: disjunct subsets of that data set), so that one averages experimental

26

FP7 – 215535

Deliverable 1.4.1

results on different subsets and evaluates the performance of the model with the
mean value and corresponding confidence interval. In addition, due to the applica-
tion of sub sampling techniques we repeated sampling process in our experiments
for several times.

Another aspect of the robustness (see Chapter 2) concerns the capacity of
handling with incomplete, uncertain or noisy data. It is exactly the nature of the
matrix completion techniques.

4.7 Summary

In this chapter we explored the key idea and the workflow of the machine learning
approach applied in transformation plug-ins, which is well suitable for typical SW
data situation: large scale, uncertain and highly sparse with missing information.
We analyzed characters of the approach with respect to efficiency, quality, scal-
ability and robustness and based on that we presented corresponding evaluation
measures. In addition, we briefly discussed in Section 4.4 some related evaluation
measures in terms of quality. Concerning usability we would point out that the
transformation is to a large degree autonomous and only the statistical unit and
the population need to be defined by a user, although user also has possibility to
design configuration by her/himself.

27

FP7 – 215535

Deliverable 1.4.1

5 Evaluation of Reason Plug-ins

In this chapter, we lay the foundations for a statistical approach to evaluating
approximate and anytime reasoning algorithms. We will do this in a very abstract
manner, which can be made concrete in different ways, depending on the considered
use case. At the same time, we will use this statistical perspective to precisely
define approximate reasoning notions which to date have remained quite vague.
We furthermore show that our mathematical modelling can be used for guiding
the development of composed approximate reasoning systems. In the end, our
mathematical modelling can be used for rigorous comparative statistical evaluation
of approximate reasoning algorithms.

5.1 Introduction

In different application areas of Semantic Technologies, the requirements for rea-
soning services may be quite distinct; while in certain fields (as in safety-critical
technical descriptions) soundness and completeness are to be rated as crucial con-
straints, in other fields less precise answers could be acceptable if this would result
in a faster response behaviour.

In many cases, however, a user will not be willing to wait arbitrarily long for an
answer. More likely, she would be prone to accept “controlled inaccuracies” as a
tradeoff for quicker response behaviour. However, the current standard reasoning
tools (though highly optimized for accurate, i.e., sound and complete reasoning)
do not comply with this kind of approach: in an all-or-nothing manner, they pro-
vide the whole answer to the problem after the complete computation. It would
be desirable, however, to have reasoning systems which can generate good approx-
imate answers in less time, or even provide “anytime behaviour”, which means the
capability of yielding approximate answers to reasoning queries during ongoing
computation: as time proceeds, the answer will be continuously refined to a more
and more accurate state until finally the precise result is reached. Clearly, one
has to define this kind of behaviour (and especially the notion of the intermediate
inaccuracy) more formally.

It is important to realize that computation time is just one of the resources
that an algorithm uses, and that the user might want to economise on in exchange
for a reduced quality of answers. In other settings, one might want to reduce other
resources such as the amount of memory used by an algorithm (e.g. on memory-
limited mobile devices), the amount of user interactions needed to complete the
task (in order to put less burden on the user), the amount of data access needed
by the algorithm (e.g. in pay-for-access environments), etc. The formal framework
presented in this chapter is general enough to cover approximation as a trade-off of
quality against any resource, time being just a particular (and frequently ocurring)
example.

Approximations can take multiple forms. We will now provide some examples
and motivatoins for a number of different forms of approximations.

• Approximating the set of answers: incompleteness if not all answers are
needed to complete a task (e.g. instead of returning all the phone numbers

28

FP7 – 215535

Deliverable 1.4.1

of a taxi company return only one them, i.e. return a single answer instead
of multiple answers to a query).

Or, weaker, if a partial set of answers already allows partial completion of
the task. For example consider the scenario where an user is interested in
comparing the prices of a given item across various internet shops. The
more shops the better, but even a partial set of shops allows you to make a
relatively good comparison and decision.

• Approximating the set of answers: unsoundness when wanting to rapidly
exclude a suspected answer: cheaply compute an unsound answer set (= too
large); if the suspected answer is not in the computed (too large) answer
set, it is certainly not an answer, and can be excluded. This happens when
wanting to ensure that no solutions are missed: cheaply compute an unsound
answer set (= too large); all correct answers are guaranteed to be included
(at the price of having a few extra incorrect answers).

For example, in systems where a rapid diagnosis for high risk faults is required
a valid option is to compute an initial unsound (too large) diagnosis. If this
set contains a high risk fault then it is worth spending more resources to see
if the same high risk fault is included in a more precise diagnosis. As another
example consider a query that ask for the current location in the context of
location-aware services. This query is an example of the type of queries users
may formulate in the Urban Computing use case. A possible solution would
be to compute and return an approximate location rather than the exact
location. In this case, an unsound but complete answer set would include
multiple locations, one of which is the correct one.

• Approximating individual answers When the approximation consists not of
reducing a set of correct answers to a smaller set, but when an individual
answer is being approximated. For example, in determining the personal
profile-category of a customer a more precise profile is better, but even a
high level abstract profile-category is better than nothing. Another example
is finding a product that satisfies as many requirements of a customer as
possible. A product that only satisfies some of the requirements is already
an approximate solution.

• Disjointness of approximate and perfect answers: Do the approximate an-
swers come from the same domain as the perfect answers or not? In the
customer-profile problem, no approximate abstract-class answer would ever
qualify as the perfect answer, since we always want a concrete (leaf) class as
an answer (hence the domain of approximate solutions and of perfect solu-
tions are disjoint), while in the product-selection problem, the approximate
answer to one problem could be the perfect answer to another problem, hence
the domain of approximate solutions and of perfect solutions coincide.

• Two-sided approximation: When both an upper bound and a lower bound
are given, which approximate the perfect answer from two directions (e.g.
both complete-unsound and sound-incomplete sets of answers)

29

FP7 – 215535

Deliverable 1.4.1

5.1.1 Application to Semantic Web

Introducing approximate reasoning in the Semantic Web field is motivated by the
following observation: most current specification languages for ontologies are quite
expressive, reasoning tasks are supposed to be very costly with respect to time and
other resources – this being a crucial problem in the presence of large-scale data.
As a prominent example, note that reasoning in most description logics which
include general concept inclusion axioms (which is simply standard today, and e.g.
the case in OWL DL) is at least EXPTIME complete, and if nominals are involved
(as for OWL DL) even NEXPTIME complete. Although those worst case time
complexities are not likely to be thoroughly relevant for the average behaviour on
real-life problems, this indicates that not every specifiable problem can be solved
with moderate effort.

These ideas of approximate reasoning are currently cause of controversial dis-
cussions. On the one hand, it is argued that soundness and completeness of Se-
mantic Web reasoning is not to be sacrificed at all, in order to stay within the
precise bounds of the specified formal semantics. On the other hand, it is argued
that the nature of many emerging Semantic Web applications involves data which
is not necessarily entirely accurate, and at the same time is critical in terms of
response time, so that sacrificing reasoning precision appears natural (Fensel &
Harmelen, 2007).

Another suggestion to avoid the necessity is to restrict knowledge represen-
tation to so-called tractable fragments that allow for fast, sound and complete
reasoning. Although this might be useful in scenarios where all essential knowl-
edge can be modelled within the restricted fragment, in general there are strong
arguments in favor of the usage of expressive formalisms:

• Real and comprehensive declarative modelling should be possible. A content
expert wanting to describe a domain as comprehensively and as precisely as
possible will not want to worry about limiting scalability or computability
effects.

• As research proceeds, more efficient reasoning algorithms might become
available that could be able to more efficiently deal with expressive spec-
ification formalisms. Having elaborated specifications at hand enables reuse
of the knowledge in a more advanced way.

• Finally, elaborated knowledge specifications using expressive logics can re-
duce engineering effort by horizontal reuse: Knowledge bases could then
be employed for different purposes because the knowledge is already there.
However, if only shallow modelling is used, updates would require overhead
effort.

5.1.2 Contributions of this Chapter

From our perspective, it depends on the specifics of the problem at hand whether
approximate reasoning solutions can or should be used. We see clear potential in
the fields of information retrieval, semantic search, as well as ontology engineering
support, to name just a few examples.

30

FP7 – 215535

Deliverable 1.4.1

At the same time, however, we would like to advocate that allowing for unsound
and/or incomplete reasoning procedures in such applications must not lead to
arbitrary “guessing” or to deduction algorithms which are not well-understood.
Quite on the contrary, we argue that in particular for approximate reasoning, it is of
utmost importance to provide ways of determining how feasible the approximations
are, i.e. of what quality the answers given by such algorithms can be expected to
be.

Obviously, soundness and completeness with respect to the given formal se-
mantics of the underlying knowledge representation languages cannot be used as
a measure for assessing the quality of approximate reasoning procedures. Instead,
they must be evaluated experimentally, and analysed by statistical means.

The field of knowledge representation has a long history of studying approxi-
mate reasoning methods for propositional and first-order logic (see e.g. (Dowling
& Gallier, 1984; Horvitz, 1987; Selman & Kautz, 1991; Schaerf & Cadoli, 1995;
Cadoli & Schaerf, 1995; Dalal, 1998; Cadoli & Scarcello, 2000; Harmelen & Teije,
2000; Groot, Teije, & Harmelen, 2004)). These are only now being applied in the
context of OWL reasoning for Semantic Web technologies. Notable recent papers
in this area are (Stuckenschmidt & Harmelen, 2002; Horrocks, Li, Turi, & Bech-
hofer, 2004; Groot, Stuckenschmidt, & Wache, 2005; Perry Groot, 2005; Hitzler
& Vrandecic, 2005; Pan & Thomas, 2007; Holger Wache, 2005; Stuckenschmidt,
2007). The methods in these papers are very diverse, and no overall framework
exists for formally describing and comparing the quality of these approaches to
approximate reasoning.

In this chapter, we lay the foundations for a statistical approach to evaluating
approximate and anytime reasoning algorithms. We will do this in a very abstract
manner, which can be made concrete in different ways, depending on the considered
use case. At the same time, we will use this statistical perspective to precisely
define approximate reasoning notions which to date have remained quite vague.
We furthermore show that our mathematical modelling can be used for guiding
the development of composed approximate reasoning systems. In the end, our
mathematical modelling can be used for rigorous comparative statistical evaluation
of approximate reasoning algorithms.

As a word of caution, let us remark that the notion approximate reasoning
bears two different meanings in two different communities. Often, the notion is
associated with uncertainty reasoning, e.g. in the sense of fuzzy or probabilistic
approaches. The notion of approximate reasoning we use in this document refers
to approximate reasoning algorithms on data which is not uncertain in this sense.1

This chapter is structured as follows. In Section 5.2, we will establish a math-
ematical framework as a foundation for approximate reasoning notions and eval-
uation. In Section 5.4 we will discuss composition of approximate reasoning al-
gorithms from the perspective of our framework. In Section 5.5 we show how to
instantiate our framework by means of an example. We conclude in Section 5.6.

1Perhaps introducing the notion of qualitative approximate reasoning – to replace approximate
reasoning in our sense – would help to clarify matters. In order to be consistent with the
literature, however, we prefer to use the established notion for now.

31

FP7 – 215535

Deliverable 1.4.1

5.2 A Framework for Approximate Reasoning

In this section, we establish a mathematical framework which allows us to provide
a formal basis for central notions of the field and establish guidance for lines of
further research in that area. We first define some basic notion (input and output
spaces), and then introduce error functions defined over these spaces. Next, we
introduce some formal machinery to talk about algorithms. We then formalise the
notion of defects of an algorithm. This then allows us to compare the quality of
the output of algorithms.

5.2.1 Input and Output Spaces

First, let us stipulate some abbreviations which we will use in the sequel: let
R+ = {x ∈ R : x ≥ 0} and R+

∞ = {x ∈ R : x ≥ 0} ∪{ +∞}.
First of all, we have to come up with a general and generic formalization of the

notion of a reasoning task. Intuitively, this is just a question (or query) posed to
a system that manages a knowledge base, which is supposed to deliver an answer
after some processing time. The (maybe gradual) validity of the given answer can
be evaluated by investigating its compliance with an abstract semantics. We will
extend this classical conceptualization in the following way: we allow an algorithm
to – roughly speaking – change or refine its output as time proceeds, thus capturing
the notion of anytime behaviour, as a central concept in approximate reasoning.
Yet in doing so, we have to take care not to lose the possibility of formalizing “clas-
sical” termination. We solve this by stipulating that every output of the system
shall be accompanied by the information, whether this output is the ultimate one.

In the sequel we will formalize these intuitions. By the term input space
we denote the set of possible concrete reasoning tasks. Formally, we define the
input space as a probability space (Ω, P), where Ω is some set (of inputs) and P
is a probability measure on Ω. The probability P (ω) encodes how often a specific
input (knowledge base, query) ω occurs in practice, resp. how relevant it is for
practical purposes. Naturally, information about the probability distribution of
inputs will be difficult to obtain in practice (since, e.g., in general there can be
infinitely many different inputs). Thus, heuristics or “rules of thumb”, like for
instance giving short queries a higher probability than long ones, or using some
kind of established benchmarks, will have to be used until more systematic data
is available.

The use of having a probability on the set of inputs is quite obvious: as already
stated before, correctness of results cannot be guaranteed in the approximate case.
So in order to estimate how good an algorithm performs in practice, it is not only
important, how much the given answer to a specific input deviates from the correct
one, but also how likely (or: how often) that particular input will be given to the
system. Certainly, a wrong (or strongly deviant) answer to an input will be more
tolerable if the query occurs less often.

For actual evaluations, one will often use a discrete probability space. For
the general case – for developing the theory in the sequel – we will assume that
all occurring functions are measurable (i.e. integrals over them exist), which is
obviously a very mild assumption from a computer science perspective.

32

FP7 – 215535

Deliverable 1.4.1

The output space comprises all possible answers to any of the problems from
the input space. In our abstract framework, we define it simply as a set X.

5.2.2 Error functions

A function e : X ×X → R+ – which we call error function – gives a quantitative
measure as to what extent an output deviates from the desired output (as given by
a sound and complete algorithm). More precisely, the real number e(x, y) stands
for the error in the answer x, assuming that y would be the correct answer. For all
x ∈ X we assume e(x, x) = 0, but we place no further constraints on e. It will be
determined by the problem under investigation, though a suitable example could
be 1− f , where f is the f-measure as known from information retrieval. In certain
cases, it might also be useful to put more constraints on the error function, one
could e.g. require it to be a metric,2 if the output space has a structure where this
seems reasonable.

We will assess the usefulness of an approximate reasoning algorithm mainly
by looking at two aspects: Runtime and error when computing an answer. By
introducing the error function, we are able to formalize the fact that out of two
wrong answers one might still be better than the other since it is “closer” to the
correct result. While this might not seem to make much sense in some cases (e.g.
when considering the output set {true, false} or other nominal scales3), it might be
quite valuable in others: When we consider an instance retrieval task, the outputs
will be sets of domain individuals. Obviously, one would be more satisfied with an
answer where just one element out of hundred is missing (compared to the correct
answer) than with a set containing, say, only non-instances.

We assume X to contain a distinguished element ⊥ which denotes no output.
This is an issue of “backward compatibility”, since classical algorithms – and also
many approximate reasoning algorithms – usually do not display any output until
termination. So, to include them into our framework, we define them to deliver ⊥
before giving the ultimate result. ⊥ will also be used as output value in case the
algorithm does not terminate on the given input.

Since by this definition, ⊥ contains no real information, one could argue about
additional constraints for the error function with respect to this distinguished
element, e.g., e(⊥, y) ≥ supx∈X{e(x, y)} or even e(⊥, y) ≥ supx,z∈X{e(x, z)}. We
do not need to impose these in general, however.

5.2.3 Algorithms

After having formalized inputs and outputs for problems, we now come to the
actual algorithms. In order not to unnecessarily overcomplicate our formal con-
siderations, we make some additional assumptions: We assume that hardware etc.
is fixed, i.e., in our abstraction, an algorithm is always considered to include the
hard- and software environment it is run in. I.e., we can, for example, assign any
algorithm-input pair an exact runtime (which may be infinite). This assumption
basically corresponds to a “laboratory” setting for experiments, which abstracts
from variables currently not under investigation.

2i.e. a distance function as used in the mathematical theory of metric spaces
3although also these cases can seamlessly be covered by choosing a discrete error function

33

FP7 – 215535

Deliverable 1.4.1

Let A be a set of algorithms. To every algorithm a ∈ A we assign an IO-
function fa : Ω× R+ → X × 2 with 2 := {0, 1}. Hereby, fa(ω, t) = (x, b) means
that the algorithm a applied to the input (task, problem, . . .) ω yields the result
x after running time t together with the information whether the algorithm has
already reached its final output (b = 1) or not yet (b = 0). As a natural constraint,
we require fa to additionally satisfy the condition that for all t2 ≥ t1 we have that

fa(ω, t1) = (x, 1) implies fa(ω, t2) = (x, 1),

i.e. after having indicated termination, the output of the algorithm (including
the termination statement) will not change anymore. For convenience we write
f res

a (ω, t) = x and f term
a (ω, t) = b, if fa(ω, t) = (x, b).

By f0 : Ω → X we denote the correct output function, which is deter-
mined by some external specification or formal semantics of the problem. This
enables us to verify the (level of) correctness of an answer x ∈ X with respect to
a particular input ω by determining e(x, f0(ω)) – the smaller the respective value,
the better the answer. By our standing condition on e, e(x, f0(ω)) = 0 ensures
f0(ω) = x coinciding with the intuition.

To any algorithm a, we assign a runtime function "a : Ω → R+
∞ by setting

"a(ω) = inf{t | f term
a (ω, t) = 1},

being the smallest time, at which the algorithm a applied to input ω indicates its
termination.4 Note that this implies "a(ω) = ∞ whenever we have f term

a (ω, t) = 0
for all t ∈ R+. Algorithms, for which for all ω ∈ Ω we have that "a(ω) < ∞ and
f res

a (ω, t) = ⊥ for all t < "a(ω) are called one-answer algorithms: They give
only one output which is not ⊥, and are guaranteed to terminate5 in finite time.

Given an algorithm a, an input ω and a time unit t, we use the expression
e(a, ω, t) = e(f res

a (ω, t), f0(ω)) as a shorthand to denote the error of algorithm a
on input ω at time t.

5.2.4 Defects

Clearly, for a given time t, the expression e(f res
a (ω, t), f0(ω)) provides a measure of

how much the current result provided by the algorithm diverges from the correct
solution. Moreover, it is quite straightforward to extend this notion to the whole
input space (by taking into account the occurrence probability of the single inputs).
This is done by the next definition.

The defect δ(a, t) associated with an algorithm a ∈ A at a time
point t is given by

δ : A× R+ → R+
∞ : δ(a, t) = E(e(f res

a (ω, t), f0(ω))) =
∑

ω∈Ω

e(f res
a (ω, t), f0(ω))P (ω).

Note that E denotes the expected value, which is calculated by the rightmost
formula.6

4We make the reasonable assumption that f res
a is right-continuous.

5We impose termination here because our main interest is in reasoning with description logics
for the Semantic Web. The same notion without imposing termination would also be reasonable,
for other settings.

6The sum could easily be generalised to an integral – with P being a probability measure –,
however it is reasonable to expect that Ω is discrete, and hence the sum suffices.

34

FP7 – 215535

Deliverable 1.4.1

Furthermore, one can even abstract from the time and take the results after
waiting “arbitrarily long”: The (ultimate) defect of an algorithm a ∈ A is
given by

δ : A → R+
∞ : δ(a) = lim sup

t→∞
δ(a, t).

We say that a ∈ A realises a defectless approximation if

lim
t→∞

δ(a, t) = 0.

Note that δ(a) = 0 in this case.
By the constraint put on the IO-function we get

δ(a) = E(e(f res
a (ω, "a(ω)), f0(ω))) =

∑

ω∈Ω

e(f res
a (ω, "a(ω)), f0(ω))P (ω).

if a terminates for every input.

5.2.5 Comparing algorithms after termination

An algorithm a is everywhere more precise than b iff e(a, ω, t) ≤ e(b, ω, t)
for any ω and t. This notion, which guarantees better precision on any input, is in
practice too strong, since it makes many algorithms incomparable: on some inputs
a is more precise than b, while on other inputs the reverse is true, ie. neither a
strongly more precise than b nor the reverse. Hence, it makes sense to use the
expected defect δ(a, t) instead of the input-specific error-function e(a, ω, t).

For a, b ∈ A, we say that a is more precise than b if it has smaller ultimate
defect, i.e. if

δ(a) ≤ δ(b).

Furthermore, it is often interesting to have an estimate on the runtime of an
algorithm. Again it is reasonable to incorporate the problems’ probabilities into
this consideration. So we define the average runtime7 of algorithm a by

α(a) = E("a(ω)) =
∑

ω∈Ω

"a(ω)P (ω).

This justifies to say that a is quicker than b if

α(a) ≤ α(b).

Note that this does not mean that a terminates earlier than b on every input.
Instead, it says that when calling the algorithm very often, the overall time when
using a will be smaller than when using b – weighted by the importance of the
input as measured by P .

Throughout the considerations made until here, it has become clear that there
are two dimensions along which approximate reasoning algorithms can be assessed
or compared: runtime behaviour and accuracy of the result. Clearly, an algorithm
will be deemed better, if it outperforms another one with respect to the following
criterion:

7We are aware that in some cases, it might be more informative to estimate the runtime
behaviour via other statistical measures as e.g. the median.

35

FP7 – 215535

Deliverable 1.4.1

Definition 1 For a, b ∈ A, we say that a is strongly better than b if a is
more precise than b and a is quicker than b.

A more flexible definition than the one just introduced will be given later when
we introduce the notion that an algorithm a is better than an algorithm b.

5.3 Extending the Framework to Anytime Algorithms

5.3.1 Properties of anytime algorithms

The definitions just given in Section 5.2.5 compare algorithms after termination,
i.e. anytime behaviour of the algorithms is not considered. In order to look at
anytime aspects, we need to consider the continuum of time points from initiating
the anytime algorithm to its termination.

The term “anytime algorithm” was coined by Dean (Dean & Boddy, 1988) in
the context of time dependent planning. Anytime algorithms expand upon the
traditional view of a computational procedure as they offer to fulfill an entire
spectrum of input-output specifications, over the full range of run-times, rather
than just a single specification. An anytime algorithm is an implementation of a
mapping from a set of inputs and time allocation into a set of outputs. For each
input there is a corresponding set of possible outputs, each of which is associated
with a particular time allocation and some measure of its quality. The advantage
of this generalization is that computation can be interrupted at any time and still
produce results of a certain quality, hence the name “anytime algorithm.”

Zilberstein (Zilberstein, 1996) has identified a number of properties that charac-
terise anytime algorithms. We will first informally discuss these properties. Where
possible, we already provide a formalisation of the property using the apparatus
presented above. In some cases, the formalisation must be postponed until we
have introduced some more formal machinery below.

• measurable: being able to define e(a, ω, t) for any value of t and ω

• recognisable: being able to compute e(a, ω, t) efficiently at run-time for
any value of t. Notice that this is stronger than measurable.

• consistency: same/similar quality for same resource usage. It amounts to
demanding that e(a, ω, t) is functional in t for a given input ω.

• monotonicity: the defect δ(a, t) decreases monotonically as a function of t.

• diminishing returns: the defect decreases slower with increasing t, in other
words δ(a, t) is concave

• interuptability: fa(ω, t) can be calculated for every value of t on any input
ω.

• defectless approximation: a is a (limt→∞d(a,t)= 0).

There is no agreement in the literature on which of these properties are required
in order for an algorithm to be called anytime. A minimal option would be to
only require that the system monotonically approaches perfection in the limit, as
follows:

36

FP7 – 215535

Deliverable 1.4.1

Definition 2 We say that an algorithm a ∈ A is an anytime algorithm if it
is interuptable and recognisable.

The other properties are desirable: monotonicity guarantees that results will
only improve over time and never degrade; consistency guarantees reliable be-
haviour; diminishing returns guarantee the greatest gains early in the process; and
defectlessness guarantees convergence to a correct answer. However, none of these
properties are required for an algorithm to be anytime.

5.3.2 Performance profiles

The first to introduce the notion of performance profiles for anytime algorithms
was Zilberstein (Zilberstein & Russell, 1996). The performance profile of an algo-
rithm characterizes the quality of its output as a function of computation time.
All algorithms “whether standard or anytime” have a performance profile. Figure
5.1 shows typical performance profiles for standard algorithms 5.3a and idealized
anytime algorithms 5.3b. The performance profile of the standard algorithm shows
that no results are available until its termination at which point the exact result
is returned. The idealized anytime algorithm provides output whose quality im-
proves gradually over time. In practice, the improvement in quality of an anytime
algorithm may look more like the profile shown in Figure 5.2c.

t

q

(a) Standard algorithm

t

q

(b) Idealized anytime algorithm
t

q

(c) Actual anytime algorithm

Figure 5.1: Typical performance profiles.

input-specific performance profile The simplest performance profiles plot
the anytime behaviour of an algorithm a on a particular input ω. This corresponds
exactly to plotting the value of 1/e(a, ω, t) as a function of t. (we plot 1/e(a, ω, t)
instead of simpy e(a, ω, t) simply to conform to the tradition that performance
profiles show the increase of the quality, and not the reduction of the error.

expected performance profile The input-specific performance profiles are
only defined on a given input ω. Expected performance profiles capture the any-
time behaviour of the algorithm over the entire input space, which corresponds
precisely to plotting 1/δ(a, t) as a function of t (again plotting increase in quality
instead of decrease of defect). In practice it will of course not be possible to com-
pute δ(a, t) precisely: computing δ(a, t) requires knowing the output error-value
e(a, ω, t) for all possible inputs ω.

37

FP7 – 215535

Deliverable 1.4.1

Typically, these error-value values cannot be determined analytically, but must
be observed empirically. hence computing δ(a, t) would require running a on all
values ω ∈ Ω! Instead, expected performance profiles are typically constructed
empirically by collecting statistics on the performance of an algorithm over many
input instances. Figure 7 in (Zilberstein & Russell, 1996) shows the result of
sampling the error-value over many inputs and many time-points for a particular
algorithm and Figure 8 (Zilberstein & Russell, 1996) shows the resulting expected
performance profile.

Sometimes it is possible to analytically determine the qualitative shape of an
expected performance profile. This then allows a plot of the shape of the curve,
without pinning the curve down quantitatively. Figures 5.2 and 5.3 show the
qualitative performance profiles resulting from the qualitative analysis of a number
of different reasoning algorithms (Harmelen & Teije, n.d.).

|Cs|

|MC1(Cs,Obs)|

(a) Standard algorithm

n_f

|MC2(Cs,Obs1,Obs2)|

|filter(Cs,Obs)|+n_f

(b) Idealized anytime algorithm

maxdepth(Tree)

|MC3(Cs,Obs)|

(c) Actual anytime algorithm

Figure 5.2: Performance profile of MC1, MC2 and MC3.

k

|XCON(Pars,[Cons1,...,Consk])|

(a) Standard algorithm

|Pars|

|P&R(Pars,Cons)|

(b) Idealized anytime algorithm

Figure 5.3: Performance profile of XCON and P&R.

Zilberstein (Zilberstein & Russell, 1996) also discusses conditional performance
profiles, which not only plot δ(a, t) as a function of t, but also a function of the

38

FP7 – 215535

Deliverable 1.4.1

input quality. In this paper we do not consider the possibility of variable input
quality, altough this is would lead to an interesting of robustness and stability of
approximation algorithms in the face of approximate input.

dynamic performance profiles . (Hansen & Zilberstein, 1996) proposed the
notion of a dynamic performance profile. It follows the observation that quality
improvement can better be predicted at run time when the quality of the currently
available result is taken into account.

A dynamic performance profile of an anytime algorithm plots the probability
of getting a particular increase in quality by resuming the algorithm for time
interval ∆t when the currently available solution has quality q. Such profiles are
particularly useful during at runtime, when an anytime algorithm has to decide if
it’s useful to spend an additional amount of time ∆t, based on the prediction of
the gain in quality.

5.3.3 Comparing Anytime Algorithms

For a, b ∈ A, we say that a is more precise than b at time point t if it has
smaller defect wrt. a and t, i.e. if

δ(a, t) ≤ δ(b, t).

Obviously, is is reasonable to say about two algorithms a and b – be they
anytime or not –, that (1) a is better than b if a is more precise than b at any
time point. This is called “a dominates b” in (Zilberstein & Russell, 1996). A less
strict – and apparently more reasonable – requirement accumulates the difference
between a and b over the entire runtime, stating that (2) a is better than b if∑

ω∈Ω P (ω)
∫ max{"a(ω),"b(ω)}

t=0 (e(f res
a (ω, t), f0(ω))− e(f res

b (ω, t), f0(ω))dt ≤ 0. We find
formula (2) still not satisfactory as it ignores the reasonable assumption that some
time points might be more important than others, i.e. they need to be weighted
more strongly. Formally, this is done by using a different measure for the integral
or – equivalently – a density function f̄ : R+ → R+, which modifies the integral.
Summarizing, we now define for two (not necessarily anytime) algorithms a and b
that (3) a is better than b (wrt. a given density function f̄) if

∑

ω∈Ω

P (ω)

∫ max{"a(ω),"b(ω)}

t=0

(
e(f res

a (ω, t), f0(ω))− e(f res
b (ω, t), f0(ω))

)
f̄(t)dt ≤ 0.

Notice that this definition favours algorithms with early decreasing defect val-
ues, which corresponds to the above mentioned desirable property of diminishing
returns.

Notice also that this definition does not favour algorithms with a low run-time.
Our definition (3) specialises to the case in (2) for the constant density function

f̄ ≡ 1. We cannot capture (1) with our definition by one specific choice of f̄ , so
in the case of (1) we simply say that a is more precise than b at any time point.8

8However, (1) could be formulated in terms of (3) as a being better than b for all Dirac delta
functions that have their singularity at a nonnegative place.

39

FP7 – 215535

Deliverable 1.4.1

Clearly, the choice of the density function depends on the considered scenario.
In cases where only a fixed time ttimeout can be waited before a decision has to be
made based on the results acquired so far, the value f̄(t) of density function would
be set to zero for all t ≥ ttimeout. Usually earlier results are preferred to later ones
which would justify the choice of an f̄ that is monotonically decreasing.

5.4 Anytime Algorithms by Composition

Realised approximate reasoning systems are often not anytime. However, it is
possible to obtain anytime behaviour by composing one-answer algorithms.

Assume that a number of algorithms ai (i = 1, . . . , n) is given. Further-
more, assume there is an oracle algorithm c whose behaviour can be de-
scribed by a function c : (X × 2)n → X × 2 which combines a vector of outputs
(a1(ω, t), . . . , an(ω, t)) of the algorithms ai and yields a single output. Given an
input ω, the invocation of all ai in parallel and the subsequent call of the oracle
algorithm yield a new algorithm ca1,...,an with IO-function

fca1,...,an
(ω, t) = c(a1(ω, t), . . . , an(ω, t)).

The definition just given is very general in order to allow for a very free com-
bination, depending on the algorithms which are being combined. For the general
setting, we impose only the very general constraint that for all x1, . . . , xn ∈ X we
have

c((x1, 1), . . . , (xn, 1)) = (x, 1)

for some x, and also that the natural constraint from page 34 on the corre-
sponding IO-function fca1,...,an

is satisfied. This is just to ensure "ca1,...,an
(ω) ≤

max{"a1 , . . . , "an}, i.e. the “combiner” indicates termination at the latest when-
ever all of the single input algorithms ai do so.

It is more interesting to look at more concrete instances of oracles. Assume now
that a1, . . . , an−1 are one-answer algorithms and that an is an (always terminating)
sound and complete algorithm. Let c be such that

c(a1(ω, "an(ω)), . . . , an−1(ω, "an(ω)), an(ω, "an(ω))) = (f res
an

(ω), 1).

Then it is easy to see that ca1,...,an is anytime.
If we know about soundness or completeness properties of the algorithms

a1, . . . , an−1, then it is also possible to guarantee that ca1,...,an is monotonic any-
time. This can be achieved in several ways, and we give one specific example based
on ABox reasoning in description logics:

Assume that each input consist of a class description C over some description
logic L, and each output consists of a set of (named) individuals. For constructing
an oracle from such algorithms, we will actually consider as outputs pairs (A, B)
of sets of individuals. Intuitively, A contains only individuals which are known
to belong to the extension of C, while B constitutes an individual set which is
known to contain all individuals in the extension of C. A single output (set)
A can be equated with the output pair (A, A). Now let a1, . . . , an be sound9 but

9We mean soundness in the following sense: If the set I of individuals is the correct answer,
then the algorithms yields as output a pair (A, A) of sets with A ⊆ I.

40

FP7 – 215535

Deliverable 1.4.1

incomplete10 one-answer algorithms over L, let b1, . . . , bm be complete but unsound
one-answer algorithms over L and let a be a sound, complete and terminating
algorithm over L, i.e. f res

a (C, "a) – which we denote by Ca – contains exactly all
named individuals that are in the extension of C as a logical consequence of the
given knowledge base. Under this assumption, we know that f res

ai
(C, "ai) = (Cai , I)

and f res
bj

(C, "bj) = (∅, Cbj) for some sets Cai and Cbj , where I stands for the set of
all (known) individuals, and furthermore we know that Cai ⊆ Ca ⊆ Cbj for all i, j.

The oracle c is now defined as follows.

c(a1(C, t), . . . , an(C, t), b1(C, t), . . . , bm(C, t), a(C, t))

=






((f res
a (C, t), f res

a (C, t)), 1) for t ≥ "a(C),

((upper , lower), term) for t < "a(C)

where lower =
⋃

(Ai,Bi,1)=fai (C,t) Ai,

upper =
⋂

(Aj ,Bj ,1)=fbj
(C,t) Bj,

term = 1 if lower = upper , otherwise 0.

Note that the empty set union is by definition the empty set, while the empty
set intersection is by definition I.

In words, the oracle realises the following behaviour: if the sound and complete
subalgorithm has terminated, display its result. Before, use the lower resp. upper
bounds delivered by the sound resp. complete algorithms to calculate one interme-
diate lower and one intermediate upper bound. If those two happen to coincide,
the correct result has been found and may terminate without waiting for a’s ter-
mination. This squeezing in of the correct result now also explains why we have
chosen to work with pairs of sets as outputs.

As error function, we might use the sum of the symmetric difference between
A and A0, respectively between B and A0, i.e.

e((A, B), (A0, A0)) = |A0 \ A| + |B \ A0|.

We could also use a value constructed from similar intuitions like precision and
recall in information retrieval, but for our simple example, this error function
suffices. It is indeed now straightforward to see that ca1,...,an,b1,...,bm,a is monotonic
anytime. It is also clear that ca1,...,an,b1,...,bm,a is more precise than any of the ai and
bj, at all time points.

5.5 An Example

In this section, we will instantiate the very general framework established in the
preceding sections. We will use the presented techniques to compare three approx-
imate reasoning algorithms and compose a (simple) anytime algorithm following
the example at the end of Section 5.4.

Consider the three algorithms Screech-all, Screech-none and KAON2, as
discussed in (Tserendorj, Rudolph, Krötzsch, & Hitzler, 2008). We do not intend

10We mean completeness in the following sense: If the set I of individuals is the correct answer,
then the algorithms yields as output a pair (A, A) of sets with I ⊆ A.

41

FP7 – 215535

Deliverable 1.4.1

to give any details here, and it shall suffice to mention that these are one-answer
algorithms for reasoning with the description logic SHIQ, and the task considered
is instance retrieval for named classes. Screech-all is complete but unsound,
Screech-none is sound but incomplete, and KAON2 is sound and complete.

Following the general framework, we first have to stipulate the probability space
(Ω, P) for our case. Here we introduce the first simplifying assumptions, which
are admittedly arguable, but will suffice for the example:

• We consider only one knowledge base, namely the well-known Wine ontology.
Further evaluation data is available (Tserendorj et al., 2008) but will not be
taken into account for the illustrating example.

• As queries, we consider only instance retrieval tasks, i.e. given an atomic
class description, we query for the set of individuals which can be inferred
to be instances of that class. Hence Ω – the query space – consists of named
classes C of the Wine ontology the instances of which are to be retrieved:
Ω = C. Examples for named classes in this ontology are e.g. Chardonnay,
StEmilion or Grape.

• All those instance retrieval queries ω ∈ Ω are assumed to be equally probable
to be asked to the system, hence

P (ω) =
1

|C| for all ω ∈ Ω.

Obviously, the probability of a query could also be assumed differently, e.g.
correlating with the number of instances the respective class has. Neverthe-
less, for the sake of simplicity we will stick to the equidistributional approach.

Obviously, the output space X consists of subsets of the set of individuals I
from the Wine ontology together with the no-output symbol ⊥: X = 2I ∪ {⊥}.
As the error function e comparing an algorithm’s output I with the correct one
I0, we use the inverted value of the common f-measure, i.e.

e(I, I0) := 1− 2 · precision · recall
precision + recall

where (as usual)

precision :=
|I ∩ I0|
|I| and recall :=

|I ∩ I0|
|I0|

.

According to the proposed handling of ⊥, we stipulate the overall “worst-case
distance”: e(⊥, I0) = 1 for all I ⊆ I.

As mentioned before, the set A of considered algorithms comprises three items:

A = {KAON2, Screech-all, Screech-none}

For every of those algorithms we carried out comprehensive evaluations: we queried
for the class extensions of every named class and stored the results as well as the
time needed. By their nature none of the considered algorithms exhibits a genuine
anytime behavior, however, instead of displaying the “honest” ⊥ during their

42

FP7 – 215535

Deliverable 1.4.1

calculation period, they could be made to display an arbitrary intermediate result.
It is straightforward to choose the empty set in order to obtain better results: most
class extensions will be by far smaller than half of the individual set, hence the
distance of the correct result to the empty set will be a rather good guess.

Hence, for any algorithm a of the above three and any class name C let IC

denote be the set of retrieved instances and tC denote the measured runtime for
accomplishing this task. Then we can define the IO-function as

fa(C, t) =

{
(∅, 0) if t < tC
(IC , 1) otherwise.

The values of the correct output function f0 can be found via KAON2, as this
algorithm is known to be sound and complete. Moreover, the runtime functions
ρa(C) of course coincide in our case with the runtimes tC measured in the first
place. Since all of the considered algorithms are known to terminate, no ρa will
ever take the value ∞.

Figure 5.4: Defect over time.

After this preconsiderations, we are ready to carry out some calculations esti-
mating the quality of the considered algorithms. Figure 5.4 shows a plot depicting
the decrease of the defect for all the three algorithms. As expected, there is an
ultimate defect for the two screech variants, namely 0.013 for Screech-none and
0.015 for Screech-all, i.e. with respect to the terminology introduced earlier,
we can say that Screech-none is more precise than Screech-all. While the
defect of KAON2 is initially greater than those of the screech variants, it becomes
better than them at about 6 seconds and decreases to zero defect after about 7
seconds. In other words, Screech-all is more precise than KAON2 at all time
points less than 6 seconds. A first conclusion from this would be: if a user is willing
to wait for 7 seconds for an answer (which then would be guaranteed to be correct)
KAON2 would be the best choice, otherwise (if time is crucial and precision not),
screech-all might be a better choice as it shows the quickest defect decrease.

43

FP7 – 215535

Deliverable 1.4.1

If we now assume a time-critical application where responses coming in later
than, say, 5 seconds are ignored, we can describe this by the fact that Screech-
all is better than KAON2 with respect to the density function

f̄(x) =

{
1 0 ≤ x ≤ 5,

0 otherwise.

Considering the fact that Screech-all is complete, Screech-none is sound,
and KAON2 is both, we can now utilize a variant of the oracle given in the example
from Section 5.4. The behaviour of the combined algorithm can in this simple case
be described as follows. It indicates termination whenever one of the following
occurs:

• KAON2 has terminated. Then the KAON2 result is displayed as solution.

• Both Screech-all and Screech-none have terminated with the same
result. In this case, the common result will be displayed as the final one.

If none of above is the case, the experimental findings suggest to choose the
Screech-none result as intermediate figure. The algorithm obtained that way
is anytime and more (or equally) precise than any of the single algorithms at all
time points.

5.6 Summary

Approaches to approximate reasoning tackle the problem of scalability of deducing
implicit knowledge. Especially if this is done on the basis of large-scale knowledge
bases or even the whole Web, often the restriction to 100% correctness has to be
abandoned for complexity reasons, in particular if quick answers to posed questions
are required. Anytime algorithms try to fulfill both needs (speed and correctness)
by providing intermediate results during runtime and continually refining them.

In this chapter, we have provided solid mathematical foundations for the as-
sessment and comparison of approximate reasoning algorithms with respect to
correctness, runtime and anytime behaviour. We are confident that this general
framework can serve as a means to classify algorithms w.r.t. their respective char-
acteristics and help in deciding which algorithm best matches the demands of a
concrete reasoning scenario.

As opposed to our example scenario, in most practical cases, it will be unfeasi-
ble or even impossible to measure the whole input space as it will be too large or
even infinite. That is where statistical considerations come into play: one has to
identify and measure representative samples of the input space. The first part of
this is far from trivial: for fixed settings with frequently queried knowledge bases,
such a sample could be determined by protocolling the actually posed queries over
a certain period of time. Another way would be to very roughly estimate a distri-
bution based on plausible arguments. Respective heuristics would be: (1) the more
complex a query the more unlikely, (2) queries of similar structure are similarly
frequent resp. likely, (3) due to some bias in human conceptual thinking, certain
logical connectives (e.g. conjunction) are preferred to others (e.g. disjunction,
negation) which also gives an opportunity to estimate a query’s frequency based

44

FP7 – 215535

Deliverable 1.4.1

on the connectives it contains. Admittedly, those heuristics are still rather vague
and more thorough research is needed to improve reliability of such estimates.

In general, the proposed intelligent combination of several algorithms with dif-
ferent soundness/completeness properties (as well as being specialised to certain
logical fragments) can increase speed and might help avoid heavy-weight reasoning
in cases. We are confident, that this idea can be easily generalised to reasoning
tasks other than instance retrieval. Obviously, this strategy comes with an imme-
diate opportunity of parallelisation even if the single algorithms have to be treated
as black boxes. Hence, this approach could also be conceived as a somewhat exotic
approach to distributed reasoning.

45

FP7 – 215535

Deliverable 1.4.1

6 Conclusion

In this deliverable, the first of a series three documents concerned with the defi-
nition of a Framework for Measuring and Evaluating Heuristic Problem Solving,
we have made the first steps towards defining such framework by considering the
theoretical foundations of the theory of evaluation, discussing several important
aspects related to the process of evaluating LarKC and its platform and, reporting
on several dimensions and methods by which the components of the platform can
be evaluated.

We started the document by providing a clarification of the deliverable’s main
concepts and an overview over the specific challenges presented by the evaluation
of the LarKC project and platform. This chapter clarifies the notions of mea-
surement, evaluation and heuristic problem solving—both in general and in the
specific context of the LarKC project. We have also identified and discussed an
initial set of quantitative dimensions that we think need to be measured in order to
evaluate the performance of the LarKC platform. Such metrics include robustness,
speed, accuracy, scalability, usability and user satisfaction and quality and impact.
These metrics can be evaluated at different levels such as at component (plug-in)
level and at workflow level, among others. Furthermore, and in regard to heuristic
problem solving we have identified several usages and outlined three ways in which
the concept can be applied to LarKC: as methods used in plug-in design, as stop-
ping rules implemented in deciders, and as workflows that are configured to solve
particular problems. The evaluation of heuristic problem solving follows the same
methods and principles as evaluation in general. We also tackle the aspect of user
feedback, the role of users in the evaluation of the LarKC project and platform and
mentioned some approaches to collecting evaluative user feedback, like for example
to automatically prompt users to submit quality ratings upon the completion of
a user query. The document also discusses the notion of heuristic problem solv-
ing and the multiple ways in which heuristics are embedded in LarKC, namely
as problem-solving strategies used at the plug-in level, which in turn may lead
to heuristic-based plug-ins, and at the workflow level, which leads to the notion
of workflows as heuristic problem solvers. We highlight three methodologies that
are particularly relevant for the evaluation of heuristic problem solving, namely
comparison with alternative methods, user feedback and cross-validation.

In terms of the evaluation of the different plug-in types the document reports
on methods and criteria that we think could be used for evaluating the performance
of plug-ins. More concretely and in relation to the evaluation of Identify plug-ins
we have considered the speed of an identify plug-in and its accuracy, defined in
terms of the notions of precision and recall, which are widely used in the field of
Information Retrieval. In addition to this, and in accordance to basic notions of
evaluation theory, we proposed to conduct both intrinsic and extrinsic evaluation
of identify plug-ins; for extrinsic evaluation we have also reported on the plans
to evaluate this type of plug-in in the context of two LarKC use cases, namely
WP7a/b.

Concerning the evaluation of the performance of Transform plug-ins we have
given an overview of the challenges that need to be addressed when evaluating
transform plug-ins that borrow techniques from the area of Machine Learning. We
have also discussed rank list evaluation.

46

FP7 – 215535

Deliverable 1.4.1

In terms of the evaluation of Reason plug-ins we have laid down the founda-
tions for a statistical approach to evaluating approximate and anytime reasoning
algorithms. We have done that in a very abstract manner, which can be made
concrete in different ways, depending on the use case being considered. At the
same time, we have used this statistical perspective to precisely define approxi-
mate reasoning notions which to date have remained quite vague. Furthermore, we
have shown that our mathematical modeling can be used for guiding the develop-
ment of composed approximate reasoning systems. In the end, our mathematical
modeling can be used for rigorous comparative statistical evaluation of approxi-
mate reasoning algorithms. Moreover, we have proposed to assess the usefulness
of an approximate reasoning algorithm by looking at two aspects or dimensions:
Runtime behaviour and accuracy of results. By introducing an error function that
gives a quantitative measure of the extent to which an output deviates from the
desired output (as computed by a sound and complete reasoner), we are able to
formalize the fact that out of two wrong answers one might still be better than
the other since it is “closer” to the correct result.

As for future work the main challenge ahead is how to integrate the different
evaluation criteria into a coherent and well-founded framework that enables the
evaluation of the LarKC platform at different levels and supports users in deciding
which particular combination of plug-ins to use in order to solve a specific problem.
We also need to specify additional qualitative and quantitative dimensions that
can be used for evaluating specific types of plug-ins as well as evaluating the
performance of the entire platform. Furthermore, we need to investigate how
such framework could be implemented in such a way as to support automatic
workflow configuration and execution, a task carried out by a Decider plug-in, and
investigate how such plug-in can use the framework to monitor the performance
of the platform.

References

Cadoli, M., & Scarcello, F. (2000, may). Semantical and computational aspects
of Horn approximations. Artificial Intelligence, 119 (1).

Cadoli, M., & Schaerf, M. (1995). Approximate inference in default reasoning and
circumscription. Fundamenta Informaticae, 23 , 123–143.

Czerlinski, J., Gigerenzer, G., & Goldstein, D. (1999). How good are simple
heuristics. In G. Gigerenzer, P. M. Todd, & the ABC research group (Eds.),
Simple heuristics that make us smart (pp. 97–118). New York, NY, USA:
Oxford University Press.

Dalal, M. (1998). Anytime clausal reasoning. Annals of Mathematics and Artificial
Intelligence, 22 (3–4), 297–318.

Dean, T., & Boddy, M. (1988, August). An analysis of time-dependent planning.
In Proceedings of the Seventh National Conference on Artificial Intelligence
(AAAI-88) (pp. 49–54). AAAI Press/MIT Press.

Dowling, W. P., & Gallier, J. H. (1984). Linear-time algorithms for testing the
satisfiability of propositional Horn formulae. Journal of Logic Programming ,
1 , 267–284.

Fensel, D., Harmelen, F. van, Andersson, B., Brennan, P., Cunningham, H., Valle,
E. D., et al. (2008). Towards LarKC: a platform for web-scale reasoning.

47

FP7 – 215535

Deliverable 1.4.1

In Proceedings of the ieee international conference on semantic computing
(icsc 2008), august 4-7, 2008, santa clara, ca, usa. Los Alamitos, CA, USA:
IEEE Computer Society Press. Available from http://www.larkc.eu/wp
-content/uploads/2008/05/larkc-icsc08.pdf

Fensel, D., & Harmelen, F. V. (2007, March/April). Unifying reasoning and search
to web scale. IEEE Internet Computing , 11 (2), 94–96.

Gigerenzer, G. (2000). Adaptive thinking: Rationality in the real world. New York,
NY: Oxford University Press.

Gigerenzer, G. (2008). Rationality for mortals: Risk and rules of thumb. New
York, NY: Oxford University Press.

Gigerenzer, G., & Brighton, H. (2009). Homo heuristicus: Why biased minds
make better inferences. Topics in Cognitive Science, 1 (1), 107–143.

Gigerenzer, G., & Goldstein, D. G. (1996). Reasoning the fast and frugal way:
Models of bounded rationality. Psychological Review , 103 , 650–669.

Gigerenzer, G., & Selten, R. (2001). Bounded rationality: The adaptive toolbox.
Boston, MA: MIT Press.

Gigerenzer, G., Todd, P. M., & the ABC research group. (1999). Simple heuristics
that make us smart. New York, NY, USA: Oxford University Press.

Goldstein, D. G., & Gigerenzer, G. (2002). Models of Ecological Rationality: The
Recognition Heuristic. Psychological Review , 109 (1), 75–90.

Groot, P., Stuckenschmidt, H., & Wache, H. (2005). Approximating description
logic classification for semantic web reasoning. In A. Gómez-Pérez & J. Eu-
zenat (Eds.), The semantic web: Research and applications, second european
semantic web conference, eswc 2005, heraklion, crete, greece, may 29 - june
1, 2005, proceedings (Vol. 3532, p. 318-332). Springer.

Groot, P., Teije, A. ten, & Harmelen, F. van. (2004, June). Towards a structured
analysis of approximate problem solving: a case study in classification. In
Proceedings of the ninth international conference on principles of knowledge
representation and reasoning (KR’04). Whistler, Colorado.

Hansen, E. A., & Zilberstein, S. (1996). Monitoring the progress of anytime
problem-solving. In Aaai/iaai (Vol. 2, p. 1229-1234).

Harmelen, F. van, & Teije, A. ten. (n.d.). Describing problem solving methods
using anytime performance profiles booktitle =.

Harmelen, F. van, & Teije, A. ten. (2000, August). Describing problem solving
methods using anytime performance profiles. In Proceedings of ECAI’00 (pp.
181–186). Berlin.

Hitzler, P., & Vrandecic, D. (2005). Resolution-based approximate reasoning
for OWL DL. In Y. Gil et al. (Eds.), Proceedings of the 4th international
semantic web conference, galway, ireland, november 2005 (Vol. 3729, p. 383-
397). Springer, Berlin.

Holger Wache, H. S., Perry Groot. (2005). Scalable Instance Retrieval for the
Semantic Web by Approximation. In (pp. 245–254).

Horrocks, I., Li, L., Turi, D., & Bechhofer, S. (2004). The Instance Store: DL rea-
soning with large numbers of individuals. In Proceedings of the international
workshop on description logics, dl2004, whistler, canada (pp. 31–40).

Horvitz, E. J. (1987). Reasoning about beliefs and actions under computational
resource constraints. In L. N. Kanal, T. S. Levitt, & J. F. Lemmer (Eds.), Un-
certainty in artificial intelligence 3 (pp. 301–324). Amsterdam, The Nether-

48

FP7 – 215535

Deliverable 1.4.1

lands: Elsevier.
Jarvelin, K., & Kekalainen, J. (2000). IR evaluation methods for retrieving highly

relevant documents. In Sigir’00.
Martignon, L., & Hoffrage, U. (1999). Why does one-reason decision making

work? A case study in ecological rationality. In G. Gigerenzer, P. M. Todd,
& the ABC research group (Eds.), Simple heuristics that make us smart (pp.
119–140). New York, NY, USA: Oxford University Press.

Martignon, L., & Hoffrage, U. (2002). Fast, frugal, and fit: Simple heuristics for
paired comparison. Theory and Decision, 52 (1), 29–71.

Michalewicz, Z., & Fogel, D. B. (2004). How to solve it: Modern heuristics (Second
Edition ed.). New York, NY, USA: Springer-Verlag.

Pan, J. Z., & Thomas, E. (2007). Approximating OWL-DL ontologies. In Pro-
ceedings of the twenty-second aaai conference on artificial intelligence, july
22-26, 2007, vancouver, british columbia, canada (pp. 1434–1439). AAAI
Press.

Patton, M. Q. (1996). A world larger than formative and summative. American
Journal of Evaluation, 17 (2), 131–144.

Perry Groot, H. W., Heiner Stuckenschmidt. (2005). Approximating Description
Logic Classification for Semantic Web Reasoning.

Polya, G. (1947). How to solve it: A new aspect of mathematical method. Princeton,
NJ, USA: Princeton University Press.

Schaerf, M., & Cadoli, M. (1995). Tractable reasoning via approximation. Artificial
Intelligence, 74 , 249-310.

Scriven, M. (1991). Beyond formative and summative evaluation. In
M. W. McLaughlin & D. C. Phillips (Eds.), Evaluation and education: At
quarter century (pp. 18–64). Chicago, IL: The University of Chicago Press.

Selman, B., & Kautz, H. A. (1991). Knowledge compilation using Horn approxima-
tions. In Proceedings of the ninth national conference on artificial intelligence
(AAAI-91) (pp. 904–909).

Shah, A. K., & Oppenheimer, D. M. (2008). Heuristics made easy: An effort-
reduction framework. Psychological Bulletin, 134 (2), 207–222.

Simon, H. A. (1990). Invariants of human behavior. Annual Reviews in Psychology ,
41 (1), 1–20.

Stockmann, R. (2000). Evaluation in Deutschland. In R. Stockmann (Ed.), Evalu-
ationsforschung. Grundlagen und ausgewählte Forschungsfelder (pp. 11–40).
Opladen: Leske + Budrich.

Stuckenschmidt, H. (2007). Partial matchmaking using approximate subsumption.
In Proceedings of the twenty-second aaai conference on artificial intelligence,
july 22-26, 2007, vancouver, british columbia, canada (pp. 1459–1464). AAAI
Press.

Stuckenschmidt, H., & Harmelen, F. van. (2002). Approximating terminological
queries. In H. Larsen & et al (Eds.), Proc. of the 4th international conference
on flexible query answering systems (FQAS)’02). Springer.

Tresp, V., Huang, Y., Bundschus, M., & Rettinger, A. (2009). Materializing and
querying learned knowledge. In Eswc workshop on inductive reasoning and
machine learning on the semantic web (irmles 2009).

Tserendorj, T., Rudolph, S., Krötzsch, M., & Hitzler, P. (2008). Approximate
OWL reasoning with Screech. In Proceedings of the 2nd international confer-

49

FP7 – 215535

Deliverable 1.4.1

ence on web reasoning and rule systems, rr2008, karlsruhe, germany, october
2008. (To appear)

Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics
and biases. Science, 185 (4157), 1124–1131.

Zanakis, S. H., & Evans, J. R. (1981). Heuristic ”optimization”: Why, when, and
how to use it. Interfaces, 11 (5), 84–91. Available from http://www.jstor
.org/stable/25060151

Zhong, N., Yao, Y., Qin, Y., Lu, S., Hu, J., & Zhou, H. (2008). Towards granular
reasoning on the web. In Proceedings of the 2008 workshop on new forms of
reasoning for the semantic web: Scalable, tolerant and dynamic (NEFORS
2008). Bangkok, Thailand: 3rd Asian Semantic Web Conference (ASWC
2008).

Zilberstein, S. (1996). Using anytime algorithms in intelligent systems. AI Maga-
zine, 17 (3), 73-83.

Zilberstein, S., & Russell, S. (1996). Optimal composition of real-time systems.
Artificial Intelligence, 82 , 181–213.

50

