Characterizing logic programming semantics
with level mappings

EXTENDED ABSTRACT

Pascal Hitzler and Matthias Wendt

Artificial Intelligence Institute, Department of Computer Science
Dresden University of Technology, Dresden, Germany
{phitzler,mw177754}@inf.tu-dresden.de, www.wv.inf.tu-dresden.de

Abstract

Declarative semantics in logic programming and nonmonotonic rea-
soning are often defined via fixed points of semantic operators. While
many relationships between different semantics known from the literature
have been studied, a uniform treatment is still missing. In this paper, we
provide uniform operator-free characterizations for some of the most im-
portant semantics, more precisely, for the stable, the well-founded, and
the Fitting semantics, for the weakly-perfect model semantics, and for
the least model semantics for negation-free programs.

1 Introduction

One of the very stimulating research questions in logic programming and
nonmonotonic reasoning has been the search for an appropriate declarative
understanding of negation. Several different semantics have been proposed,
see e.g. [Sub99], each being more or less convincing, depending on one’s point
of view, which may be that of a programmer, or motivated by common-
sense reasoning. In this paper, we provide a uniform approach to some of the
most important semantics: They will all be characterized by means of level
mappings.

Level mappings are mappings from Herbrand bases to ordinals, i.e. they
induce preorders on the set of all ground atoms while disallowing infinite

descending chains. They have been studied in termination analysis for logic
programming, e.g. in [Bez89, AP93, Mar96], where they appear naturally,
they have been used for defining classes of programs with desirable seman-
tic properties, e.g. in [ABW88, Prz88, Cav9l], they are intertwined with
topological investigations of fixed-point semantics in logic programming, as
studied e.g. in [Fit94, Sed95, Hit01, HS0x], and are relevant to some aspects
of the study of relationships between logic programming and artificial neu-
ral networks [HKS99]. Our motivation, however, is quite different. We will
employ level mappings in order to give uniform characterizations of different
semantics.

Among the semantics based on classical two-valued logic, we will charac-
terize the least model semantics for negation-free programs, and the stable
model semantics; the latter result is due to [Fag94].

Among the semantics based on three-valued logics, the Fitting seman-
tics [Fit85] and the well-founded semantics [VGRS91] are prominent and
widely acknowledged choices. Theoretical relationships between them have
been etablished, e.g. in [Fit02] by using lattice-based logic programming in
four-valued logic, an approach which was recently extended in [DMT00]. The
development of the weakly perfect model semantics, due to [PP90], was mo-
tivated by the intuition that recursion should be allowed through positive
information, but not through negation. As such, it was developed out of the
notion of stratification [ABW88, Prz88]. From the uniform characterizations
of the Fitting semantics, the well-founded semantics, and the weakly perfect
model semantics, which we will provide, it will be obvious that the well-
founded semantics achieves this very goal in a much better way than the
weakly perfect model semantics.

Proofs for the statements in this extended abstract have been omitted,
and they can be found in the indicated literature. If no references are given,
then the proofs are our own and can be found in [HW02]!. We assume
throughout, that the reader is familiar with the standard approaches to the
semantics discussed in the sequel, as presented in the indicated literature.

2 Notation

A normal (logic) program is a finite set of (universally quantified) clauses of
the form V(A <~ A; A--- AN A, A=By A--- A =B,,), commonly written as
A+ Ay, ...,A,, By, ..., B, where A and A;, fori =1,...,n, are atoms,
and —Bj, for j = 1,...,m, are negated atoms, over some given first order

"Preprint available from http://www.wv.inf.tu-dresden.de/~pascal.

language. A is called the head of the clause, while the remaining literals, i.e.
atoms and negated atoms, make up the body of the clause. A clause with
empty body is called a unit clause or a fact. A clause is called definite, if it
contains no negation symbols. A program is called definite if it consists only
of definite clauses. We will usually denote atoms with A or B, and literals,
which may be atoms or negated atoms, by L or K.

Given a logic program P, we can extract from it the components of a first
order language. The corresponding set of ground atoms, i.e. the Herbrand
base of the program, will be denoted by Bp. The set of ground instances of P
with respect to Bp will be denoted by ground(P). A (three-valued or partial)
interpretation I for P is a signed subset of Bp, i.e. a subset of Bp U {—A |
A € Bp}, which is consistent, i.e. for each A € Bp at most one of A and —A
is contained in I. We say that A is true with respect to (or in) I if A € I,
we say that A is false with respect to (or in) I if =A € I, and if neither
is the case, we say that A is undefined with respect to (or in) I. A body,
i.e. a conjunction of literals, is true in an interpretation I if every literal in
the body is true in I, it is false in [if one of its literals is false in I, and
otherwise it is undefined in I. For a negated literal L = —A we will find it
convenient to write =L € I if A € I. By Ip we denote the set of all (three-
valued) interpretations of P. It is a complete partial order (cpo) via set-
inclusion, i.e. it contains the empty set as least element, and every ascending
chain has a supremum, namely its union. A model of P is an interpretation
I € Ip such that for each clause A < Aq,..., A,,—B,...,—B,, we have that
ITEAN---NA, AN=By A---A=B,, implies A € I. A total interpretation
is an interpretation I such that no A € Bp is undefined in I.

For an interpretation I and a program P, an I-partial level mapping for P
is a partial mapping [: Bp — o with domain dom(l) = {A| A€ [or A €
I}, where « is some (countable) ordinal. We extend every level mapping to
literals by setting [(—A) = [(A) for all A € dom(l). A (total) level mapping
is a total mapping [: Bp — « for some (countable) ordinal a.

3 Results

We first turn to definite programs. Recall, e.g. from [L1088], that each definite
program P has a distinguished least total Herbrand model, where least, in this
context, refers to the ordering <, usually considered on total interpretations,
namely? [<, K if {A€ Bp | A€ I} C{A € Bp| Aec K}. We call this
model the definite model of P.

2The ordering <; is called the truth ordering in [Fit02], while subset inclusion on signed
subsets of Bp is called the knowledge ordering.

3.1 Theorem Let P be a definite program. Then there exists a unique total
model M of P for which there exists a (total) level mapping [: Bp — a such
that for each A € Bp with A € M there exists A < Ay,..., A, in ground(P)
with A; € M and [(A) > [(A;) for all i. Furthermore, M coincides with the
definite model of P.

The proof of Theorem 3.1 is straightforward using the fact that the def-
inite model can be obtained as the supremum, with respect to the truth
ordering, of iterates of the monotonic immediate consequence operator Tp
associated with the program P, see [Llo88]. The level [(A) of an atom A
corresponds to the least integer k with A € Tp1(k + 1).

In order to avoid confusion, we remark that for the remainder of this
paper, interpretations are three-valued and the order which is considered is
always subset inclusion on signed subsets of Bp.

For semantics of normal logic programs, one of the most popular ap-
proches is based on the so-called stable models, introduced in [GL88], which
are tightly connected to a reading of logic programs in Reiter’s default logic
[Rei80].

3.2 Theorem Let P be a normal pogram. A total model M of P is stable if
and only if there exists a level mapping [: Bp — « such that for each A € Bp
with A € M there exists A < Ay,..., A,, - By, ..., B, in ground(P) with
A; € M, -Bj € M, and [(A) > [(4;) for all 7 and j.

Theorem 3.2 is due to [Fag94], building on a result in [DK89]. The latter
was recently generalized in [Wen02b)].

We next turn to partial interpretations. One of the earliest and fundamen-
tal approaches was presented in [Fit85]: A distinguished three-valued model
is associated with any given normal program P. This model was originally
called the Kripke-Kleene model of P, and is recently often called the Fitting
model of P.

3.3 Theorem Let P be a normal program. Then there exists a greatest
model M of P with the property that there is an M-partial level mapping [
for P such that each A € dom(l) satisfies one of the following conditions.

(Fi) A € M and there exists A < Lq,...,L, in P such that for all i we
have L; € M and [(A) > I(L;).

(Fii) =A € M and for each A < Ly,..., L, in P there exists i with =L; €
M and [(A) > I(L;).

Furthermore, M coincides with the Fitting model of P.

The main idea of the proof of Theorem 3.3, as presented in [HW02], is
that the level [(A) of an atom A corresponds to the least ordinal « such that
A is not undefined in ®p1(a+ 1), where ®p is the monotonic operator from
[Fit85] whose least fixed point is the Fitting model of P.

A less skeptical semantics than the Fitting semantics is that based on
the notion of weakly perfect model, as presented in [PP90]. In this approach,
a rather involved construction assigns a unique three-valued model to each
given program. The driving inutition behind the construction was the idea
that recursion should be allowed through positive dependencies while being
restricted through negation. From this perspective, it is a generalization of the
perfect model semantics for locally stratified [Prz88| and stratified [ABWS8S]
programs.

3.4 Theorem Let P be a normal program. Then there exists a greatest
model M of P with the property that there is an M-partial level mapping [
for P such that each A € dom(l) satisfies one of the following conditions.

(WSi) A € M and there exists A < Ly, ..., L, in ground(P) such that for
all 7 we have L; € M and [(A) > I(L;).

(WSii) =A € M and for each A < Ay,..., A,,-By,...,~B, in P
one of the following holds:

(WSiia) There exists i with =A; € M and [(A) > [(4;).

(WSiib) For all & we have [(A) > [(Ay), for all j we have [(A) >
I(Bj), and there exists ¢ with —A4; € I.

(WSiic) There exists j with B; € M and [(A) > {(B;).
Furthermore, M coincides with the (partial) weakly perfect model of P.

It shall be noted that Theorem 3.4 refers to a slightly different notion of
(partial) weakly perfect model, than the one originally presented in [PP90],
but the adjustments made in the definition seem to be rather reasonable, and
this is discussed in [HWO02]. The proof is very technical, and was basically
developed in [Wen(2a].

We finally turn to the well-founded semantics. In this approach, again, a
distinguished three-valued model is assigned to each given program P, called
the well-founded model of P, and introduced in [VGRS91]. Tt is tightly related
to the stable model semantics [Gel89, Prz89).

3.5 Theorem Let P be a normal program. Then there exists a greatest
model M of P with the property that there is an M-partial level mapping [
for P such that each A € dom(l) satisfies one of the following conditions.

5

(WFi) A € M and there exists A <— Ly,..., L, in ground(P) such that for
all i we have L; € M and [(A) > I(L;).

(WFii) A € M and for each A < Ay,...,A,,—By,...,mB, in P
one of the following holds:

(WFiia) There exists ¢ with =A; € M and [(A) > [(4;).
(WFiib) There exists j with B; € M and [(A) > [(B;).

Furthermore, M coincides with the well-founded model of P.

Theorem 3.5 is proven along the same lines as Theorem 3.3, replacing the
operator ®p by Wp, as introduced in [VGRS91].

Considering that the main motivation for the introduction of the weakly
perfect model semantics was to restrict recursion through negation, we notice
by comparing conditions (WSii) and (WFii), that the well-founded semantics
provides a much cleaner and more convincing way of achieving this.

We remark that conditions (Fi), (WSi) and (WFi) are identical. Indeed,
replacing (WFi) by a “stratified” version such as the following is not satis-
factory.

(SFi) A € M and there exists a clause A < Ay,..., A,,=By,...,7B,, in
ground(P) such that A;,~B; € M, I(A) > I(A;), and [(A) > [(B,)
for all 7 and j.

If we replace condition (WF1i) by condition (SFi), then it is not guaranteed
that for any given program there is a greatest model satisfying the desired
properties: Consider the program consisting of the two clauses p < p and ¢ <
—p, and the two (total) models {p, ~¢} and {—p, ¢}, which are incomparable,
and the level mapping [with [(p) =0 and I(q) = 1.

The characterization of the well-founded model in Theorem 3.5 contrasts
nicely with another characterization which can be found in [LMPS95], as
follows.

3.6 Theorem The well-founded model of a program P is the least three-
valued model M of P such that there exists a (total) level mapping [for
P with the property that for each A € Bp with =A ¢ M there exists a
clause A < Ay,..., A,,—By,...,7 By, in ground(P) with [(A) > [(4;) and
—A; ¢ M for all ¢, and B; ¢ M for all j.

Theorem 3.6 characterizes the well-founded model M by means of condi-
tions on all atoms which are not false in M, while Theorem 3.5 characterizes
it by means of conditions on all atoms which are not undefined in M.

6

4 Conclusions

We have presented uniform characterizations, using level mappings, of some
of the most important semantics for logic programs. The uniformity of the
presentation allows for an easy comparison of the different approaches. Our
characterization of the well-founded model, for example, exhibits the close
relationship, in spirit, between the well-founded semantics and the idea un-
derlying the notion of stratification, thus providing futher evidence that the
well-founded semantics is a particularly important one. Also, the following
theorem follows immediately from our uniform characterizations.

4.1 Theorem Let P be a normal program with Fitting model M, weakly
perfect model M,, and well-founded model M,,. Then M; C M, C M,,.

We believe that our approach should be applicable to most fixed-point
semantics based on monotonic operators. In particular, it should be possible
to employ our methods in order to characterize different forms of well-founded
semantics for (extended) disjunctive logic programs, see e.g. [LRS97], and
also to the study of fixed-point semantics of logic programming in algebraic
domains, as put forward in [RZ01, Hit02].

References

[ABW88] Krzysztof R. Apt, Howard A. Blair, and Adrian Walker. Towards
a theory of declarative knowledge. In Jack Minker, editor, Foun-

dations of Deductive Databases and Logic Programming, pages
89-148. Morgan Kaufmann, Los Altos, CA, 1988.

[AP93] Krzysztof R. Apt and Dino Pedreschi. Reasoning about termi-
nation of pure prolog programs. Information and Computation,
106:109-157, 1993.

[Bez89| Marc Bezem. Characterizing termination of logic programs with
level mappings. In Ewing L. Lusk and Ross A. Overbeek, editors,
Proceedings of the North American Conference on Logic Program-
ming, pages 69-80. MIT Press, Cambridge, MA, 1989.

[Cav9l] Lawrence Cavedon. Acyclic programs and the completeness
of SLDNF-resolution. Theoretical Computer Science, 86:81-92,
1991.

[DK89] Phan Minh Dung and Kanchana Kanchanasut. A fixpoint ap-
proach to declarative semantics of logic programs. In Ewing L.

7

[DMT00]

[Fag94]

[Fit85]

[Fit94]

[Fit02]

[Gel89]

[GLSS]

[Hit01]

[Hit02]

[HKS99)]

Lusk and Ross A. Overbeek, editors, Logic Programming, Pro-
ceedings of the North American Conference 1989 (NACLP’89),
Cleveland, Ohio, pages 604-625. MIT Press, 1989.

Marc Denecker, V. Wiktor Marek, and Miroslaw Truszczynski.
Approximating operators, stable operators, well-founded fixpoints
and applications in non-monotonic reasoning. In Jack Minker,
editor, Logic-based Artificial Intelligence, chapter 6, pages 127—
144. Kluwer Academic Publishers, Boston, 2000.

Francois Fages. Consistency of Clark’s completion and existence
of stable models. Journal of Methods of Logic in Computer Sci-
ence, 1:51-60, 1994.

Melvin Fitting. A Kripke-Kleene-semantics for general logic pro-
grams. The Journal of Logic Programming, 2:295-312, 1985.

Melvin Fitting. Metric methods: Three examples and a theorem.
The Journal of Logic Programming, 21(3):113-127, 1994.

Melvin Fitting. Fixpoint semantics for logic programming — A
survey. Theoretical Computer Science, 278(1-2):25-51, 2002.

Allen Van Gelder. The alternating fixpoint of logic programs with
negation. In Proceedings of the Eighth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, Philadel-
phia, Pennsylvania, pages 1-10. ACM Press, 1989.

Michael Gelfond and Vladimir Lifschitz. The stable model se-
mantics for logic programming. In Robert A. Kowalski and Ken-
neth A. Bowen, editors, Logic Programming. Proceedings of the

oth International Conference and Symposium on Logic Program-
ming, pages 1070-1080. MIT Press, 1988.

Pascal Hitzler. Generalized Metrics and Topology in Logic Pro-
gramming Semantics. PhD thesis, Department of Mathematics,
National University of Ireland, University College Cork, 2001.

Pascal Hitzler. Towards nonmonotonic reasoning on hierarchi-
cal knowledge. Submitted to the Workshop Logische Program-
mierung (WLP02), Dresden, 2002.

Steffen Holldobler, Yvonne Kalinke, and Hans-Peter Storr. Ap-
proximating the semantics of logic programs by recurrent neural
networks. Applied Intelligence, 11:45-58, 1999.

8

[HSO0x]

[HW02]

[L1088]

[LMPS95]

[LRS97]

[Mar96]

[PP90)

[Prz88)

[Prz89)

[Rei80)]

Pascal Hitzler and Anthony K. Seda. Generalized metrics and
uniquely determined logic programs. Theoretical Computer Sci-
ence, 200x. To appear.

Pascal Hitzler and Matthias Wendt. The well-founded semantics
is a stratified Fitting semantics. In Matthias Jarke, Jana Koehler,
and Gerhard Lakemeyer, editors, Proceedings of the 25th German
Conference on Artificial Intelligence (KI12002), Lecture Notes in
Artificial Intelligence. Springer, Berlin, 2002. To appear.

John W. Lloyd. Foundations of Logic Programming. Springer,
Berlin, 1988.

Vladimir Lifschitz, Norman McCain, Teodor C. Przymusinski,
and Robert F. Stiark. Loop checking and the well-founded se-
mantics. In V. Wiktor Marek and Anil Nerode, editors, Logic
Programming and Non-monotonic Reasoning, Proceedings of the
3rd International Conference (LPNMR’95), Lexington, KY, USA,
June 1995, volume 928 of Lecture Notes in Computer Science,
pages 127-142. Springer, 1995.

Nicola Leone, Pasquale Rullo, and Francesco Scarello. Disjunctive
stable models: Unfounded sets, fixpoint semantics, and computa-
tion. Information and Computation, 135(2):69-112, 1997.

Elena Marchiori. On termination of general logic programs with
respect to constructive negation. The Journal of Logic Program-
ming, 26(1):69-89, 1996.

Halina Przymusinska and Teodor C. Przymusinski. Weakly strat-
ified logic programs. Fundamenta Informaticae, 13:51-65, 1990.

Teodor C. Przymusinski. On the declarative semantics of deduc-
tive databases and logic programs. In Jack Minker, editor, Foun-
dations of Deductive Databases and Logic Programming, pages
193-216. Morgan Kaufmann, Los Altos, CA, 1988.

Teodor C. Przymusinski. = Well-founded semantics coincides
with three-valued stable semantics. Fundamenta Informaticae,
13(4):445-464, 1989.

Raymond Reiter. A logic for default reasoning. Artificial Intelli-
gence, 13:81-132, 1980.

[RZ01]

[Sed95]

[Sub99]

[VGRS91]

[Wen02a]

[Wen02b)]

William C. Rounds and Guo-Qiang Zhang. Clausal logic and logic
programming in algebraic domains. Information and Computa-
tion, 171(2):156-182, 2001.

Anthony K. Seda. Topology and the semantics of logic programs.
Fundamenta Informaticae, 24(4):359-386, 1995.

V.S. Subrahmanian. Nonmonotonic logic programming. [EEE
Transactions on Knowledge and Data Engineering, 11(1):143-152,
1999.

Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. The
well-founded semantics for general logic programs. Journal of the
ACM, 38(3):620-650, 1991.

Matthias Wendt. Towards a unified view of the hierarchy of logic
program classes. Project Thesis, Knowledge Representation and
Reasoning Group, Artificial Intelligence Institute, Department of
Computer Science, Dresden University of Technology, 2002.

Matthias Wendt. Unfolding the well-founded semantics. Techni-
cal Report WV-02-08, Knowledge Representation and Reasoning
Group, Artificial Intelligence Institute, Department of Computer
Science, Dresden University of Technology, 2002. Submitted.

10

