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Functions =

KNo.e.sis

A function f: X — Y is an assignment, to each xe X, of at most one
value in Y. (Mathematicians call these: partial functions.)

X ...domain of f
Y ...range of f

We write f(x)1 (or f(x)=1) if no value is assigned to f(x), and say f(x)
Is undefined.

We write f(x) | if f(x) is defined (we’re not giving the value in this
case).

If f(x)] for all xe X, we say that f is a total function.

H e
—
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TMs for computing functions ——

KNOo.e.SIS

TMs for computing functions have
« Two distinguished states

— The initial state q,

— The final state q;
* Inputis positioned as usual

« Computation always begins with transition from g, that positions
the tape head at the beginning of the input string.

 Theinitial state is never reentered (there is no transition into q).

e All computations with output terminate in g; and with tape head
In initial position

« Thereis no transition of the form §(q;,B)

 Qutputis given in the same position as the input

« The computation does not terminate on input u with f(u)t

« The computation yields output v if and only if f(u)=v.
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Turing computability

A function f: 2*— 2*is Turing computable if there is a TM that
computes it.

We may depict such a TM schematically as

May—= M
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Example 2.1

TM computing f:{a,b}* — {a,b}* defined as

f(u) = A, if u contains an a
f(u) =1, otherwise

b/b R ala R alB L
B/B R b/b R b/B L

>O B/B R @ ala R @ B/B L '

Note: on undefined input (say, BbBbBaB) we may still get some
“output” (e.g., BbBbqg;B).

B— n )
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Exercise 22 [hand-in] ——

KNOo.e.SIS

Make a TM which computes the function

f(n) =n/2 (n divided by 2) if nis a multiple of 2
f(n) =1 if nis not a multiple of 2

where the input and output strings are non-negative integers in
binary representation.

Describe, in words, the strategy of your TM.

e ‘
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Multiple parameters —

KNOo.e.SIS

The input for functions with more than one argument is given by
blank-separated strings, in the sequence of the arguments.

E.g., input (aba,bbb,bab) is given as

al b | a b | b| b bla | b

i

q,

Input (aa,\,bb) is given as

a | a b | b

!

dy

I E——
p— X ‘
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Example 2.2: String concatenation ——

KNOoO.e.siIs

ala L
blb L
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Characteristic functions

The characteristic function of a language L is the function
c.: 2*—{0,1} defined by
c(uy=1lifuelL
c(uy=0ifueglL

Note: A TM that computes the partial characteristic function
c (u)=1 ifuelL
c(uy=0or1 ifuelL
shows that L is recursively enumerable.

I E——
p— )
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Exercise 23 [hand-in]

Show for every language L: if there is a TM that computes the
partial characteristic function of L, then L is recursively
enumerable.

[exercise is due in the first session after the mid-term]

I E——
—T X ‘
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Exercise 24 [hand-in]

Show that, for each recursively enumerable language L, there
exists a TM which computes the partial characteristic function
of L.

[exercise is due in the first session after the mid-term]

I E——
p— )
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Exercise 25 [hand-in]

Show that a language L is recursive if and only if its (total)
characteristic function is Turing computable.

[exercise is due in the first session after the mid-term]
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Number-theoretic functions =

KNOo.e.SIS

A number-theoretic function is a function of the form
F: NxN ...xN — N,

where N is the set of non-negative integers.

For computing number-theoretic functions by TMs, we assume that
non-negative integers are represented by strings of “1” symbols.
More precisely, the number n is represented by a string with
(n+1) consecutive “1”s. We call this the unary representation of
numbers.

E.g., “5" iIsrepresented as “111111”.“0"” is represented as “1".

For a number a, we write its unary representation as a.
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Characteristic functions =

KNOo.e.SIS

A k-variable total number-theoretic function
r: NxN ...xN — {0,1}

defines a k-ary relation R on the domain of the function:

(ny,...,n) €R ifr(ng...,n) =1
(ny,...,n) ¢ R ifr(ng,....,n,)=0

r is the characteristic function of R.

We define: A relation is Turing computable if its characteristic
function is Turing computable.

e ‘
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Some TMs for number-theoret. fctns e

KNOoO.e.sISs

e Successor function s(n) = n+1 111 R 1L
~  B/BR SE) B/lL .

S: >@ q,

o« Zero function z(n) =0
/1 R 1B L

7 >@ BIBR@ B/B L @ B/B R . B/l L

Alternatively:

I/B R B/B L

>@ B/B R @ I/l R __@ B/B L @ 1L
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Some TMs for number-theoret. fctns e

KNO.e.sIs

 Empty function e(n) =1 B/B R
I/1 R

E: >@ B/B R

« Projection p,®defined as p,®(n,,...,n,) =n,
We give the TM for p,®:

I/1 R I/IBR I/BR B/B L 1L

(k) B/IBR BKB R BIBR
P @) (@) (@)

B/B R
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Some TMs for number-theoret. fctns e

KNO.e.sIs

 Binary addition:

/IR IR L
A . B/BR ’BHR 'BIBL S I/IBL . IIBL .

 Predecessor function: pred(0)=0; pred(n+1)=n
11 R

B/B R Il R Il R B/B L

B/B L
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Sequential composition o

KNO.e.sIs

« E.g., firstrun “zero” TM, then run “successor” TM
Result: Put value “one” on tape.

« Schematically:

(+) z ——(sy— s —(%)
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Sequential composition o

KNo.e.siIs

e “one” TMin more detail: IR IIBL

@ B/BR

We subscript the states with the name of the
TM they come from.
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Macros =

KNo.e.sis

« We call a machine constructed to perform a single simple task a
macro.

« Conditions on TMs for computing functions are slightly relaxed

— Computation does not necessarily start with tape head at
position zero.

— First tape symbol read must be a blank.

— Input to be found to the immediate left or right of the starting
position.

— There may be several halting states in which a computation
may terminate.

— There are no transitions away from any halting state.

e
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Macros — Examples

« Move head right through several consecutive natural numbers .

11 R
MR;:  Yqo)— 2B R ,@

I/l R 1/l R I/l R I/l R

MR @) B/B R 8 B/B R ’ BBBR

B/B R
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Macros — Examples

« Macros can also be described by their effect on the tape.
Tape head location: underscore

ML, (move left):

Bn,Bi,B...Bm,B k>0
Bi,Bn,B ... BB
FR (find right):
BBWB  i>0

T 1

B'BnB

4
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Macros — Examples

FL (find left):
BunB'B  i>0
1 1

BnB'B

E; (erase):

Bn,Bm,B...Bn,B k> |

) )

BB BB
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Macros — Examples

CPY, (copy):
BnyBn,B ... Bn;BBB ... BB k> 1

) ) )

B, Bu,B ... Bu,Bn,Bu,B ... BB

CPY, ; (copy through i numbers):

Eﬁ]BﬁzB .. BEkBﬁ;H_l R BHk+I'BB . BB k> 1

) 7 ) 1

B, Bi,B ... B Bn,, ... B, ;Bn,Bi,B ... BB
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Macros — Examples

T (translate):

BBnB  i>0

T 1

BnB'B

BRN (branch on zero):

n=0
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Exercise 26 [no hand-in] ——

KNOoO.e.siIs

Give a TM for the BRN macro.
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Macro composition o

KNO.e.sIs

INT:

CPYLI —I-- E1 —l- T —l- MRI —I- T MLI —l--

Interchanges the order of two numbers:

BunBmBB"'B

) )

BmBnBB"'B
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Examples 2.3 and 2.4

« Projection function p;,®

Ok MR, = R O B O L ()
« f(n)=3n
GO CPY, (= MR, = )={CPY, (| A (o ML, ()= A

t
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Examples 2.5 and 2.6

 One-variable zero function z(n) =0

>,—> BRN | =Y

n=0

e MULT (multiplication of natural numbers):

We need to mix macros with standard TM transitions for this.
Schematically, e.g. identify macro start state with q;:

@ B/B R - M F

B— n )
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MULT: >

B/B L
° B/B R
2 X/B L UBL
15) X/BL
MR, 1L
Y
A Q@ 1L
1/1 R X/X R

—— BIB R . I/XR ."
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Composition of unary functions

Let g, h be unary number-theoretic functions.

The composition of g with h, written hog, is the unary function
f: N — N defined by

0 if g(x) 1
f)y=11 if g(x)=yand h(y) 1
hiv) ifg(x)=vyandh(y)]

Note hog(x) = h(g(x)) —which is defined whenever g(x) is defined
and h(y) is defined for y=g(x).

T

— 1}
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Composition of n-ary functions ——

KNo.e.sis

Letg,,...,0, be k-ary number-theoretic functions.
Let h be an n-ary number-theoretic function.

The k-ary function f defined by

F(Xq,---:X) = (g (X, X))y ooer 9n(Xqye-0X4) )

Is called the composition of h with g,,...,g,, written
f=ho(gq...,00)

T

— 1}
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Example 2.7 ——

KNo.e.siIs

Let the following functions be defined as indicated:

g.(X,y) = x+y
g,(X,y) = Xy
g3(X1y) — Xy

h(x,y,z) = x (y+2)

Then 1(x,y) = h 0 (91,92,93) = (X+y)(Xy+x¥).

I E——
pE—

gl |
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Composition by TMs

Assume we have
g, aternary function computed by the TM G,

d,, aternary function computed by the TM G,
h, a binary function computed by the TM H

ho(g9,,9,) is computed by a TM as follows —we give a trace on
Input nqy, N, Ns.

I E——
—T X ‘
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Trace — composition example

Bi1, Bii, BiisB
CPY, Bii, Bii, Bii Bii, Bii, Bii3 B

MR, B, Bit, Biiy Bii, Bii, BiisB

G, B7i, Bii, B B2, (1. 5. 113) B

ML; BnBnyBn;Bg(ny, ny, n3)B

CPY;, B, Bi, BiisBg,(n,. na. n3) B, Bii, BiisB

MR, Bii, Bii, BiisBg,(n1. n. 12) Bii, Bii> Biis B

Go BniBnyBn3Bg(ny, ny, n3)Bgy(ny, ny, n3) B
ML, BnyBnyBn3Bgy(ny, ny, n3) Bgy(ny, ny, n3)B

H BnyBnyBn3;Bh(g,(ny, ny, n3), g2(ny, ny, n3))B
ML; BnBny,Bn;Bh(g(ny, ny, n3), g2(ny. na, n3))B
E; BB ... Bh(g(ny. n,, n3), g2(ny, Ny, n3))B
T Bh(g(ny, ny, n3), g(ny. ny, n3))B

T
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Composition of functions by TMs ——

KNo.e.siIs

Theorem 2.8

The Turing computable functions are closed under the operation of
composition.

Proof: skipped.
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Example 2.9 —

KNOo.e.SIS

The binary function (sum-of-squares)
smsq(n,m) = n2 + m?
Is Turing computable.

Proof: It can be written as
smsq = add o (sq o p,@, sq o p,?),

where sq is defined by sqg(n) = n?. The function add has been shown

to be Turing computable earlier. The function sq is computed by
the following TM:

CPY, MULT ()

e ‘
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Exercise 27 [hand-in] ——

KNO.e.sIs

Show that the relation {(n,m) | n>m} on non-negative integers is
Turing-computable.
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Exercise 28 [hand-in]

Let F be a TM that computes the total unary number-theoretic
function f.

Design a TM that computes the function

g(n) = 2" f(0).
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Uncomputable functions

Theorem 2.10

The set of all Turing computable number-theoretic functions is
countable.

Proof idea?
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—

KNOo.e.SIS

Note: If aset A is countable, then any subset of A is also countable.
[Enumerate by skipping the elements which are not in the
subset.]

We already know that the set A of all Turing Machines is countable.

Hence, the subset B of A of all Turing Machines which compute
number-theoretic functions is countable, say as M;,M,,... . The
function computed by M, is denoted f(M,).

By definition, for every computable function thereisa TM in B
computing it.

Define a subset C of B as follows: M, is in C if and only if there is no
M; with j>I such that M; and M; compute the same function.

C can be enumerated as N,,N,,...

Hence, all computable functions can be enumerated as f(N,),f(N,),...

WRIGHT STATE CS410/610 — MTH410/610 — Winter 2010 — Pascal Hitzler 46



Uncomputable functions

Theorem 2.11

There is a total unary number-theoretic function that is not Turing
computable.

Proof idea?
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—

KNo.e.sis

We show that the set of all a total unary number-theoretic functions
IS uncountable.

Assume it is countable: f,, f,,...
Now define a function by setting f(n)=f, (n)+1.

Then fis a unary number-theoretic function which does not appear
In the list. This contradicts the assumption, which, hence, must
be wrong.

Thus, the set of all total unary number-theoretic functions is
uncountable.

H e
—
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Book chapter 9.6 (omitted) ——

KNo.e.sis

Chapter 9.6 gives further arguments why high-level programming
languages have the same computational power as Turing
Machines.

It should be evident from the material which we already covered, so
we omit details.

I E——
p— )

WRIGHT STATE CS410/610 — MTH410/610 — Winter 2010 — Pascal Hitzler 49



What’'s up next —

KNOo.e.SIS

 We briefly talk about the Chruch-Turing Thesis. [Chap 11]

 We talk about undecidability. In particular we give a number of

undecidable problems —including the famous Halting Problem.
[Chap 12]

« We find a mathematical characterization of the functions which
are Turing computable. [Chap 13]

e ‘
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