
CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler

CS 410/610, MTH 410/610
Theoretical Foundations of Computing

Fall Quarter 2010

Slides 6
Pascal Hitzler

Kno.e.sis Center
Wright State University, Dayton, OH

http://www.knoesis.org/pascal/

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 2

TOC: ¹-Recursive Functions

Chapter 13 of [Sudkamp 2006].

1. Primitive Recursive Functions
2. ¹-Recursive Functions

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 3

Basic functions

• successor function s: s(x) = x+1

• zero function z: z(x) = 0

• projection functions pi
(n): pi

(n)(x1, …, xn) = xi (1 · I · n)

These functions are all Turing computable.

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 4

Primitive recursion

Let g,h be total functions of arities n, respectively n+2.

Define the (n+1)-ary function f recursively as follows:

1. f(x1,…,xn,0) = g(x1,…,xn)
2. f(x1,…,xn,y+1) = h(x1,…,xn,y,f(x1,…,xn,y))

We say that f is obtained from g and h by primitive recursion.

Note that the definition directly gives us an algorithm for computing
f provided g and h can be computed.

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 5

Primitive recursive functions

A function is called primitive recursive, if if can be obtained from
the basic functions (successor, zero, projections) by a finite
number of applications of composition and primitive recursion.

Obviously, these are all computable.

They are also all total.

How far does this definition carry?

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 6

Examples

Addition:

add(x,0) = g(x) = x [g(x) = x]
add(x,y+1) = h(x,y,add(x,y)) = add(x,y)+1 [h(x,y,z) = z+1]

Multiplication:

mult(x,0) = 0 [g(x) = ?]
mult(x,y+1) = mult(x,y) + x [h(x,y,z) = ?]

[h = add ± (p3
(3), p1

(3))]

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 7

Examples

Factorial

fact(0) = 1
fact(y+1) = fact(y) ¢ (y+1)

Predecessor, Exponentiation,
sub(x,y) = max(0,x-y), sign: s(x) = sub(x,sub(x,1))

characteristic functions of relations:
less than, equal to, greater than, not equal to

logical expressions (on 0,1):
not, and, or

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 8

Examples

Function definition by cases

f(x) = eq(x,0) ¢ 2
+ eq(x,1) ¢ 5
+ eq(x,2) ¢ 4
+ gt(x,2) ¢ x

Hence:
If a primitive recursive function is altered on only a finite number of

input values, then the resulting new function is also primitive
recursive.

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 9

Minimization

A n-ary predicate p is the characteristic function of an n-ary
relation.

Define ¹z[p(x1,…,xn,z)] to be the smallest non-negative integer z
such that p(x1,…,xn,z) = 1.

Note: functions defined using minimization are not necessarily
primitive recursive.

E.g., f(x) = ¹z[eq(x,z¢z)] is not even total.

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 10

Bounded minimization

Define

z if z·y and z is the least non-negative
¹yz [p(x1,…,xn,z)] = integer with p(x1,…,xn,z) = 1

y+1 otherwise

Theorem
If p(x1,…,xn,y) is a primitive recursive predicate, then

f(x_1, …, x_n, y) = ¹yz [p(x1,…,xn,z)]

is primitive recursive.

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 11

Examples

Quotient
quo(x,y) = sg(y) ¢ ¹xz[gt((z+1)¢y, x)]

Remainder
rem(x,y) = sub(x,y¢quo(x,y))

Divides
divides(x,y) = eq(rem(x,y),0)¢sg(x)

Number of divisors
ndivisors(x,y) = divides(x,0)+…+divides(x,y)

Prime
prime(x) = eq(ndivisors(x,x),2)

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 12

More general bounded minimization

Let p be an (n+1)-ary primitive recursive predicate and let u be an n-
ary primitive recursive function.

Then the function

f(x1,…,xn) = ¹u(x1, …, xn)}z[p(x1,…,xn,z)]

is primitive recursive.

Proof?

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 13

Examples

xth prime:

pn(0) = 2
pn(x+1) = ¹fact(pn(x))+1z[prime(z)¢gt(z,pn(x))]

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 14

TOC: ¹-Recursive Functions

Chapter 13 of [Sudkamp 2006].

1. Primitive Recursive Functions
2. ¹-Recursive Functions

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 15

Computable total functions

Theorem
There are computable total functions which are not primitive

recursive.

Proof?

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 16

Proof

The set of one-variable primitive recursive functions can be
enumerated (e.g., create all symbol strings and check each
whether it is the definition of a primitive recursive function):

f1, f2, f2, …

The function g(i) = fi(i)+1 is total and computable.

However, there is no k with g = fk (diagonalization argument).

Hence g is not primitive recursive.

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 17

Something’s wrong here – what is it?

Each total computable function can be represented by a TM.
Hence, we obtain a list of all total computable functions:

f1, f2, f3

The function g(i) = fi(i)+1 is total and computable.

However, there is no k with g = fk (diagonalization argument).

Hence, the set of total computable functions is uncoubable.

Hence, the set of all TMs is uncountable, which is impossible!

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 18

Hence

The set of all total computable functions cannot be enumerated
algorithmically.

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 19

Ackermann’s function

A(0,y) = y+1
A(x+1,0) = A(x,1)
A(x+1,y+1) = A(x,A(x+1,y))

This function is effectively computable. [why?]

This function is not primitive recursive:
It can be shown that for each primitive recursive function f there is

some non-negative integer x such that f(x) < A(x,x).

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 20

¹-Recursive Functions

A function is ¹-recursive if and only if it can be defined using a
finite number of the following:

• any primitive recursive function
• function composition
• primitive recursion
• (unbounded) minimization using a total ¹-recursive predicate

Theorem
Every ¹-recursive function is Turing computable

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 21

Theorem

Every Turing computable function is ¹-recursive.

Proof?

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 22

Proof idea

• We simulate the computations of a given TM by means of a
number-theoretic function.

• Machine computations become functions (this is called
arithmetization of TMs).

• each configuration (state, tape head position, tape content) is
uniquely encoded by a number

• A function tr maps configurations to configurations, according
to the transition function of M.
– The number encoding needs to be “smart” such that this is

relatively easy to define. The key idea here is Gödel
numbering. Furthermore, it must be done such that tr is ¹-
recursive (in fact, it is primitive recursive).

• Using minimization, one can combine tr iterations to the overall
input-output function sim of M.

CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 23

Church-Turing Thesis Revisited

A number-theoretic function is computable if, and only if, it is
¹-recursive.

	CS 410/610, MTH 410/610 �Theoretical Foundations of Computing��Fall Quarter 2010���Slides 6
	TOC: ¹-Recursive Functions
	Basic functions
	Primitive recursion
	Primitive recursive functions
	Examples
	Examples
	Examples	
	Minimization
	Bounded minimization
	Examples
	More general bounded minimization
	Examples
	TOC: ¹-Recursive Functions
	Computable total functions
	Proof
	Something’s wrong here – what is it?
	Hence
	Ackermann’s function
	¹-Recursive Functions
	Theorem
	Proof idea
	Church-Turing Thesis Revisited

