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TOC: ¹-Recursive Functions

Chapter 13 of [Sudkamp 2006].

1. Primitive Recursive Functions
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Basic functions

• successor function s: s(x) = x+1

• zero function z: z(x) = 0

• projection functions pi
(n): pi

(n)(x1, …, xn) = xi (1 · I · n)

These functions are all Turing computable.
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Primitive recursion

Let g,h be total functions of arities n, respectively n+2.

Define the (n+1)-ary function f recursively as follows:

1. f(x1,…,xn,0) = g(x1,…,xn)
2. f(x1,…,xn,y+1) = h( x1,…,xn,y,f(x1,…,xn,y) )

We say that f is obtained from g and h by primitive recursion.

Note that the definition directly gives us an algorithm for computing 
f provided g and h can be computed.
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Primitive recursive functions

A function is called primitive recursive, if if can be obtained from 
the basic functions (successor, zero, projections) by a finite 
number of applications of composition and primitive recursion.

Obviously, these are all computable.

They are also all total.

How far does this definition carry?
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Examples

Addition:

add(x,0) = g(x) = x [ g(x) = x ]
add(x,y+1) = h(x,y,add(x,y)) = add(x,y)+1 [ h(x,y,z) = z+1 ]

Multiplication:

mult(x,0) = 0 [ g(x) = ? ]
mult(x,y+1) = mult(x,y) + x [ h(x,y,z) = ? ] 

[ h = add ± (p3
(3), p1

(3)) ]
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Examples

Factorial

fact(0) = 1
fact(y+1) = fact(y) ¢ (y+1)

Predecessor, Exponentiation,
sub(x,y) = max(0,x-y), sign: s(x) = sub(x,sub(x,1))

characteristic functions of relations:
less than, equal to, greater than, not equal to

logical expressions (on 0,1):
not, and, or
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Examples

Function definition by cases

f(x) = eq(x,0) ¢ 2
+ eq(x,1) ¢ 5
+ eq(x,2) ¢ 4
+ gt(x,2) ¢ x

Hence: 
If a primitive recursive function is altered on only a finite number of 

input values, then the resulting new function is also primitive 
recursive.
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Minimization

A n-ary predicate p is the characteristic function of an n-ary
relation.

Define ¹z[p(x1,…,xn,z)] to be the smallest non-negative integer z 
such that p(x1,…,xn,z) = 1.

Note: functions defined using minimization are not necessarily 
primitive recursive.

E.g., f(x) = ¹z[eq(x,z¢z)] is not even total.
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Bounded minimization

Define

z if z·y and z is the least non-negative
¹yz [p(x1,…,xn,z)] = integer with p(x1,…,xn,z) = 1

y+1 otherwise

Theorem
If p(x1,…,xn,y) is a primitive recursive predicate, then

f(x_1, …, x_n, y) = ¹yz [p(x1,…,xn,z)] 

is primitive recursive.



CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 11

Examples

Quotient 
quo(x,y) = sg(y) ¢ ¹xz[gt((z+1)¢y, x)] 

Remainder
rem(x,y) = sub(x,y¢quo(x,y))

Divides
divides(x,y) = eq(rem(x,y),0)¢sg(x)

Number of divisors
ndivisors(x,y) = divides(x,0)+…+divides(x,y)

Prime
prime(x) = eq(ndivisors(x,x),2)
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More general bounded minimization

Let p be an (n+1)-ary primitive recursive predicate and let u be an n-
ary primitive recursive function.

Then the function

f(x1,…,xn) = ¹u( x1, …, xn )}z[p(x1,…,xn,z)]

is primitive recursive.

Proof?
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Examples

xth prime:

pn(0) = 2
pn(x+1) = ¹fact(pn(x))+1z[prime(z)¢gt(z,pn(x))]
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Computable total functions

Theorem
There are computable total functions which are not primitive 

recursive.

Proof?
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Proof

The set of one-variable primitive recursive functions can be 
enumerated (e.g., create all symbol strings and check each 
whether it is the definition of a primitive recursive function):

f1, f2, f2, …

The function g(i) = fi(i)+1 is total and computable.

However, there is no k with g = fk (diagonalization argument).

Hence g is not primitive recursive.



CS410/610 – MTH410/610 – Winter 2010 – Pascal Hitzler 17

Something’s wrong here – what is it?

Each total computable function can be represented by a TM.
Hence, we obtain a list of all total computable functions:

f1, f2, f3

The function g(i) = fi(i)+1 is total and computable.

However, there is no k with g = fk (diagonalization argument).

Hence, the set of total computable functions is uncoubable.

Hence, the set of all TMs is uncountable, which is impossible!
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Hence

The set of all total computable functions cannot be enumerated 
algorithmically.
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Ackermann’s function

A(0,y) = y+1
A(x+1,0) = A(x,1)
A(x+1,y+1) = A(x,A(x+1,y))

This function is effectively computable. [why?]

This function is not primitive recursive:
It can be shown that for each primitive recursive function f there is 

some non-negative integer x such that f(x) < A(x,x).
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¹-Recursive Functions

A function is ¹-recursive if and only if it can be defined using a 
finite number of the following:

• any primitive recursive function
• function composition
• primitive recursion
• (unbounded) minimization using a total ¹-recursive predicate

Theorem
Every ¹-recursive function is Turing computable
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Theorem

Every Turing computable function is ¹-recursive.

Proof?
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Proof idea

• We simulate the computations of a given TM by means of a 
number-theoretic function.

• Machine computations become functions (this is called 
arithmetization of TMs).

• each configuration (state, tape head position, tape content) is 
uniquely encoded by a number

• A function tr maps configurations to configurations, according 
to the transition function of M.
– The number encoding needs to be “smart” such that this is 

relatively easy to define. The key idea here is Gödel 
numbering. Furthermore, it must be done such that tr is ¹-
recursive (in fact, it is primitive recursive).

• Using minimization, one can combine tr iterations to the overall 
input-output function sim of M.
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Church-Turing Thesis Revisited

A number-theoretic function is computable if, and only if, it is 
¹-recursive.
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