
Computational Complexity

Pascal Hitzler
http://www.pascal-hitzler.de

CS 740 Lecture, Spring Quarter 2012
Wright State University, Dayton, OH, U.S.A.

Version: 05/17/2012

Contents

1 Big-Oh-Notation 2

2 Turing Machines and Time Complexity 5

3 Complexity under Turing Machine Variations 8

4 Linear Speedup 11

5 Properties of Time Complexity 13

6 Simulation of Computer Computations 14

7 PTime 16

8 Nondeterministic Turing Machines and Time Complexity 18

9 SAT is NP-Complete 21

10 If P 6= NP . . . 24
10.1 Problems “between” P and NP . 24
10.2 The Polynomial Hierarchy . 24

11 Beyond NP 26

12 Excursus: Is P = NP? 27

1

[Slideset 1: Motivation] 03/28/12

1 Big-Oh-Notation

[4, Chapter 14.2]

N = {0, 1, 2, . . . }
Z = {. . . ,−2,−1, 0, 1, 2, . . . }
R: the real numbers

1.1 Definition
f, g : N→ N
f is of order g, if there is a constant c > 0 and n0 ∈ N s.t. f(n) ≤ c · g(n) for all n ≥ n0.
O(g) := {f | f is of order g} (“big oh of g”).
If f ∈ O(g) we can say that g provides an asymptotic upper bound on f .
If f ∈ O(g) and g ∈ O(g), then they have the same rate of growth, and g is an asymptotically
tight bound on f (and vice versa).

1.2 Remark
Common abuse of notation:
f = O(g) instead of f ∈ O(g).
f(n) = n2 +O(n) instead of “f(n) = n2 + g(n) for some g ∈ O(n)”.

1.3 Example
f(n) = n2; g(n) = n3

f ∈ O(g). [For c = 1 and n > 1, n2 ≤ c · n3.]
g 6∈ O(f).
[Assume n3 ∈ O(n2). Then ex. c, n0 s.t. n3 ≤ c·n2 for all n ≥ n0. Choose n1 = 1+max{c, n0}.
Then n3

1 = n1 · n2
1 > c · n2

1 and n1 > n0.]

Exercise 1 (hand-in) Show that 2n ∈ O(n!).

Exercise 2 (hand-in) Show that n! 6∈ O(2n).

Exercise 3 (no hand-in) Show: If f ∈ O(g) and g ∈ O(h), then f ∈ O(h).

1.4 Example
f(n) = n2 + 2n+ 5; g(n) = n2

g ∈ O(f) [For c = 1 and n > 0, n2 ≤ c · (n2 + 2n+ 5).]
f ∈ O(g)
[For n > 1 we have f(n) = n2 + 2n+ 5 ≤ n2 + 2n2 + 5n2 = 8n2 = 8 · g(n). Hence, for c = 8
and n > 1, f(n) ≤ c · g(n).]

1.5 Definition
Θ(g) := {f | f ∈ O(g) and g ∈ O(f)}

2

1.6 Example
For f, g from Example 1.4, f ∈ Θ(g).

1.7 Remark
A polynomial (with integer coefficients) of degree r ∈ N is a function of the form

f : N→ Z : n 7→ cr · nr + cr−1 · nr−1 + · · ·+ c1 · n+ c0,

with 0 < r ∈ N, coefficients ci ∈ Z (i = 1, . . . , r), cr 6= 0.
For f, g : N→ Z, we say f ∈ O(g) if |f | ∈ O(|g|), where |f | : N→ N : n 7→ |f(n)|.

1.8 Example
f(n) = n2 + 2n+ 5; g(n) = −n2

g ∈ O(f)
[We have |g| : n 7→ n2 and |f | ≡ f . Thus, from Example 1.4 we know that |g| ∈ O(|f |).]
f ∈ O(g) [As before, from Example 1.4.]

1.9 Remark
For f, g : N→ R, we say f ∈ O(g) if bfc ∈ O(bgc).

1.10 Remark
loga(n) ∈ O(logb(n)) for all 1 < a, b ∈ N. [loga(n) = loga(b) · logb(n) for all n ∈ N.]

1.11 Theorem
The following hold.

1. If lim
n→∞

f(n)
g(n)

= 0, then f ∈ O(g) and g 6∈ O(f).

2. If lim
n→∞

f(n)
g(n)

= c with 0 < c <∞, then f ∈ Θ(g) and g ∈ Θ(f).

3. If lim
n→∞

f(n)
g(n)

=∞, then f 6∈ O(g) and g ∈ O(f).

Proof: We show part 1.
Assume lim

n→∞
f(n)
g(n)

= 0, i.e., for each ε > 0 there exists nε ∈ N such that for all n ≥ nε we have

f(n)
g(n)

< ε, and hence f(n) < εg(n). Now select c = ε = 1 and n0 = nε. Then f(n) ≤ c · g(n)

for all n ≥ n0, which shows f ∈ O(g).
Now if we also assume g ∈ O(f), then there must exist d > 0 and m0 ∈ N s.t. g(n) ≤ d ·f(n)

for all n ≥ m0, i.e., 1
d
≤ f(n)

g(n)
for all n ≥ m0. But then lim

n→∞
f(n)
g(n)
≥ 1

d
> 0 	. �

Exercise 4 (hand-in) Show Theorem 1.11 part 2.

Exercise 5 (no hand-in) Show Theorem 1.11 part 3. [Hint: Use part 1.]

3

1.12 Remark
The l’Hospital’s Rule often comes in handy:

lim
n→∞

f(n)

g(n)
= lim

n→∞

f ′(n)

g′(n)

1.13 Example
n loga(n) ∈ O(n2) and n2 6∈ O(n loga(n))[

lim
n→∞

n loga(n)

n2
= lim

n→∞

loga(n) + n(loga(e)/n)

2n
= lim

n→∞

loga(n)

2n
+ lim

n→∞

loga(e)

2n
= 0 + 0 = 0

]
04/02/12

1.14 Theorem
Let f be a polynomial of degree r. Then

(1) f ∈ Θ(nr)

(2) f ∈ O(nk) for all k > r

(3) f 6∈ O(nk) for all k < r

Exercise 6 (no hand-in) Prove Theorem 1.14 (1).

1.15 Theorem
The following hold.

(1) loga(n) ∈ O(n) and n 6∈ O(loga(n))

(2) nr ∈ O(bn) and bn 6∈ O(nr)

(3) bn ∈ O(n!) and n! 6∈ O(bn)

Exercise 7 (no hand-in) Prove Theorem 1.15 (1).

1.16 Remark
The Big Oh Hierarchy.

O(1) constant “sublinear” “subpolynomial”
O(loga(n)) logarithmic “sublinear” “subpolynomial”
O(n) linear “subpolynomial”
O(n loga(n)) n log n “subpolynomial”
O(n2) quadratic “polynomial”
O(n3) cubic “polynomial”
O(nr) polynomial (r ≥ 0)
O(bn) exponential (b > 1) “exponential”
O(n!) factorial “exponential”

4

2 Turing Machines and Time Complexity

[4, Chapter 14.3 and recap Chapters 8.1, 8.2]

2.1 Definition
A standard (single tape, deterministic) Turing machine (TM) is a quintupleM = (Q,Σ,Γ, δ, q0)
with
Q a finite set of states
Γ a finite set called tape alphabet containing a blank B
Σ ⊆ Γ \ {B} the input alphabet

δ : Q× Γ
partial→ Q× Γ× {L,R}, the transition function

q0 ∈ Q the start state

Recall:
• Tape has a left boundary and is infinite to the right.
• Tape positions numbered starting with 0.
• Each tape position contains an element from Γ.
• Machine starts in state q0 and at position 0.
• Input is written on tape beginning at 1.
• Rest of tape is blank.
• A transition

1. changes state,
2. writes new symbol at tape position,
3. moves head left or right.
• Computation halts if no transition is defined.
• Computation terminates abnormally if it moves left of position 0.
• TMs can be represented by state diagrams.

2.2 Example
Swap all a’s to b’s and all b’s to a’s in a string of a’s and b’s.

Computation example:

` q0BababB

` Bq1ababB

` Bbq1babB

` Bbaq1abB

` Bbabq1bB

` Bbabaq1B

` Bbabq2aB

` Bbaq2baB

` Bbq2abaB

` Bq2babaB

` q2BbabaB

Number of steps required with input string size n: 1 + n+ 1 + n = 2n+ 2

5

2.3 Example
Copying a string: BuB becomes BuBuB (u is a string of a’s and b’s)

Number of steps required with input string size n: O(n2).

Exercise 8 (hand-in) Make a standard TM which moves an input string consisting of a’s
and b’s one position to the right. What is the complexity of your TM?

Language accepting TMs additionally have a set F ⊆ Q of final states. (They are sextu-
ples.) A string is accepted if the computation halts in a final state (and does not terminate
abnormally).

2.4 Example
A TM for (a ∪ b)∗aa(a ∪ b)∗.

Note that the TM assumes Σ = {a, b}.
Number of steps required with input string size n: n (worst case)

6

Figure 1: A TM for {aibici | i ≥ 0}

04/04/12

2.5 Example
A TM for {aibici | i ≥ 0} (Figure 1).
Number of steps required with input string size n = 3i: O(i · 4i) = O(i2) = O(n2) (worst
case)

Exercise 9 (no hand-in) Make a standard TM which accepts the language {a2ibi | i ≥ 0}.
What is the complexity of your TM?

2.6 Example
A TM for palindromes over a and b (Figure 2).
Number of steps required with input string size n:

1 +
n∑

i=1

i = 1 +
1

2
· (n+ 1) · n ∈ O(n2) (worst case)

7

Figure 2: A TM for palindromes over a and b.

2.7 Definition
For any TM M , the time complexity of M is the function tcM : N → N s.t. tcM(n) is the
maximum number of transitions processed by a computation of M on input of length n.

2.8 Definition
A language L is accepted in deterministic time f(n) if there is a single tape deterministic
TM M for it with tcM(n) ∈ O(f(n)).

Exercise 10 (hand-in) Design a single tape TMM for {aibi | i ≥ 0} with tcM ∈ O(n log2(n)).
[Hint: On each pass, mark half of the a’s and b’s that have not been previously marked.]

2.9 Remark
Note, that worst-case behavior can happen when a string is not accepted. [E.g., straightfor-
ward TM to accept strings containing an a.]

3 Complexity under Turing Machine Variations

[4, Chapter 14.3 cont., 14.4 and recap Chapters 8.5, 8.6]

8

A k-track TM has one tape with k tracks. A single read-write head simultaneously reads the
k symbols at the head position from all k tracks. We write the transitions as δ : Q× Γk →
Q× Γk × {L,R}. The input string is on track 1.

3.1 Theorem
If L is accepted by a k-track TM M then there is a standard TM M ′ which accepts L s.t.
tcM ′(n) = tcM(n).

Proof: For M = (Q,Σ,Γ, δ, q0, F), let M ′ = (Q,Σ × {B}k−1,Γk, δ′, q0, F) with transition
function δ′(qi, (x1, . . . , xk)) = δ(qi, [x1, . . . , xk]). The number of transitions needed for a com-
putation is unchanged. �

A k-tape TM has k tapes and k independent tape heads, which read simultaneously. A
transition (i) changes the state, (ii) writes a symbol on each tape, and (iii) independently
moves all tape heads. Transitions are written δ : (qi, x1, . . . , xk) 7→ [qj; y1, d1; . . . ; yk, dk] where
xl, yl ∈ Γ and di ∈ {L,R, S} (S means head stays). Any head moving off the tape causes an
abnormal termination. The input string is on tape 1. 04/09/12

3.2 Example
2-tape TM for {aibai | i ≥ 0}.

Number of steps required with input string size n: n+ 2

3.3 Example
2-tape TM for {uu | u ∈ {a, b}?}.

Number of steps required with input string size n: 5
2
n+ 4

9

3.4 Example
2-tape TM accepting palindromes.

Number of steps required with input string size n: 3(n+ 1) + 1
04/11/12

3.5 Theorem
If L is accepted by a k-tape TM M then there is a standard TM N which accepts L s.t.
tcN(n) = O(tcM(n)2).

Proof: (sketch) By Theorem 3.1 it suffices to construct an equivalent 2k + 1-track TM M ′

s.t. tcM ′(n) ∈ O(tcM(n)2).

Simulation of the TM:

We show how to do this for k = 2 (but the argument generalizes).

Idea: tracks 1 and 3 maintain info on tapes 1 and 2 of M ; tracks 2 and 4 have a single
nonblank position indicating the position of the tape heads of M .

Initially: write # in track 5, position 1 and X in tracks 2 and 4, position 1.
States: 8-tuples of the form [s, qi, x1, x2, y1, y2, d1, d2], where qi ∈ Q, xi, yi ∈ Σ ∪ {U}, di ∈
{L,R, S, U}. s ∈ {f1, f2, p1} represents the status of the simulation. U indicates an unknown
item.

Let δ : (qi, x1, x2) 7→ [qj; y1, d1; y2, d2] be the applicable transition of M .
M ′ start state: [f1, qi, U, U, U, U, U, U]. The following actions simulate the transition of M :

1. f1 (find first symbol): M ′ moves to the right until X on track 2.
Enter state [f1, qi, x1, U, U, U, U, U], where x1 is symbol on track 1 under x.
M ′ returns to the position with # in track 5.

2. f2 (find second symbol): Same as above for recording symbol x2 in track 3 under X in
track 4.
Enter state [f2, qi, x1, x2, U, U, U, U].
Tape head returns to #.

3. Enter state [p1, qj, x1, x2, y1, y2, d1, d2], with qj, y1, y2, d1, d2 obtained from δ(qi, x1, x2).
4. p1 (print first symbol): move to X in track 2.

Write symbol y1 on track 1. Move X on track 2 in direction indicated by d1.
Tape head returns to #.

5. p2 (print second symbol): move to X in track 4.
Write symbol y2 on track 3. Move X on track 4 in direction indicated by d2.
Tape head returns to #.

6. Enter state [f1, qj, U, U, U, U, U, U].

10

If δ(qi, x1, x2) is undefined, then simulation halts after step 2. [f2, qi, x1, y1, U, U, U, U] is
accepting whenever qi is accepting.

For each additional tape, add two tracks, and states obtain 3 more parameters. The simula-
tion has 2 more actions (a find and a print for the new tape).

Complexity analysis:

Assume we simulate the t-th transition of M .
Heads of M are maximally at positions t.
Finds require maximum of k · 2t steps.
Prints require maximum of k · 2(t+ 1) steps.
Simulation of t-th transition requires maximum of 4kt+ 2k + 2 steps.

Thus

tcM ′(n) ≤ 1 +

tcM (n)∑
t=1

(4kt+ 2k + 2) ∈ O(tcM(n)2).

�

Exercise 11 (no hand-in) Let M be the TM from Example 3.2 and let M ′ (standard 1-
track!) be constructed as in the proof of Theorem 3.5. Determine the number of states of M ′

which are 8-tuples.

Exercise 12 (hand-in) Let a Random Access TM (RATM) be a one-tape TM where tran-
sitions are of the form δ(qi, x) = (qj, y, d), where d ∈ N. Such a transition is performed as
usual, but the tape head is then moved to position d on the tape.
Give a sketch, how a RATM can be simulated by a standard TM.

Exercise 13 (hand-in) Do you think that the following is true?
For any RATM M there is a standard TM N such that tcN(n) = O(tcM(n)).
Justify your answer (no full formal proof needed).

04/16/12

4 Linear Speedup

[4, Chapter 14.5]

4.1 Theorem
Let M be a k-tape TM, k > 1, that accepts L with tcM(n) = f(n). Then, for any c > 0,
there is a k-tape TM N that accepts L with tcN(n) ≤ dc · f(n)e+ 2n+ 3.

4.2 Corollary
Let M be a 1-tape TM that accepts L with tcM(n) = f(n). Then, for any c > 0, there is a
2-tape TM N that accepts L with tcN(n) ≤ dc · f(n)e+ 2n+ 3.

11

Proof: The 1-tape TM can be understood as a 2-tape TM where tape 2 is not used. Then
apply Theorem 4.1. �

Exercise 14 (hand-in) Assume a language L is accepted by a 2-tape TM M with tcM(n) =√
n. Do you think it is possible to design a standard TM N for L with tcN(n) ∈ O(n)? Justify

your answer.

Proof sketch/idea for Theorem 4.1:
Exemplified using Example 3.4.
M = (Q,Σ,Γ, δ, q0, F).

Simulation of the TM:

N input alphabet: Σ.
N tape alphabet: Γ ∪ Γm ∪ {#, ?}
Initialization of N by example.

=⇒

A state of N consists of:
• the state of M
• for i = 1, . . . , k, the m-tuple currently scanned on tape i of N and the m-tuples to the

immediate right and left
• a k-tuple [i1, . . . , ik], where ij is the position of the symbol on tape j being scanned by
M in the m-tuple being scanned by N .

After initialization, enter state

(q0; ?, [BBB], ?; ?, [Bab], ?; [1, 1])

(? is a placeholder, filled in by subsequent movements).
Idea: Six transitions of N simulate m transitions of M (m depends on c).
Simulated, compressed configurations:

State:
(q3; ?, [BBb], ?; ?, [bBB], ?; [3, 1])

Six transitions are performed:
1. move left, record tuples in the state
2. move two to the right, record tuples in the state
3. move one to the left

State: (q3,#, [BBb], [bab]; [bab], [bBB], [BBB]; [3, 1])

12

4. and
5. rewrite tapes to match configuration of M after three transitions.

State: (q3, ?, [BBb], ?; ?, [bBB], ?; [3, 1])

Complexity analysis:

Initialization requires 2n+ 3 transitions.
For simulation, 6 moves of N simulate m moves of M .
With m ≥ 6

c
we obtain

tcN(n) =

⌈
6

m
f(n)

⌉
+ 2n+ 3 ≤ dc · f(n)e+ 2n+ 3

as desired.

4.3 Remark
In Theorem 4.1, the speedup is obtained by using a larger tape alphabet and by vastly
increasing the number of states.

04/18/12

5 Properties of Time Complexity

[4, Chapter 14.6]

5.1 Theorem
Let f be a total computable function. Then there is a language L such that tcM is not
bounded by f for any TM M that accepts L.

Proof sketch: Let u be an injective function which assigns to every TM M with Σ = {0, 1}
a string u(M) over {0, 1}. [Each TM can be described by a finite string of characters; then
consider a bit encoding of the characters.]
Let u1, u2, u3, . . . be an enumeration of all strings over {0, 1}. If u(M) = ui for some M ,
then set Mi = M , otherwise set Mi to be the one-state TM with no transitions.
This needs to be done, such that there is a TM N which, on input any ui, can simulate Mi.

L = {ui |Mi does not accept ui in f(length(ui)) or fewer moves}.

L is recursive. [Input some ui. Determine length(ui). Compute f(length(ui)). Simulate Mi

on ui until Mi either halts or completes f(length(ui)) transitions, whichever comes first. ui is
accepted if either Mi halted without accepting ui or Mi did not halt in the first f(length(ui))
transitions. Otherwise, ui is rejected.]

13

Let M be a TM accepting L. Then M = Mj for some j. M = Mj accepts uj iff Mj halts
on input uj without accepting uj in f(length(uj)) or fewer steps or Mj does not halt in the
first f(length(uj)) steps.
Hence, if M accepts uj then it needs more than f(length(uj)) steps.
If M does not accept uj, then it also cannot stop in f(length(uj)) or fewer steps, since then
it would in fact accept uj. �

5.2 Theorem
There is a language L such that, for any TM M that accepts L, there is a TM N that accepts
L with tcN(n) ∈ O(log2(tcM(n))).

Proof: skipped �

Exercise 15 (no hand-in) Is the following true or false? Prove your claim.
For the language L from Theorem 5.2, the following holds: If there is a TM M that accepts
L with tcM(n) ∈ O(2n), then there is a TM N that accepts L with tcN(n) ∈ O(n).

Exercise 16 (no hand-in) Is the following true or false? Prove your claim.
Let M be a 5-track TM which accepts a language L. Then there is a 5-tape TM N that
accepts L with

tcN(n) ≤ 7 + 7n+ tcM(n)

2
.

04/25/12

6 Simulation of Computer Computations

[4, Chapter 14.7]

Is the TM complexity model adequate?
Assume a computer with the following parameters.
• finite memory divided into word-size chunks
• fixed word length, mw bits each
• each word has a fixed numeric address
• finite set of instructions
• each instruction

– fits in a single word
– has maximum t operands (addresses used in operation)
– can do one of
∗ move data
∗ perform arithmetic or Boolean calculations
∗ adjust the program flow
∗ allocate additional memory (maximum of ma words each time)

– can change at most t words in the memory
Now simulate in 5 + t-tape TM. Tapes are:

14

• Input tape (divided into word chunks)
• Memory counter (address of next free word on tape 1)
• Program counter (location of next instruction to be exectuted)
• Input counter (location of beginning of input and location of next word to be read)
• Work tape
• t Register tapes

Simulation of k-th instruction:
1. load operand data onto the register tapes (max t words)
2. perform indicated operation (one)
3. store results as requried (stores max t words or allocates ma words of memory)

Operation: finite number of instructions with at most t operands. Maximum number of
transitions needed shall be t0 (max exists and is <∞)
Load and Store:
mp number of bits used to store input
mi number of bits used to store instructions
mk total memory allocated by TM before instruction k

mk ≤ mp +mi + k ·ma

Any address can be located in mk transitions.
Upper bounds:

find instruction mk

load operands t ·mk

return register tape heads t ·mk

perform operation t0
store information t ·mk+1

return register tape heads t ·mk+1

upper bound for k-th instruction:

(2t+ 1)mk + 2tmk+1 + t0 ≤ (4t+ 1)mp + (4t+ 1)mi + 2tma + t0 + (4t+ 1)kma

If computer requires f(n) steps on input length mp = n, then simulation requires:

f(n)∑
k=1

((4t+ 1)n+ (4t+ 1)mi + 2tma + t0 + (4t+ 1)kma)

= f(n)((4t+ 1)n+ (4t+ 1)mi + 2tma + t0) +

f(n)∑
k=1

(4t+ 1)kma

= f(n)((4t+ 1)n+ (4t+ 1)mi + 2tma + t0) + (4t+ 1)ma

f(n)∑
k=1

k

∈ O(max{nf(n), f(n)2})

15

In particular:
If an algorithm runs in polynomial time on a computer, then it can be simulated on a TM
in polynomial time. [For f(n) ∈ O(nr), we have nf(n) ∈ O(nr+1) and f(n)2 ∈ O(n2r)]

Exercise 17 (no hand-in) Can we conclude the following from the observations in this
section?
• If an algorithm runs in exponential time on a computer, then it can be simulated on a

TM in exponential time.
• If an algorithm runs in linear time on a computer, then it can be simulated on a TM

in quadratic time.
Justify your answer.

04/30/12

7 PTime

[[4, Chapter 15.6] and some bits and pieces]

7.1 Definition
A language L is decidable in polynomial time if there is a standard TM M that accepts L
with tcM(n) ∈ O(nr), where r ∈ N is independent of n. P (PTime) is the complexity class
of all such languages. [P is the set of all such languages.]

Exercise 18 (hand-in) Show that P is closed under language complement.

7.2 The Polynomial Time Church-Turing Thesis
A decision problem can be solved in polynomial time by using a reasonable sequential model
of computation if and only if it can be solved in polynomial time by a Turing Machine.

We have seen that P is independent of the computation paradigm used:
• standard TMs
• k-track TM
• k-tape TM
• “realistic” computer

7.3 Definition
Let L, Q, be languages over alphabets Σ1 and Σ2, respectively. L is reducible (in polynomial
time) to Q if there is a polynomial-time computable function r : Σ∗1 → Σ∗2 such that w ∈ L
if and only if r(w) ∈ Q.

7.4 Example
The TM

16

reduces L = {xiyizk | i, k ≥ 0} to Q = {aibi | i ≥ 0}.
Time complexity: O(n).

Exercise 19 (hand-in) Construct a TM which reduces

{aibiai | i ≥ 0} to {cidi | i ≥ 0}.

7.5 Theorem
Let L be reducible to Q in polynomial time and let Q ∈ P . Then L ∈ P .

Proof: TM for reduction: R.
TM deciding Q: M .
R on input w generates r(w) as input to M .
length(r(w)) ≤ max{length(w), tcR(length(w))}.
If tcR ∈ O(ns) and tcM ∈ O(nt), then

tcR(n) + tcM(max{n, tcR(n)}) ∈ O(ns) +O(max{O(nt), O((ns)t)}) = O(nst).

�

7.6 Definition
A language (problem) L is
• P-hard, if every language in P is reducible to L in polynomial time.
• P-complete, if L is P-hard and L ∈ P .

7.7 Remark
Definition 7.6 (hardness and completeness) are used likewise for other complexity classes.
Thereby, reducibility is always considered to be polynomial time.

7.8 Remark
In principle, you could use any decision problem for defining a complexity class. E.g., if the
POPI-problem is to find out, if n potachls fit into a pistochl of size n, then a problem/language
L is

17

• in POPI if L is reducible to the POPI-problem (in polynomial time),
• POPI-hard if the POPI-problem is reducible to L (in polynomial time),
• POPI-complete if it is both in POPI and POPI-hard.

Obvious questions:
• Which complexity classes are interesting or useful?
• How do they relate to each other?

In this class, we mainly talk about two complexity classes: P , and NP (soon).

Exercise 20 (no hand-in) By Theorem 5.1, there are problems which are not in P . Go to

http://qwiki.stanford.edu/wiki/Complexity Zoo

and do the following.
1. Find the names of 4 complexity classes which contain P .
2. Find a P-hard problem and describe it briefly in general, but understandable, terms.

(You may have to use other sources for background understanding.)
05/07/12

8 Nondeterministic Turing Machines and Time Com-

plexity

[4, Chapters 15.1, 15.2 cont., some of Chapter 7.1, and recap Chapter 8.7]

• A nondeterministic (ND) TM may specify any finite number of transitions for a given
configuration.
• Transitions are defined by a function from Q×Γ to the set of finite subsets of Q×Γ×
{L,R}.
• A computation arbitrarily chooses one of the possible transitions. Input is accepted if

there is at least one computation terminating in an accepting state.

8.1 Definition
Time complexity tcM : N → N of an ND TM M is defined s.t. tcM(n) is the maximum
number of transitions processed by input of length n.

8.2 Example
Accept strings with a c preceeded or followed by ab.

18

Complexity: O(n)

8.3 Example
2-tape ND palindrome finder.

Complexity: n+ 2 if n is odd, n+ 3 if n is even.

Exercise 21 (hand-in) Give a nondeterministic two-tape TM for {uu | u ∈ {a, b}∗} which
is quicker than the TM from Example 3.3.

8.4 Definition
A language L is accepted in nondeterministic polynomial time if there is an ND TM M that
accepts L with tcM ∈ O(nr), where r ∈ N is independent of n. NP is the complexity class
of all such languages.

8.5 Remark
P ⊆ NP . It is currently not known if P = NP .

8.6 Theorem
Let L be accepted by a one-tape ND TM M . Then L is accepted by a deterministic TM

M ′ with tcM ′(n) ∈ O(tcM(n)ctcM (n)), where c is the maximum number of transitions for any
state, symbol pair of M .

Proof sketch: Simulation idea: Use 3-tape TM M ′. Tape 1 holds input. Tape 2 is used for
simulating the tape of M . Tape 3 holds sequences (m1, . . . ,mk) (1 ≤ mi ≤ c), which encode
computations of M : mi indicates that, from the (maximally) c choices M has in performing
the i-th transition, the mi-th choice is selected.
M is simulated as follows:

1. generate a (m1, . . . ,mk)
2. simulate M according to (m1, . . . ,mk)
3. if input is not accepted, continue with step 1.

Worst case: ctcM (n) sequences need to be examined. Simulation of a single computation needs
maximally O(tcM(n)) transitions. Thus, tcM ′(n) ∈ O(tcM(n)ctcM (n)). �

19

Exercise 22 (no hand-in) Make a (deterministic) pseudo-code algorithm for an exhaus-
tive search on a tree (i.e., if the sought element is not found, the whole tree should be
traversed).

Exercise 23 (no hand-in) Make a non-deterministic pseudo-code algorithm for an ex-
haustive search on a tree.

8.7 Definition
co-NP = {L | L ∈ NP} and co-P = {L | L ∈ P}, where L denotes the complement of L.
It is currently not known if NP = co-NP .

8.8 Theorem
If NP 6= co-NP , then P 6= NP .

Proof: Proof by contraposition:
If P = NP , then by Exercise 18 we have

NP = P = co-P = co-NP .

�
05/09/2012

8.9 Theorem
If there is an NP-complete language L with L ∈ NP , then NP = co-NP .

Proof: Assume L is a language as stated.
Let Q ∈ NP . Then Q is reducible to L in polynomial time. This reduction is also a reduction
of Q to L.
Combining the TM which performs the reduction with the TM which accepts L results in
an ND TM that accepts Q in polynomial time. Thus Q ∈ co-NP .
This shows NP ⊆ co-NP . The inclusion co-NP ⊆ NP follows by symmetry. �

8.10 Theorem
Let Q be an NP-complete language. If Q is reducible to L in polynomial time, then L is
NP-hard.

Proof: If R ∈ NP , then R is reducible in polynomial time to Q, which in turn is reducible
in polynomial time to L. By composition, R is reducible in polynomial time to L. �

8.11 Remark
When moving from languages to decision problems, the representation of numbers may make
a difference: Conversion from binary to unary representation is in O(2n).
Thus, if a problem can be solved in polynomial time with unary input representation, it may
not be solvable in polynomial time with binary input representation.
Most reasonable representations of a problem differ only polynomially in length, but not so
unary number encoding.
Thus, in complexity analysis, numbers are always assumed to be represented in binary.

20

8.12 Definition
A decision problem with a polynomial solution using unary number representation, but no
polynomial solution using binary representation, is called pseudo-polynomial.

Exercise 24 (hand-in) Let L be the language of all strings over {a, b} that can be divided
into two strings (not necessarily the same length) such that (1) both strings have the same
number of b’s and (2) both strings start and end with a. E.g., abbaababaa is in L because it
can be divided into abba and ababaa, both of which have 2 b’s and both of which start and
end in a. The string bbabba is not in L.
Give a 2-tape, single track ND TM that accepts L. Explain your TM in words.

9 SAT is NP-Complete

[4, Chapter 15.8]

Let V be a set of Boolean variables.

9.1 Definition
An atomic formula is a Boolean Variable.
(Well-formed) formulas are defined as follows.

1. All atomic formulas are formulas.
2. For every formula F , ¬F is a formula, called the negation of F .
3. For all formulas F and G, also (F ∨G) and (F ∧G) are formulas, called the disjunction

and the conjunction of F and G, respectively.
4. Nothing else is a formula.

9.2 Definition
T = {0, 1} – the set of truth values : false, and true, respectively.
An assignment is a function A : D→ T, where D is a set of atomic formulas.
Assignments extend to formulas, via the following truth tables.
A(F) A(G) A(F ∧G)

0 0 0
0 1 0
1 0 0
1 1 1

A(F) A(G) A(F ∨G)
0 0 0
0 1 1
1 0 1
1 1 1

A(F) A(¬F)
0 1
1 0

A formula F is called satisfiable if there exists an assignment A with A(F) = 1. A is called
a model of F in this case, and we write A |= F .

9.3 Example
Determining the truth values of formulas using truth tables:

21

A(B) A(F) A(I) A(B ∧ F) A(¬(B ∧ F)) A(¬I) A(¬(B ∧ F) ∨ ¬I)
0 0 0 0 1 1 1
0 0 1 0 1 0 1
0 1 0 0 1 1 1
0 1 1 0 1 0 1
1 0 0 0 1 1 1
1 0 1 0 1 0 1
1 1 0 1 0 1 1
1 1 1 1 0 0 0

Exercise 25 (no hand-in) Make the truth table for the formula ¬(I ∨ ¬B) ∨ ¬F .

Exercise 26 (no hand-in) Give a formula F , containing only the Boolean variables A, B,
and C, such that F has the following truth table.

A(A) A(B) A(C) A(F)
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0

9.4 Definition
Formulas F and G are (semantically) equivalent (written F ≡ G) if for every assignment A,
A(F) = A(G).

9.5 Theorem
The following hold for all formulas F , G, and H.

F ∧G ≡ G ∧ F F ∨G ≡ G ∨ F Commutativity

(F ∧G) ∧H ≡ F ∧ (G ∧H) (F ∨G) ∨H ≡ F ∨ (G ∨H) Associativity

F ∧ (G ∨H) ≡ (F ∧G) ∨ (F ∧H) F ∨ (G ∧H) ≡ (F ∨G) ∧ (F ∨H) Distributivity

¬¬F ≡ F Double Negation

¬(F ∧G) ≡ ¬F ∨ ¬G ¬(F ∨G) ≡ ¬F ∧ ¬G de Morgan’s Laws

Proof: Straightforward using truth tables. �

9.6 Definition
A literal is an atomic formula (a positive literal) or the negation of an atomic formula (a
negative literal). A clause is a disjunction of literals.

22

A formula F is in conjunctive normal form (CNF) if it is a conjunction of clauses, i.e., if

F =

(
n∧

i=1

(
mi∨
j=1

Li,j

))
,

where the Li,j are literals.

9.7 Theorem
For every formula F there is a formula F1 ≡ F in CNF.

Proof: skipped �

Exercise 27 (hand-in) Transform ¬((A ∨B) ∧ (C ∨D) ∧ (E ∨ F)) into CNF.

Exercise 28 (no hand-in) Give an informal, but plausible, argument, why a naive algo-
rithm for converting formulas into CNFs is not in P . [Don’t use TMs.]

05/14/2012

9.8 Definition
The Satisfiability Problem (SAT) is the problem of deciding if a formula in CNF is satisfiable.

9.9 Theorem (Cook’s Theorem)
SAT is NP-complete.

Proof: [Slideset 2: Proof of Cook’s Theorem] �

9.10 Remark
SAT is sometimes stated without the requirement that the formula is in CNF – this is
equivalent.

9.11 Proposition
For any formula F , there is an equivalent formula which contains only ∧, ∨, and literals.
(Called a negation normal form (NNF) of F .)

Proof: Apply de Morgan’s laws exhaustively. �

Exercise 29 (no hand-in) Give an informal, but plausible, argument that conversion of a
formula into NNF is in P .

9.12 Definition
Two formulas F and G are equisatisfiable if the following holds: F has a model if and only
if G has a model.

9.13 Proposition
For all formulas Fi (i = 1, 2, 3), F1∨(F2∧F3) and (F1∨E)∧(¬E∨(F2∧F3)) are equisatisfiable
(where E is a propositional variable not occurring in F1, F2, F3).

23

Proof: skipped �

Exercise 30 (no hand-in) Use the idea from Proposition 9.13 to sketch a polynomial-time
algorithm which converts any formula F into an equisatisfiable formula in CNF. [Hint: First
convert into NNF.]

Exercise 31 (no hand-in) Give an informal, but plausible, argument, that the problem
“Decide if a formula is satisfiable” is NP-complete. [Use Cook’s Theorem and Exercise 30.]

05/16/12

10 If P 6= NP . . .

[A mix, mainly from [1, Chapter 7], with some from [4, Chapter 17] and other sources.]

10.1 Problems “between” P and NP
NPC consists of all NP-complete languages.
If P (NP , is NPI = NP \ (P ∪NPC) 6= ∅?

10.1 Theorem
Let B be a recursive language such that B 6∈ P . Then there exists D ∈ P s.t. A = D∩B 6∈ P ,
A is (polytime) reducible to B but B is not (polytime) reducible to A.

Exercise 32 (hand-in) Assumed P 6= NP , why does Theorem 10.1 show that NPI 6= ∅?

Iteratively reapplying the argument from Exercise 32 yields an infinite collection of distinct
complexity classes “between” P and NP .
Are there any “natural” candidates for problems in NPI? Perhaps the following.
• Graph isomorphism: Given two graphs G = (V,E) and G′ = (V,E ′), is there a

bijection f : V → V such that (u, v) ∈ E iff (f(u), f(v)) ∈ E ′?
The following was for a long time believed to be a candidate for a probloem in NPI, but in
2004 it was shown that it is in P .
• Composite numbers (the primality problem): Given k ∈ N, are there 1 < n,m ∈
N s.t. k = m · n?

10.2 The Polynomial Hierarchy

10.2 Definition
An oracle TM (OTM) is a standard TM with an additional oracle tape with read-write
oracle head. It has two additional distinguished states: the oracle consultation state and the
resume-computation state. Also, an oracle function g : Σ∗ → Σ∗ is given.
Computation is as for a 2-tape TM, except in the oracle state: If y is on the oracle tape
(right of the first blank), then it is rewritten to g(y) (with rest blank) in one step, and the
state is changed to the resume state.

24

Let C and D be two complexity classes (sets of languages). Denote by CD the class of all
languages which are accepted by an OTM of complexity C, where computation of the oracle
function has complexity D.

10.3 Remark
PP = P [The one-step oracle consultation can be performed using a TM which runs in
polynomial time. Note that there can be at most polynomially many such consultations.]

Exercise 33 (hand-in) Show: PNP contains all languages which are (polynomial-time)
reducible to a language in NP .

10.4 Definition
The polynomial hierarchy :

Σp
0 = Πp

0 = ∆p
0 = P

and for all k ≥ 0

∆p
k+1 = PΣp

k

Σp
k+1 = NPΣp

k

Πp
k+1 = co-Σp

k+1

PH is the union of all classes in the polynomial hierarchy.

Exercise 34 (hand-in) Show Σp
1 = NP .

10.5 Remark
Πp

1 = co-NPP = co-NP
∆p

2 = PΣp
1 = PNP

10.6 Remark
Σp

i ⊆ ∆p
i+1 ⊆ Σp

i+1

Πp
i ⊆ ∆p

i+1 ⊆ Πp
i+1

Σp
i = co-Πp

i

It is not known if the inclusions are proper. If any Σp
k equals Σp

k+1 or Πp
k, then the hierarchy

collapses above k. In particular, if P = NP , then P = PH.

The following problem may be in Σp
2 = NPNP :

Maximum equivalent expression: Given a formula F and k ∈ N, is there F1 ≡ F with
k or fewer occurrences of literals?
[NP-hardness: because SAT reduces to it.
In Σp

2: Use SAT (non-CNF version) as oracle. The OTM first guesses F1, then consults the
oracle.]

Exercise 35 (no hand-in) Spell out in more detail, how SAT reduces to maximum equiv-
alent expression.

25

11 Beyond NP
05/21/2012

[Mainly from [4, Chapter 17], plus some from [1, Chapter 7] and other sources.]

Space complexity : use modified k-tape TM (off-line TM) with additional read-only input
tape, and additional write-only output tape. The latter is not needed for language recognition
tasks.

11.1 Definition
The space complexity of a TM M is the function scM : N→ N s.t. scM(n) is the maximum
number of tape squares read on any work tape by a computation of M when initiated with an
input string of length n. (For an ND TM, take the maximum over every possible computation
as usual.)

11.2 Example
3-tape palindrome recognizer M with scM(n) = O(log2(n)).
Idea: Use work tapes to hold numbers (binary encoding). They are used as counters for
identifying and comparing the i-th element from the left with the i-th element from the
right, until a mismatch is found (or the palindrome is accepted).

11.3 Remark
Palindrome recognition is in the complexity class LOGSPACE.

11.4 Theorem
For any TM M , scM(n) ≤ tcM(n) + 1.

11.5 Definition
An off-line TM is said to be s(n) space-bounded if the maximum number of tape squares
used on a work tape with input of length n is at most max{1, s(n)}. (This can also be used
with non-terminating TMs.)

11.6 Theorem (Savitch’s Theorem)
M a 2-tape ND TM with space bound s(n) ≥ log2(n) which accepts L. Then L is accepted
by a deterministic TM with space bound O(s(n)2).

11.7 Corollary
P-Space = NP-Space

Proof: Obviously, P-Space ⊆ NP-Space.
If L ∈ NP-Space, then it is accepted by an ND TM with polynomial space bound p(n). Then
by Savitch’s Theorem, L is accpeted by a deterministic TM with space bound O(p(n)2). �

11.8 Definition
EXPTIME is the complexity class of problems solvable by a (deterministic) TM in O

(
2g(n)

)
time, where g is a polynomial. NEXPTIME is the corresponding ND class. 2-EXPTIME/N2-

EXPTIME are defined similarly with time bound O(22g(n)
). (Similarly n-EXPTIME – the

exponential hierarchy.) (EXPSPACE is the corresponding space complexity class.)

26

Exercise 36 (hand-in) Show, that EXPSPACE=NEXPSPACE.

11.9 Remark
It is known that LOGSPACE ⊆ NLOGSPACE ⊆ P ⊆ NP ⊆ PH ⊆ P-Space = NP-Space ⊆
EXPTIME ⊆ NEXPTIME ⊆ EXPSPACE ⊆ 2-EXPTIME.
Also known:
• LOGSPACE (P-Space
• P (EXPTIME
• NP (NEXPTIME
• P-Space (EXPSPACE
• If P = NP , then EXPTIME = NEXPTIME
• If P = NP , then P = PH

11.10 Remark
The Web Ontology Language OWL-DL (see [2]) is N2-EXPTIME-complete. The description
logic ALC (see [3]) is EXPTIME-complete.

Exercise 37 (hand-in) Show: If NPI = ∅, then NP 6= EXPTIME.

11.11 Example
P-Space-complete problems:
• Regular expression non-universality: Given a regular expression α over a finite

alphabet Σ, is the set represented by α different from Σ∗?
• Linear space acceptance: Given a linear space-bounded TM M and a finite string
x over its input alphabet, does M accept x?

12 Excursus: Is P = NP?

[mainly from memory]

[blackboard]

Exercise 38 (no hand-in) Show |R| = |{(1, x) : x ∈ R} ∪ {(2, x) : x ∈ R}|.

Exercise 39 (no hand-in) Show, using a diagonalization argument, that the power set of
N is of higher cardinality than N. [Hint: Consider only infinite subsets of N.]

References

[1] M. R. Garey and D. S. Johnson. Computers and Intractability. Freeman, 1979.

[2] P. Hitzler, M. Krötzsch, B. Parsia, P. F. Patel-Schneider, and S. Rudolph, editors. OWL 2
Web Ontology Language: Primer. W3C Recommendation 27 October 2009, 2009. Avail-
able from http://www.w3.org/TR/owl2-primer/.

27

[3] P. Hitzler, M. Krötzsch, and S. Rudolph. Foundations of Semantic Web Technologies.
Chapman & Hall/CRC, 2009.

[4] T. A. Sudkamp. Languages and Machines. Addison Wesley, 3rd edition, 2006.

28

