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Functions %ase Lab

A function f: X — Y is an assignment, to each xc X, of at most one
value in Y. (Mathematicians call these: partial functions.)

X ... domain of f
Y ... range of f

We write f(x)1 (or f(x)=1) if no value is assigned to f(x), and say f(x)
is undefined.

We write f(x)| if f(x) is defined (we’re not giving the value in this
case).

If f(x)| for all xe X, we say that f is a total function.
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TMs for computing functions %ase Lab

TMs for computing functions have
« Two distinguished states

— The initial state q,

— The final state q;
* Inputis positioned as usual

- Computation always begins with transition from q, that positions
the tape head at the beginning of the input string.

« The initial state is never reentered (there is no transition into q).

« All computations with output terminate in q; and with tape head
in initial position

* There is no transition of the form *(q;,B)

« Output is given in the same position as the input

« The computation does not terminate on input u with f(u)t

« The computation yields output v if and only if f(u)=v.
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Turing computability ‘tbaSe Lab

A function f: 2.*— >.* is Turing computable if there is a TM that
computes it.

We may depict such a TM schematically as

(dg)y—> M
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Example 2.1 ‘tbaSe Lab

TM computing f:{a,b}* — {a,b}”* defined as

f(u) = A, if u contains an a (A denotes the empty word)
f(u) = 1, otherwise

b/b R ala R alB L
B/B R b/b R b/B L

>© B/B R @ ala R @ B/B L '

Note: on undefined input (say, BbBbBaB) we may still get some
“output” (e.g., BbBbqg;B).
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Exercise C3 %ase Lab

Make a TM which computes the function

f(n) = n/2 (n divided by 2) if n is a multiple of 2
f(n) =1 if n is not a multiple of 2

where the input and output strings are non-negative integers in
binary representation.

Describe, in words, the strategy of your TM.
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Multiple parameters %aSe Lab

The input for functions with more than one argument is given by
blank-separated strings, in the sequence of the arguments.

E.g., input (aba,bbb,bab) is given as

al b | a b | b | b bla | b

!

q,

Input (aa,A,bb) is given as

!

9,

a | a b | b
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Example 2.2: String %
concatenation aSe Lab

ala L
blb L
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Characteristic functions %ase Lab

The characteristic function of a language L is the function
c : 2*— {0,1} defined by
c (uy=1ifuel
c (uy=0ifue L

Note: A TM that computes the partial characteristic function
c (u)=1 ifue L
c(uy=0ort ifuelL
shows that L is recursively enumerable.
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Exercise C4

Show for every language L.: if there is a TM that computes the
partial characteristic function of L, then L is recursively
enumerable.
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Exercise C5

Show that, for each recursively enumerable language L, there
exists a TM which computes the partial characteristic function
of L.
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Exercise C6 [hand-in] %ase Lab

Show that a language L is recursive if and only if its (total)
characteristic function is Turing computable.
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Number-theoretic functions %ase Lab

A number-theoretic function is a function of the form
F: NxNx...xN — N,
where N is the set of non-negative integers.

For computing number-theoretic functions by TMs, we assume that
non-negative integers are represented by strings of “1” symbols.
More precisely, the number n is represented by a string with
(n+1) consecutive “1”s. We call this the unary representation of
numbers.

E.g., “5” is represented as “111111”. “0” is represented as “1”.

For a number a, we write its unary representation as a.
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Characteristic functions %ase Lab

A k-variable total number-theoretic function
r: NxNx...xN — {0,1}
defines a k-ary relation R on the domain of the function:

(n4,...,n) €R if r(n,,...,n,) =1
(n4,...,n) ¢ R if r(ng,...,n, ) =0

r is the characteristic function of R.

We define: A relation is Turing computable if its characteristic
function is Turing computable.
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Some TMs for number-theoret. %
fctns aSe Lab

« Successor function s(n) = n+1 11 R 1L
B/BR B/l L

« Zero function z(n) =0
I/l R I/B L

7. >@ BIBR@ B/B L @ B/B R . B/l L @

Alternatively:

I/B R B/B L

7 B/B R ._@ I/l R _@ B/B L ' 1L
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Some TMs for number-theoret. %
fctns aSe Lab

 Empty function e(n) =1 B/B R
Il R

« Projection p,K) defined as p,K(n,,...,n,) = n,
We give the TM for p,:

/1 R //BR I/BR B/B L I11'L

Pn]U: @ B/BR BEBR 'BIBR ~_B/BR 'BHBL ; I/1'L 6
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Some TMs for number-theoret. %
fctns aSe Lab

- Binary addition:

IR IR L
A . B/BR ’ B/l R ’B;’BL S //IBL . I/IBL .

* Predecessor function: pred(0)=0; pred(n+1)=n

I/l R
B/B R I/l R I/l R B/B L

B/B L
I/B L
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Sequential composition %ase Lab

 E.g., first run “zero” TM, then run “successor” TM

Result: Put value “one” on tape.

* Schematically:

o O R o
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Sequential composition %ase Lab

« ‘“one” TM in more detail: IIIR lIIBL

@ B/BR

B/l'L

We subscript the states with the name of the
TM they come from.

I/l R 111 L
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 We call a machine constructed to perform a single simple task a
macro.

« Conditions on TMs for computing functions are slightly relaxed

— Computation does not necessarily start with tape head at
position zero.

— First tape symbol read must be a blank.

— Input to be found to the immediate left or right of the starting
position.

— There may be several halting states in which a computation
may terminate.

— There are no transitions away from any halting state.
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Macros — Examples %aSe Lab

 Move head right through several consecutive natural numbers .

11 R
MR;: Yqo)— 2B R ..-‘I

I/l R 1/l R Il R Il R

MR @) B/B R 8 B/B R ' BBBR

B/B R
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Macros — Examples

« Macros can also be described by their effect on the tape.
Tape head location: underscore

ML, (move left):

BW,Bii,B ... BmB k>0

) )

B, B7i,B ... Bi,B

FR (find right):
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Macros — Examples

FL (find left):
BiB'B  i>0
I 7

BnB'B

E; (erase):

) )

BB BB
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Macros — Examples

CPY, (copy):
BnyBn,B ... Bn;BBB ... BB k> 1

) { 7

B, Bu,B ... Bu,Bn,Bu,B ... BB

CPY ; (copy through i numbers):
Eﬁ]BﬁzB .. BEkBﬁk_H R Bﬁk+jBB . BB k> 1

) ! ) !

Bi,Bi,B ... BB, ... B, ;Bn,Bi,B ... BB
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Macros — Examples %aSe Lab

T (translate):

BBnB  i>0

D)

BnB'B

BRN (branch on zero):

>O - BRN n=>0

n=0
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Exercise C7 %ase Lab

Give a TM for the BRN macro.
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Macro composition %ase Lab

INT:

C.PYL1 —-- E] —l-- T —l-- MR1 —I-- T ML1 —--

Interchanges the order of two numbers:

BnBmBB"'B

! !

BmBnBB"'B
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Examples 2.3 and 2.4 %ase |_ab

 Projection function p;*

G CPY, (O MR, =Corm{CPY, (o A (oML, ()= A (%)
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Examples 2.5 and 2.6 ‘tbas e Lab

* One-variable zero function z(n) =0

>’—> BRN | =Y

lfi}ﬂ

D

 MULT (multiplication of natural numbers):

We need to mix macros with standard TM transitions for this.
Schematically, e.g. identify macro start state with q;:

D_BBR | ()
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MULT: >

° X/BL

MR, 1L
o @, /1 L
/1 R X/X R
B/B R . I/IXR ——

WI{IGPIT S'- CPYH @ 33
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Composition of unary functions %ase Lab

Let g, h be unary number-theoretic functions.

The composition of g with h, written heg, is the unary function
f: N — N defined by

4 if g(x) 4
f[]l} _ T if g(x)=y and h{_"'r’] T
h(v) ifg(x)=vyandh(y)|

Note heg(x) = h(g(x)) — which is defined whenever g(x) is defined
and h(y) is defined for y=g(x).
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Composition of n-ary functions %ase Lab

Let g,,...,9, be k-ary number-theoretic functions.
Let h be an n-ary number-theoretic function.

The k-ary function f defined by

F(X45-.-,X,) = h( gq (Xq5-205Xp )5 <-e5 G0 (Xq5---5Xy) )

is called the composition of h with g,,...,g,, written
f=ho(g4,...,9n)-
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Example 2.7 %ase Lab

Let the following functions be defined as indicated:
d4(X,y) = x+y
da(X,y) = xy
da(x,y) = x¥
h(x,y,z) = x (y+z)

Then f(x,y) = h ° (9,,9,,93) = (x+y)(xy+xY).
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Composition by TMs %ase Lab

Assume we have
d¢, a ternary function computed by the TM G,

d,, a ternary function computed by the TM G,
h, a binary function computed by the TM H

h - (g,,9,) is computed by a TM as follows — we give a trace on
input n,, n,, n,.
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B, B, Bn3B

CPY; BnBn,Bny;BnBn,Bn;B

MR; BnBn,Bny;BnBn,Bn;B

G BnBn,Bn;Bg(n, n,, n3)B

ML, BnBn,Bn;Bg(ny, n,, n3)B

CPY5, BnBn,Bny;Bg(n, ny, n3) BnBn,Bn;B

MR, BnBn,Bn;Bg(n, ny, n3) Bn{Bn,Bn;B

G, BnBn,Bn;Bg(n, ny, n3)Bg,(n, n,, n3)B
ML, BnBn,Bn;Bg(n, ny, n3)Bg,(n, n,, n3)B

H BnyBn,Bn;Bh(g(ny, ny, n3), g2(ny, ny, n3))B
ML; BnBny,Bn;Bh(g(ny, ny, n3), g2(ny, ny, n3))B
E; BB ... Bh(g\ny, ny, n3), g,(ny, ny, n3))B
T Bh(g((ny, ny, n3), g,(ny, ny, n3))B
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Composition of functions by %
UE aSe Lab

Theorem 2.8

The Turing computable functions are closed under the operation of
composition.

Proof: skipped.
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Example 2.9 %ase Lab

The binary function (sum-of-squares)
smsq(n,m) = n? + m?
is Turing computable.

Proof: It can be written as
smsq = add ° (sq ° p,?, sq © p,?),
where sq is defined by sq(n) = n2. The function add has been shown

to be Turing computable earlier. The function sq is computed by
the following TM:

CPY, MULT ()
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Exercise C8 %ase Lab

Show that the relation {(n,m) | n>m} on non-negative integers is
Turing-computable.
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Exercise C9 %as e Lab

Let F be a TM that computes the total unary number-theoretic
function f.

Design a TM that computes the function

g(n) = Zeg” F(i).
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Uncomputable functions %ase Lab

Theorem 2.10

The set of all Turing computable number-theoretic functions is
countable.

Proof idea?
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Proof ‘tbaSe Lab

Note: If a set A is countable, then any subset of A is also countable.
[Enumerate by skipping the elements which are not in the
subset.]

We already know that the set A of all Turing Machines is countable.

Hence, the subset B of A of all Turing Machines which compute
number-theoretic functions is countable, say as M,,M,,... . The
function computed by M, is denoted f(M.).

By definition, for every computable function thereisa TM in B
computing it.

Define a subset C of B as follows: M. is in C if and only if there is no
M; with j>I such that M; and M, compute the same function.

C can be enumerated as N,,N,,...

Hence, all computable functions can be enumerated as f(N,),f(N,),...
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Uncomputable functions %ase Lab

Theorem 2.11

There is a total unary number-theoretic function that is not Turing
computable.

Proof idea?
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We show that the set of all a total unary number-theoretic functions
is uncountable.

Assume it is countable: f,, f,,...
Now define a function by setting f(n)= f _(n)+1.

Then f is a unary number-theoretic function which does not appear
in the list. This contradicts the assumption, which, hence, must
be wrong.

Thus, the set of all total unary number-theoretic functions is
uncountable.
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