Logic for Computer Scientists

Pascal Hitzler
http://www.pascal-hitzler.de

CS 499/699 Lecture, Winter Quarter 2012
Wright State University, Dayton, OH, U.S.A.

[version: 03/01/2012]

Contents

1 Propositional Logic 2
1.1 Syntax o oo e 2
1.2 SemantiCs 3
1.3 Equivalence oL 6
1.4 Normal Forms e 7
1.5 Tableaux Algorithm 9

2 First-order Predicate Logic 13
2.1 Syntax 13
2.2 SemantiCs 14
2.3 Equivalence L 19
2.4 Normal Forms 20
2.5 Tableaux Algorithm 20

3 Theoretical Aspects 23
3.1 Propositional Logic 23
3.2 Predicate Logic e 25

4 Application: Knowledge Representation for the World Wide Web 26

References

[Ben-Ari, 1993] Ben-Ari, M. (1993). Mathematical Logic for Computer Science. Springer.

[Hitzler et al., 2009] Hitzler, P., Krotzsch, M., and Rudolph, S. (2009). Foundations of
Semantic Web Technologies. Chapman & Hall/CRC.

[Schoning, 1989] Schéning, U. (1989). Logic for Computer Scientists. Birkhauser.

[Slideset 1: Motvation] 01/03/12

1 Propositional Logic

1.1 Syntax
[Schoning, 1989, Chapter 1.1]

Let {A;, Ao, ...} be an infinite set of propositional variables.

1.1 Definition
An atomic formula is a propositional variable.
Formulas are defined by the following inductive process.

1. All atomic formulas are formulas.
2. For every formula F', = F' is a formula, called the negation of F.

3. For all formulas F' and G, also (F'V G) and (F'AG) are formulas, called the disjunction
and the conjunction of F' and G, respectively.

The symbols =, V, A are called connectives. — is a unary connective, while V and A are
binary connectives.
If a formula F' occurs in another formula G, then it is called a subformula of G. Note that
every formula is a subformula of itself.
01/05/12
1.2 Notation
We use the following abbreviations:
A, B,C,... instead of A;, As,... and other obvious variants.
[Be careful with the use of F' and G!]
We sometimes omit brackets if it can be done safely. [Be careful with this!]
(F' — @) instead of (=F V G)
(F < G) instead of (FF — G) A (G — F)
— and <> are also called connectives.
(Vi_, F;) instead of (Fy VI,V -V F,)
(A, F}) instead of (Fy AFo A--- N E)

1.3 Example
(-B — F)is (——mBV F).
Some Subformulas: =—B, = B.

1.4 Example
(IV—-B)— —F)is (=(IV-B)V-F).
Some Subformulas: —(/ V =B), I, =B.

Exercise 1 (hand-in) Determine all subformulas of ((B A F) — —I).

1.5 Remark
Formulas can be represented in a unique way as trees. [Example 1.4 on whiteboard.]

Exercise 2 (no hand-in) Draw the formulas from Example 1.3 and Exercise 1 as trees.

1.2 Semantics

[Schoning, 1989, Chapter 1.1 cont.]

1.6 Definition

T = {0,1} — the set of truth values: false, and true, respectively.

An assignment is a function A: D — T, where D is a set of atomic formulas.

Given such an assignment A, we extend it to A’ : E — T, where E is the set of all formulas
containing only elements from D as atomic subformulas:

1. A'(A;) = A(4;) for each A; € D

1, if A(F)=1and A(G) =1

0, otherwise

2. A(FAG) = {

L if A(F)=1or A(G)=1

0, otherwise

3. A(FVG) = {

1, it A/(F) =0

4. A (-F) =
(~F) {O, otherwise

[From now on, drop distinction between A and A’

1.7 Example
Let A(B) = A(F)=1and A(I) =0.

A=(BAF)y —p) = 4 1 TACEBAR)) =Tor AL =1

0, otherwise

1, if AABBANF)=0o0r A(I)=0

0, otherwise

1, if A(B)=0or A(F)=0o0r A(I)=0

0, otherwise

Il
= — ——

Exercise 3 (hand-in) Do the calculation from Example 1.7 for the formula =(/V—B)V—F
from Example 1.4 and the values A(/) =1 and A(B) = A(F) = 0.

1.8 Remark
The same thing can be expressed via truth tables.

A(F) AG) | A(F AG) A(F) AG) | A(FVG) A(F) | A(=F)
0 0 0 0 0 0 0 1
0 1 0 0 1 1 1 0
1 0 0 1 0 1
1 1 1 1 1 1
1.9 Example

Determining the truth values of formulas using truth tables:
[Use the tree structure of formulas.]

AB) A(F) A | ABBAF) | A~(BAF)) | A(=I) | A(~(B A F)V ~I)
0 0 0 0 1 1 1
0 0 1 0 1 0 1
0 1 0 0 1 1 1
0 1 1 0 1 0 1
1 0 0 0 1 1 1
1 0 1 0 1 0 1
1 1 0 1 0 1 1
1 1 1 1 0 0 0
1.10 Remark

The truth value of a formula is uniquely determined by the truth values of the propositional
variables it contains as subformulas.

Exercise 4 (no hand-in) Make the truth table for the formula from Exercise 3.

1.11 Remark
A(F) AG) | A(F — G) AF) A(G) | A(F < G)
0 0 1 0 0 1
0 1 1 0 1 0
1 0 0 1 0 0
1 1 1 1 1 1

1.12 Definition

F, a formula, A, an assignment.

A is suitable if it is defined for all atomic formulas occurring in F'.

We write A = F' if A is suitable for F' and A(F) = 1. We say F' holds under A or A is a
model for F'. Otherwise, we write A [~ F.

F'is satisfiable if F' has at least one model. Otherwise, it is called unsatisfiable or contradic-
tory.

A set M of formulas is satisfiable if there is an assignment A which is a model for each
formula in M. In this case, A is called a model of M, and we write A = M. [Note the
overloading of notation.]

F is called wvalid or a tautology if every suitable assignment for F' is a model for F. In this
case we write = F, and otherwise j= F.

Exercise 5 (hand-in) Give a model for =(B A F) V —I.

1.13 Example
AV —A is a tautology.
[This is established by the following truth table:

A(A) | A(=A) | A(AV -A)
0 1 1
1 0 1

]

Exercise 6 (hand-in) Show the following.
1. A A —A is unsatisfiable.

2. A — —=A is satisfiable.

1.14 Theorem
A formula F' is a tautology if and only if —F' is unsatisfiable.

Proof: F'is a tautology

iff every suitable assignment for F'is a model for F’

iff every suitable assignment for F' (hence also for —F") is not a model for = F

iff =F does not have a model

iff = F is unsatisfiable |

1.15 Definition

A formula G is a (logical) consequence of a set M = {F},..., F,} of formulas if for every
assignment A which is suitable for G and for all elements of M, it follows that whenever
Al Fiforalli=1,...,n, then A = G.

If G is a logical consequence of M, we write M |= G and say M entails G. [Note the
overloading of notation!]

1.16 Theorem
The following assertions are equivalent.

1. G is a consequence of {F}, ..., F,}.
2. (AL, F;) — G) is a tautology.
3. (A, F5) A =G) is unsatisfiable.

Exercise 7 (hand-in) Show that an assignment is a model for (A}, F;) if and only if it is
a model for {F,..., F,}.

01/10/12

Exercise 8 (hand-in for graduate students) Prove that 1. and 2. of Theorem 1.16 are
equivalent. [Hint: Use Exercise 7.]

1.17 Example

Using Theorem 1.16, we can determine logical consequences using truth tables.
E.g., modus ponens: {P,P — Q} = Q.

We have to show: (P A (P — Q)) — Q is a tautology.

AP) AQ) | AP = Q) | AAPAN(P = Q) | AIPAP = Q)) = Q)
0 0 1 0 1
0 1 1 0 1
1 0 0 0 1
1 1 1 1 1

Exercise 9 (no hand-in) Express modus tollens, modus tollendo ponens, and modus po-
nendo tollens in propositional logic.

Exercise 10 (no hand-in) Show, using truth tables, that the modi from Exercise 9 are
valid.

1.18 Remark
(removed)

1.3 Equivalence

[Schoning, 1989, Chapter 1.2]

1.19 Definition
Formulas F' and G are (semantically) equivalent (written F' = G) if for every assignment A
that is suitable for F' and G, A(F) = A(G).

1.20 Example
AV B = BV A. (commutativity of V)

[
) AB) | A(AVB) | A(BV A)

P
?—‘)—‘Ooak

0
1
0
1

—_ = = O
—_ = = O

]
AV —-A = BV -B. [truth table]

1.21 Example
F =G iff E (F < G). [truth table]

1.22 Theorem
The following hold for all formulas F', G, and H.

FANF=F FVF=F Idempotency
FANG=GAF FVG=GVF Commutativity
(FAGYANH=FA(GANH) (FVG)VH=FV (GV H) Associativity
FAGVH)=(FAG)V(FAH) FV(GAH)=(FVG)A(FVH) Distributivity
-—F=F Double Negation
~(FAG)=-FV -G ~(FVG)=-FAN-G de Morgan’s Laws
Proof: Straightforward using truth tables. |

Exercise 11 (hand-in) Prove that 2. and 3. of Theorem 1.16 are equivalent.

Exercise 12 (no hand-in) Translate the “secrets” of the centenarian (slide 14 of slideset
1) into formulas, where B stands for beer for dinner, F for fish for dinner and I for ice cream
for dinner.

Exercise 13 (no hand-in) Show that the claim on slide 14 of slideset 1 holds.

1.23 Remark
Disjunction is dispensable. [F'V G = —(=F A =G)]
Alternatively, conjunction is dispensable. [F'A G = —=(=F V =G)]
01/12/12
1.24 Remark
Let F1 G ==(FAQ).
~F=—~(FAF)=F1F.
FVG=—(-FA-G)=-F1-G=(F1F)1(G1G)
FAG=-—~(FAG) =—=(F1G)=(F1G)1(F1Q).

1.25 Remark (The contraposition principle)

{F} EGiff {-G} = —F.

{F} =G iff F — G is a tautology (Theorem 1.16).
F—-G=-FVG=-(-G)V (-F) = (-G) = (=F).

(-G) — (=F) is a tautology iff {-G} = —=F (Theorem 1.16)]

1.4 Normal Forms

[Schoning, 1989, Chapter 1.2 cont.]

1.26 Definition

A literal is an atomic formula (a positive literal) or the negation of an atomic formula (a

negative literal).
A formula F' is in negation normal form (NNF) if it is made up only of literals, V, and A.

7

1.27 Theorem
For every formula F', there is a formula G = F which is in NNF.

Proof: The proof of Theorem 1.30 below shows this as well. [|

1.28 Example
(—|<IV—|B)\/—|F) = (—|[/\B)\/—\F

1.29 Definition
A formula F' is in conjunctive normal form (CNF) if it is a conjunction of disjunctions of

literals, i.e., if
i=1 \j=1
where the L, ; are literals.

A formula F is in disjunctive normal form (DNF) if it is a disjunction of conjunctions of
literals, i.e., if

i=1 \j=1
1.30 Theorem

For every formula F' there is a formula F} = F in CNF and a formula F;, = F' in DNF.

where the L, ; are literals.

Proof: Proof by structural induction.
Induction base: If F' is atomic, then it is already in CNF and in DNF.
Induction hypothesis: G has CNF G and DNF G5, H has CNF H; and DNF Hs. Induction

step: We have 3 cases.
Case 1: F has the form F' = —G.

Then
e () = (¥

o A lf Li,j == _|A
-4 WL, =A

and the latter formula is in DNF as required. Analogously, we can obtain from G5 a CNF
formula equivalent to F'.

Case 2: F has the form FF =GV H.

Then F = G5V Hy, which is in DNF.

Further,

e (7)) (3 (o 02)

8

<
>
]

Sy
~
~

[Nl

z ~
£<:
<
>

S
-
~

where

i’j

which is in CNF.
Case 3: F has the form FF = G A H.
This case is analogous to Case 2. |

Exercise 14 (hand-in) Show by structural induction: For any formula F (with all brackets
written), we have b(F') < ¢(F'), where b(F) is the number of all opening brackets in F', and
¢(F) is the number of all connectives in F.

1.31 Remark
Structural induction is a fundamental proof technique, comparable with natural induction.

Exercise 15 (no hand-in) Transform —((AV B) A (C'V D) A (EV F)) into CNF.

1.32 Remark
DNF via truth table.
If, e.g.,
A(A) A(B) A(C) | A(F)
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0
then a DNF for Fis (FAA-BA-C)V(AN-BA-C)V(AN-BACQC).

Exercise 16 (no hand-in) Give a CNF for the formula F' in Remark 1.32.

1.33 Definition
Two formulas F' and G are equisatisfiable if the following holds: F' has a model if and only
if G has a model.

Exercise 17 (hand-in for graduate students) Show the following: For all formulas F;
(1 =1,2,3), i V (Fy A Fs) and (Fy V E) A (E < (Fy A F3)) are equisatisfiable (F is a

propositional variable not occurring in Fy, F», F3).
01/17/12

1.5 Tableaux Algorithm
[Ben-Ari, 1993, Chapter 2.6, strongly modified]

Translating truth tables directly into an algorithm is very expensive.

We take the following approach:

For showing F1,..., F, = G, if suffices to show that F' = Fy A--- A F,, A =G is unsatisfiable
(Theorem 1.16).

We attempt to construct a model for F' in such a way that, if and only if the construction
fails, we know that F' is unsatisfiable.

1.34 Definition
Let F be a formula in NNF. A tableau branch for F' is a set of formulas, defined inductively
as follows.
e {F'} is a tableau branch for F.
e If T is a tableau branch for F' and G A H € T, then T'U {G, H} is a tableau branch
for F.
e If T is a tableau branch for F' and GV H € T, then T'U {G} is a tableau branch for
F and T U{H} is a tableau branch for F.
A tableau for F is a set of tableau branches for F'.
A tableau branch is closed if it contains an atomic formula A and the literal =A. Otherwise,
it is open.
A tableau branch T is called complete if it satisfies the following conditions.
e T’ is open.
o f GANH €T, then {G,H} CT.
e fGVHeT, thenGeT or HeT.
A tableau M for F is called complete if it satisfies the following conditions.
e If GVH €T € M, and T is open, then there are branches S; € M and S, € M with
{G}UuT C Sy and {H}UT C S,.
e All branches of M are complete or closed.
A tableau is closed if it is complete and all its branches are closed.

If F'is not in NNF, then a tableau (resp., tableau branch) for F' is a tableau (resp. tableau
branch) for an NNF of F.

1.35 Example
Consider (=1 A B) V —F, for which a complete (but not closed) tableau is {{(—/ A B) V
—F,-I ANB,—I,B},{(—=I AB)V —F,—-F}}.

Exercise 18 (hand-in) Give a complete tableau (as set of sets of formulas) for (=AA—-BA
-C)V (AN-BA-C).

1.36 Remark
Tableaux can be represented graphically (blackboard).

1.37 Theorem (Soundness)
A formula F is satisfiable if there is a complete tableau branch for F.

1.38 Theorem (Completeness)
If a formula F' is satisfiable, then there is a complete tableau branch for F'.

1.39 Theorem
A formula F' is
1. unsatisfiable if and only if there is a closed tableau for F,

10

2. a tautology if and only if there is a closed tableau for —F'.

1.40 Example
Modus Ponens holds if (PA (P — Q)) — @ is a tautology. We construct a complete tableau
(blackboard) for =((P A (P — @)) — @), which turns out to be closed.

Exercise 19 (no hand-in) Do the same as in Example 1.40 for Modus Tollens.

Exercise 20 (hand-in) Show {A — (B — ()} = (A — B) — (A — C) using the
tableaux algorithm.

1.41 Lemma
Let F be a formula, T be a complete tableau branch for F', and L4, ..., L, be all the literals
contained in 7. Then any assignment A with A(L; A--- A L,) =1 is a model for F.

Proof: We show by structural induction, that A is a model for each formula F” in T.
Induction Base: Let F' = L be a literal. Then by definition A(F") = 1.

Induction Hypothesis: A(G) = A(H) =1for G,H € T.

Induction Step: (1) Let F¥ = GAH € T. Then G € T and H € T. By IH, A(F') =
AGNH)=1. 2)Let " =GVH. ThenGeTor HeT. By IH, A(G)=1or A(H) =1,
hence A(F’) = 1. (3) The case F' = =G € T cannot happen since all formulas are in NNF,
and the literal case was dealt with in the induction base. |

Proof of Theorem 1.37: By Lemma 1.41, we obtain that F' has a model, hence it is
satisfiable. [

1.42 Example
Is the following formula valid? satisfiable? unsatisfiable?

(A= B)— A)— A)

(done on whiteboard)

Proof of Theorem 1.38: First note the following, for any assignment M and all formulas
G and H:

e f M=GAH, then M G and M = H.

o if MGV H,then M EGor M H.
Since F' is satisfiable, it has a model M. Construct a tableau branch T for F' recursively as
follows.

e fGANHEeT, set T:=TU{G,H}.

o If GV H €T with M =G, set T :=TU{G}, otherwise set T :=T U {H}.
The recursion terminates since only subformulas of F' are added and sets cannot contain
duplicate elements. The resulting 7" is a complete tableau branch, and M = T, by definition.

[|

11

01/19/12

Proof of Theorem 1.39:

We prove Statement 1. Statement 2 is shown in Exercise 21.

Let A be the statement “F is unsatisfiable”, and let B be the statement “F has a closed
tableau”.

We need to show: A = B, for which it suffices to show that A <» B=(A — B) A (B — A)
is valid.

By the contraposition principle, it therefore suffices to show that (=B — —A) A (WA —
—B) = (=B +» —A) is valid, i.e., that ~A = -B.

—A is the statement “F is not unsatisfiable”, i.e. “F is satisfiable”.

=B is the statment “F’ does not have a closed tableau”. Since, every formula has a complete
tableau, this is equivalent to the statement “F' has a complete tableau branch”.

It thus remains to show: F' is satisfiable if and only if F' has a complete tableau branch. This
was shown in Theorems 1.37 and 1.38. [|

1.43 Remark
In short, Statement 1 of Theorem 1.39 holds because it expresses the contrapositions of
Theorem 1.37 and 1.38.

Exercise 21 (hand-in) Show Theorem 1.39 part 2.

Exercise 22 (hand-in) For any formula F, let F’ be the formula obtained from F by
replacing all V by A, and by replacing all A by V. Furthermore, let F' be obtained from F
by replacing each occurrence of an atomic formula A in F' by —A.

Example: For F' = (AA B)V —=C, we have F' = (AV B)A=C and F = (wAA =B) V ==C;
and F = (mAV =B) A—=C.

Show by structural induction: F = ~F for each formula F.

12

2/09/12

2 First-order Predicate Logic

2.1 Example
Difficult /impossible to model in propositional logic:
e Foralln € N, n! > n.

2.2 Example
Difficult /impossible to model in propositional logic:
1. Healthy beings are not dead.
Every cat is alive or dead.
If somebody owns something, (s)he cares for it.
A happy cat owner owns a cat and all beings he cares for are healthy.
Schrodinger is a happy cat owner.

U WD

2.1 Syntax
[Schoning, 1989, Chapter 2.1]

2.3 Definition

o Variables: z1,xs,... (also y, z, ...).

e Function symbols: fi, fo,... (also g, h, ...), each with an arity (€N) (number of
parameters).
Constants are function symbols with arity 0.

e Predicate symbols: Py, Ps,... (also @, R, ..., each with an arity (€N) (number of
parameters).

Terms are inductively defined:
e Fach variable is a term.
e If f is a function symbol of arity k, and if t1,..., ¢ are terms, then f(t1,...,t) is a
term.
Formulas are inductively defined:
e If P is a predicate symbol of arity k, and if 1, ...t are erms, then P(ty,...,tx) is a
formula (called atomic).
e For each formula F', —F is a formula.
e For all formulas F' and G, (F A G) and (F'V G) are formulas.
e If x is a variable and F' is a formula, then dxF' and Vaz F' are formulas.

2.4 Definition
F — G (respectively, F' <» G) is shorthand for =F VvV G (respectively, (F' — G) A (G — F)).
We also use other notational variants from propositional logic freely.

2.5 Example
The following are formulas (s is a constant).

13

2/09/2012

Ll e

Va(P(z) = (3y(O(z,y) A Cy)) A (Vy(R(z,y) — H(y)))))
5. P(s)
In 1, predicate symbols are D and H, and x is a term.

Exercise 23 (no hand-in) Identify all predicate symbols and all terms in Example 2.5 3.

2.6 Example
Example 2.1 could be written as

Vn(n € N — n! >n),

where (with abuse of our introduced formal notation), “€ N” is a unary predicate symbol,
“>” is a binary predicate symbol, and “!” is a unary function symbol, written postfix.

Exercise 24 (no hand-in) Determine all predicate symbols and all function symbols, with
arities, of the formula

VeddVa((e > 0A 8 > 0) — (Jz — 2| < 6 — |27 — 23] <).

2.7 Definition

If a formula F' is part of a formula G, then it is called a subformula of G.

An occurrence of a variable x in a formula F'is bound if it occurs within a subformula of F
of the form JzG or VaG. Otherwise it is free.

A formula without free variables is closed. A formula with free variables is open.

d, V are quantifiers, V, \, =, —, <> are connectives.

2.8 Example
All subforrrrl)ulas of Ve (C(x) — (A(z) vV D(2))):
C(x), A(z), D(z), A(z) V D(z), C(x) = (A(z) vV D(x)), Vx(C(x) = (A(z) vV D(x))).

2.9 Example
In the formula P(z) A Vx(P(z) — Q(f(z))), the first occurrence of x is free, the others are
bound.

Exercise 25 (no hand-in) Give all subformulas of Example 2.5 4. Which of them are

closed? Which of them are open?
2/14/12

2.2 Semantics
[Schoning, 1989, Chapter 2.1 cont.]

2.10 Definition
A structure is a pair A = (Uy, 14), with Uy # 0 a set (ground set or universe) and I4 a
mapping which maps

14

e cach k-ary predicate symbol P to a k-ary predicate (relation) on Uy (if 14 is defined
for P)
e cach k-ary function symbol f to a k-ary function on Uy (if 14 is defined for f)
e cach variable z to an alement of Uy (if 14 is defined for z).
Write P4 for I4(P) etc. A is suitable for a formula F if 14 is defined for all predicate and
function symbols in F' and for all free variables in F'.

2.11 Example

F =vavy(P(a) A (P(x) = (P(s(x)) A Qz, x) A((P(y) AQ(z,y)) = Q(z,5(y))))))

Structure (Ug, I4):

Uy =N
a* = 0(€ N)
A

s in—n+1
PA=N (=Un)
Q* = {(n,k) | n <k}

Another structure (Ug, Ip):

Us ={0,0}
a® = o

B o000
PB =Ug

Q° = {(®,9)}

Exercise 26 (hand-in) Give a structure for the formula

VaVy(Q(z,y) — Q(y, x)).

2.12 Definition
F a formula. A = (Uyg, I4) a suitable structure for F.

Define for each term ¢ in F its value t:
1. If t = x is a variable, t* = z4.
2. If t = f(t1,...,t), then t4 = fAMA .. t)).

Define for F its truth value A(F) as follows, where A, is identical to A except 2/« = u.

1, if (A(t1),..., A(ty)) € PA

0, otherwise

1. A(P(t1,....t) = {

1, if A(H)=1and AG) =1
0, otherwise

2. A(H/\G):{

15

1, if A(H)=1or A(G) =1

0, otherwise

3. A(H\/G):{

1, if A(G) =0

0, otherwise

1. A(-G) = {

1, if for all u € Uy, Apyu(G) =1
0, otherwise

5. A(Vz@) = {

if there exists some u € Uy s.t. Ap/y(G) =1

0, otherwise

6. A(J2G) = {

If A(F)=1, we write A = F and say F' is true in A or A is a model for F. 2/21/12
F is valid (or a tautology, written = F') if A |= F for every suitable structure A for F. F is
satisfiable if there is A with A = F, and otherwise it is unsatisfiable.

2.13 Remark
Many notions and results carry over directly from propositional logic: logical consequence,
equivalence of formulas, Theorem 1.16, Theorem 1.22, etc. See Remark 2.19.

2.14 Example
Counsider the sentences

James Potter is the parent of Harry Potter.
Harry Potter is an orphan.
Any parent of any orphan is dead.

They can be represented formally as follows.

—~~
N =
N—

parentOf(jamespotter, harrypotter)
A orphan(harrypotter)
A VzVy(orphan(z) A parentOf(y, x) — dead(y)) (3)

This has
dead(jamespotter)

as logical consequence.
Proof sketch: From lines (1) and (2) we can conclude by the rule in (3) with = = harrypotter
and y = jamespotter that dead(harrypotter).
Before we go for a formal proof, let’s first give some examples for signatures—see Table 1.
Now for a formal proof: Let A be any model for the formula in (1-3). From (1) we then
obtain

(jamespotter™, harrypotter?) € parentOf*.

From (2) we obtain
harrypotterA € orphan.

16

harrypotterA h 1 1 a h h
jamespotterA J 2 2 a J ¥
orphan” {h} {1,3,4} {3,4,5} {a} {h} {h}
parentOf* {G.m | L2} [{(1,2),6,D} [{(a,a)} | {(h,7)} | {(:h)}
dead”! {7} {1,2} {1,3,4} {a} 0 {J}
model | model no model model | no model | no model

Table 1: Signatures for Example 2.14.

From (3) we obtain that, whenever

A

u € orphan and (u,v) € parentOf*,

then
v € dead™.

So consequently
jamespotter” € dead™.

Since this argument holds for all models A, we have that
dead(harrypotter)

is indeed a logical consequence.

2.15 Example

parentOf(fatherOf(harrypotter), harrypotter)
A orphan(harrypotter)
A VaVy(orphan(z) A parentOf(y,) — dead(y))

has
dead(fatherOf(harrypotter))

as logical consequence.

2.16 Example

human(harrypotter) A orphan(harrypotter)
A Vz(human(xz) — parentOf(fatherOf(z), x))
A VaVy(orphan(x) A parentOf(y, x) — dead(y))

has
dead(fatherOf(harrypotter))

as logical consequence.

17

2.17 Example

Va(human(z) — parentOf(fatherOf(z), z))
A VzVy(orphan(x) A parentOf(y, z) — dead(y))

has
Va(human(z) A orphan(z) — dead(fatherOf(z)))

as logical consequence.

Exercise 27 (hand-in) Give two structures for the first formula in Example 2.17, one of
which is a model for the formula, and one of which is not a model for the formula.

2.18 Example

Consider the formula F' = JzVyQ(x,y) under the structure A = (Uy, l4) from Example
2.11. We show A(F) = 1.

First note that 0 < n for all n € N, i.e. Ap/gp/m(Q(x,y)) =1 for all n € N = Uy. Thus,
Apz)0/(VyQ(z,y)) = 1 and therefore A(JzVyQ(z,y)) = 1 as desired.

Exercise 28 (no hand-in) Show that (U, I5) as in Example 2.11 is a model for

Vazdy(P(z) A Q(s(z),y)).

2.19 Remark

Predicate logic “degenerates” to propositional logic if either all predicate symbols have arity
0, or if no variables are used. For the latter, a formula like (Q(a) A =R(f(b),c)) A P(a,b)
can be written as the propositional formula (A A —-B) A C with A for Q(a), B for R(f(b),),

and C for P(a,b).
02/23,/2012

2.20 Remark
We deal with first-order predicate logic. Second-order predicate logic also allows to quantify
over predicate symbols.

Exercise 29 (hand-in) Sentence 1 of Example 2.2 can be written as.
Vx(Healthy(x) — —Dead(z)).

Translate all other sentences from Example 2.2. Use schroedinger as a constant symbol and
use only the following predicate symbols:

unary: Healthy, Dead, Cat, Alive, HappyCatOwner

binary: owns, cares

Exercise 30 (hand-in for graduates only) Sketch, how you would formally prove, using
Exercise 29, that Schrodinger’s cat is alive.

18

2.3 Equivalence

[Schoning, 1989, Chapter 2.2]

2.21 Theorem
The following hold for arbitrary formulas F' and G.

Vol = Jdx—F —JdzF = Va—F
VeF ANV2G =Vz(F AG) Iz F Vv 32G = Jx(F VGE)
VaVyF = VyVaF dxdyF = dydxF
If x does not occur free in GG, then
VeF NG =Vz(F NG) VeF VG =Vz(FVG)
dxF AG=3x(FAG) dxF VG =3x(FVG)

Proof: We show only Ve F AVaG =Vz(F A G):

ANVzF AV2G) =1

iff AVzF)=1and A(VzG) =1

iff for all u € Uy, Ajpyu)(F) =1 and for all v € Uy, Apy)(G) =1

iff for all u € Uy, A[x/u](F) =1 and A[x/u}(G) =1

iff AVz(FAG)) =1 |

Exercise 31 (hand-in) Show, that the first statement of Theorem 2.21, =V F' = Jx—F,
holds.

Exercise 32 (hand-in) Show, that Vz3yP(z,y) Z JuVvP(v,u).
Exercise 33 (no hand-in) Show, that Vz3y(P(z) A Q(y)) = FyVz(P(z) A Q(y)).
Exercise 34 (no hand-in) Show, that
Va(P(z) = (3y(O(z,y) A C(y)) A (Vz(R(x, 2) — H(z2)))))

and

V2Vady((P(x) = (O(x,y) A C(y))) A ((P(z) A R(x,2)) — H(2)))
are equivalent.
2.22 Definition
A substitution [x/t], where x is a variable and ¢ a term, is a mapping which maps each

formula G to the formula G[z/t], which is obtained from G by replacing all free occurrences
of x by t.

2.23 Example
(P(z,y) ANVyQ(z,y))[z/ally/ f(x)] = P(a, f(z)) AVyQ(a,y)

Exercise 35 (no hand-in) What is (Vz(Q(x,y, z)[y/a])[x/b|AVz(P(x,y)[y/x][x/a]))[z/x]?

Exercise 36 (no hand-in) Show, that, for any formula F' in which y does not occur as
free variable, Vo F' = VyF [z /y].

19

2.4 Normal Forms

[Schoning, 1989, Chapter 2.2 cont.]

2.24 Definition

A literal is an atomic formula (a positive literal) or the negation of an atomic formula (a
negative literal).

A formula F' is in negation normal form (NNF) if the negation symbol — occurs only in
literals (and —, <> don’t appear in it).

2.25 Theorem
For every formula F', there is a formula G = F' which is in NNF.

Proof: Apply de Morgan, double negation, and —=Vx F = dx—F and ~JdzF = Vz—F exhaus-
tively. [

2.26 Example

—(JzP(x,y) VV2Q(2)) A 2FwP(f(a,w))
= (=32 P(z,y) A V2Q(2)) AVw-P(f(a,w))
= (Ve P(z,y) A Jz=Q(z)) ANVw-P(f(a,w))

Exercise 37 (no hand-in) Transform all formulas from Example 2.5 into NNF.

2.5 Tableaux Algorithm
[Ben-Ari, 1993, Chapter 5.5, strongly modified]

2.27 Definition
Let F be a formula in NNF. A tableau branch for F is a set of formulas, defined inductively
as follows.
{F} is a tableau branch for F.
e If T is a tableau branch for F' and G A H € T, then T'U {G, H} is a tableau branch
for F'.
e If T is a tableau branch for F and GV H € T, then T"U {G} is a tableau branch for
F and T U{H} is a tableau branch for F.
e If T'is a tableau branch for F' and VYaG € T, then T'U {G[x/t]} is a tableau branch for
F', where t is any term.
e If T is a tableau branch for F' and J3zG € T, then T'U{G|x/a]} is a tableau branch for
F, where a is a constant symbol which does not occur in 7" (or in the tableau curently
constructed).
A tableau for F'is a set of tableau branches for F'.
A tableau branch is closed if it contains an atomic formula A and its negation = A. Otherwise,
it is open.
A tableau M for F' is called closed if for each T' € M there is a closed T € M with T' C T".

20

03/01/12

If F'is not in NNF, then a tableau (resp., tableau branch) for F' is a tableau (resp. tableau
branch) for an NNF of F.

2.28 Theorem (Soundness)
If a closed formula F' has a closed tableau, then F'is unsatisfiable.

2.29 Theorem (Completeness)
If a closed formula F' is unsatisfiable, then there is a closed tableau for F'.

2.30 Example
We show JuVoP(v,u) = VoedyP(x,y). L.e. we make a tableau for

FuVvP(v,u) A JxVy—P(z,y),

see Figure 1 (left).

2.31 Example
We show, that

Fa3y(P(x) v Qy)) | 3z(P(z) v Q(x)).
[done on whiteboard|

2.32 Example
We show, that

Vady(P(x) A Q(y)) = Fyva(P(x) A Q(y)).

[done on whiteboard|

2.33 Example
We show, that

Va(P(z) = (Jy(O(z,y) A C(y)) A (V2(R(z,2) — H(2)))))
has
V2V dy((P(z) = (O(z,y) AC(y))) A ((P(z) A R(z, 2)) — H(z)))

as logical consequence.
[done on whiteboard]

2.34 Remark
The (predicate logic) tableaux algorithm does not in general provide a means to find out if
a formula is satisfiable or falsifiable.

Consider Yz3yP(x,y)): JuVvP(v,u). If we attempt to make a tableau for
Vz3yP(x,y) A Vudv—P(v,u),

see for example Figure 1, then the search for closing the tableau does not stop. The reason
for this is that the tableau cannot close, but the occurrence of the quantifiers in the formula
prompts the algorithm to ever explore new terms for the bound variables.

21

ngy Plx, v) A Vi 3y 1Pl)
|

V)«’ g‘{ P(xl."{)
|

guV\; 'P(V,b() A HX’VV""?C’({VJ
[

Ju¥y Plv,) Vudv 2 Plv,u)
[]
Ty ¥y 2P Cxry) Iy Play)
| |
Vv Pva) ?(qtb)
\ (
Vy P (o) v ATl
l
l P(¢, L)
P ('a,a) |
! Iy Ple,)
-‘| (L “\\ °
l? .

Figure 1: Tableaux for Example 2.30 (left) and Remark 2.34 (right).

Exercise 38 (hand-in) Show, using a tableau, that 3z(P(z) A Q(z)) | JzP(x) A JyQ(y).

Exercise 39 (no hand-in) Show, using a tableau, that 3x(O(s,z) A A(z)) is a logical
consequence of the formulas in Example 2.5.

Exercise 40 (no hand-in) Show, using a tableau, that Q(a) A Q(b) AVz(P(x) A (Q(z) —
—P(x))) is unsatisfiable.

2.35 Remark
While the propositional tableaux algorithm always terminates, this is not the case for the

predicate logic tableaux algorithm.
end of

exam
material

22

3 Theoretical Aspects

3.1 Propositional Logic
[Schoning, 1989, Part of Chapter 1.4 plus some more]

3.1 Theorem (monotonicity of propositional logic)
Let M, N be sets of formulas. If M C N then {F' | M = F} C{F | N E F}.

Proof: Let F be such that M |= F.
Let A be a model for N. Then all formulas in N, and hence all formulas in M, are true
under A. Hence A |= F. This holds for all models of N, and hence N = F. |

Exercise 41 (no hand-in) Is the following true or false?
Let M, N be sets of formulas. If {F | M = F} C{F|N | F} then M C N.

Prove that your answer is correct.

3.2 Theorem (compactness of propositional logic)
A set M of formulas is satisfiable if and only if every finite subset of it is satisfiable.

Proof:

=-: Every model for M is also a model for each finite subset of M.

<: Assume every finite subset of M is satisfiable.

Let {A1, As, ...} be all propositional variables.

Define M, to be the set of all elements of M which contains only the propositional variables
A, A,

M, contains at most 22" many formulas with different truth tables.

Thus, there is a set F,, = {Fy,..., F.} € M, (k <22"), such that for every F € M, F = F;
for some i.

Hence, every model for F,, is a model for M,,.

By assumption, F,, is satisfiable, say with model A,,.

A, is also a model for My, ..., M, 1. [M; C M, for all]

For all k£ € N, define A(Ay) = limsup,,_, ., An(Ax).

Note: For each k € N there exists n, € N s.t. for all n > ny we have A, (Ax) = A1 (Ag).
It remains to show: A = M:

Let FF € M. Then F € M, for some k.

With n’ = max{ny,...,ng} we have that A and all A,, with n > n’ agree on all propositional
variables in F'.

We have A, = F for all m > max{k,n'}.

Hence A |= F as required. [

Exercise 42 (no hand-in) Show: A set M of formulas is unsatisfiable if and only if some
finite subset of it is unsatisfiable.

23

3.3 Definition
A problem with a yes/no answer is decidable if there exists an algorithm which terminates
on any allowed input of the problem and, upon termination, outputs the correct answer.

3.4 Example
“Is n an even number?” is decidable (allowed input: any n € N).

[

If n=1, terminate with output ’No’.
If n=0, terminate with output ’Yes’.
Set n := n-2.

Go to 1.

W N -

]

3.5 Theorem (decidability of finite entailment)
The problem of deciding whether a finite set M of formulas entails some other formula F is
decidable.

Proof: M contains only a finite number of propositional variables. Use truth tables to check
whether all models of M are models of F. [|

3.6 Definition

A problem with a yes/no answer is semi-decidable if there exists an algorithm which, on
any allowed input of the problem, terminates if the answer is 'yes’ and outputs the correct
answer.

3.7 Theorem (semi-decidability of infinite entailment)
The problem of deciding whether a countably infinite set M of formulas entails some other
formula F' is semi-decidable.

Proof: M = F if and only if M U {=F} is unsatisfiable. [Exercise 43|
By the compactness theorem, M U{—F'} is unsatisfiable if and only if one of its finite subsets

is unsatisfiable. Now use an enumeration M, M,, ... of all these finite subsets and check
satisfiability of each of them in turn, using truth tables. If one of the sets is unsatisfiable,
terminate and output that M | F. |

Exercise 43 (Proof by Contradiction — no hand-in) Show: M = F if and only if MU
{—F} is unsatisfiable.

Exercise 44 (no hand-in) Let {F}, F5, F3,...} be a (countably) infinite set. Give an al-
gorithm with enumerates all its finite subsets.

3.8 Theorem (complexity of finite satisfiability)
The problem of deciding whether a finite set of formulas is satisfiable, is NP-complete.

24

Proof: See CS740 (or any book on computational complexity theory). |

3.9 Theorem (complexity of finite entailment)
The problem of deciding whether a finite set of formulas entails some other formula is NP-
complete.

Proof: Because of Exercise 43, finite entailment and finite satisfiability can be reduced to
each other, hence they have the same complexity. [

3.2 Predicate Logic
[Schoning, 1989, Chapter 2.3 and other sources]

3.10 Theorem (monotonicity of propositional logic)
Let M, N be sets of formulas. If M C N then {F' | M = F} C{F|N [F}.

Proof: Similar as for propositional logic. [

3.11 Theorem (compactness of propositional logic)
A set M of formulas is satisfiable if and only if every finite subset of it is satisfiable.

3.12 Theorem (undecidability of predicate logic)
The problem “Given a formula F', is F valid?” is undecidable.

Exercise 45 (no hand-in) Show, that the problem “Given a formula F and a finite set
of formulas M, is M |= F?” is undecidable. [use Theorem 3.12]

3.13 Theorem (semi-decidability of predicate logic)
The problem “Given a formula F, is F valid?” is semi-decidable.

Proof: We have, e.g., the tableaux calculus for this. [|

3.14 Remark
The formula

F = VavVyVuVovw(P(z, f(z)) A =P(y,y) A ((P(u,v) A P(v,w)) = P(u,w)

is satisfiable but has no finite model (with U, finite).
A = (Uy, 14) is a model, where

Us=N
PA = {(m,n) | m<n}
fAn) =n+1

Assume B = (Ug, I) is a finite model for F. Let uy € Ug and consider the sequence (u;);en
with w1 = f5(u;). Since Uy is finite, there exist i < j with u; = u;. F enforces transitivity
of F, hence (u;,u;) € P5. But since u; = u; this contradicts Vy—P(y, y).

25

3.15 Theorem (Lowenheim-Skolem)
If a (finite or) countable set of formulas is satisfiable, then it is satisfiable in a countable
domain.

3.16 Remark
According to Theorem 3.15, it is impossible to axiomatize the real numbers in first-order
predicate logic.

4 Application: Knowledge Representation for the World
Wide Web

[See [Hitzler et al., 2009] for further reading|
[Slideset 2]

26

