Chapter 1

OBJECT-ORIENTED TRANSFORMATION

Kenneth Baclawski Scott A. Deloach
Northeastern University Air Force Institute of Technology
Boston, Massachusetts 02115 Wright-Patterson AFB, Ohio 43433
kenb@ccs.neu.edu Scott. Deloach@afit. af mil

Mieczyslaw M. Kokar Jeffrey Smith

Northeastern University Sanders, a Lockheed Martin Company
Boston, Massachusetts 02115 Nashua, New Hampshire
kokar@coe.neu.edu jeffrey.e.smith@lmco.com

Abstract

Keywords:

Modern CASE tools and formal methods systems are more than just
repositories of specification and design information. They can also be
used for refinement and code generation. Refinement is the process of
transforming one specification into a more detailed specification. Spec-
ifications and their refinements typically do not use the same specifi-
cation language. Code generation is also a transformation, where the
target language is a programming language. Although object-oriented
(OO) programming languages and tools have been available for a long
time, refinement and transformation are still based on grammars and
parse trees. The purpose of this paper is to compare grammar-based
transformation with object-oriented transformation and to introduce a
toolkit that automates the generation of parsers and transformers. A
more specific objective is to apply these techniques to the problem of
translating a CASE repository into logical theories of a formal methods
system.

CASE tool, formal methods, specification, modeling language, transfor-
mational reuse, code generation, context-free grammar

2

1. INTRODUCTION

In this chapter, we discuss the problem of transformation of object-oriented represen-
tations into formal representations. We encountered such a problem while attempting
to translate UML diagrams [BRJ97a, BRJ97b] into formal specifications expressed in
the formal specification language Slang [WT98]; this step was part of the process of
formalization of the UML. In order to simplify this rather complex task, we wanted
to take advantage of existing translation tools, like Refine' [Ref90]. Our goal, in ad-
dition to the translation, was also to establish a formal semantics for the UML and
to prove the correctness of the translation.

It is well known that UML diagrams, by themselves, are insufficient for representing
the semantics of a software system. Additional conditions (such as pre- and post-
conditions) are required. Establishing a formal semantics for the UML would clarify
the meaning and limitations of the diagrams as well as eliminate ambiguities and
conflicts between different diagrams.

One possible way of performing such a translation would be to translate data
models of UML directly into expressions in the Slang grammar — a one-big-leap-
transformation approach. Even if we establish a clear representation for the UML
data models and use the Slang grammar, the process of such a direct translation
would be quite complex. The complexity of this step can be reduced by decomposing
it into a number of smaller simpler steps. Another reason for such a multi-step
approach is that there is no single tool that could be used in this process. On the
other hand, a number of excellent tools exist that could be used for smaller steps.

Existing tools can be used to generate a parser for a given context-free grammar.
However, as we discuss in Section 2, context-free grammars only specify syntax, not
semantics. In our case, using such a tool involves translating an object-oriented
representation, with all its rich semantics, to a context-free grammar which has no
semantics at all. Accordingly, there are then two ways to achieve our goal: either
represent UML as a context-free grammar and then perform the translation(s) in
the category of context-free grammars, or perform translation(s) of UML using only
object-oriented representations, representing the result using a context-free grammar
as the last step if necessary.

In this paper, we argue for the latter solution. In Section 2, we show an example
of an object-oriented diagram and discuss the difficulties with representing this kind
of diagram using context-free grammars. Then in Section 3 we describe a system,
called nu&, developed at Northeastern University by K. Baclawski. The nu& toolkit
is the basis for our object-oriented approach to parsing and transformation. We use
this approach specifically for translating UML to Slang. The translation is decom-
posed into a number of smaller stages, each of which involves translation, parsing and
symbol table manipulation. The two processing paths mentioned above — translation
of data models and translation of context-free grammars — are discussed in detail.
In Section 5, a specific example is used to illustrate the steps in the transformation
pipeline of Section 3. The intent here is to show that the process of transformation of
object diagrams is much simpler if it is carried out directly on the object level than by
continually constructing linear textual representations which must be parsed before
the next stage of the transformation may be performed.

Simplifying the transformation pipeline is one of the main themes of this paper.
Certainly simplification has many obvious benefits. Simplification makes it easier
to construct the transformation and to prove that it is correct Simplification also
makes it easier to comprehend the transformation and to compare alternatives. This

Object-Oriented Transformation 3

is especially important for a formalization of the UML because the UML is only a
semi-formal modeling language. For example, the concept of inheritance varies from
one programming language to another, and there can be several alternatives within a
single language such as virtual and nonvirtual derivation in C++.

2. COMPARISON OF GRAMMARS WITH OBJECT-ORIENTED DATA
MODELING LANGUAGES

Context-free grammars (also known as abstract syntax trees or ASTs) are the basic
formalism for expressing modern programming languages. The first step in the com-
pilation of a program is to parse the program as a sentence in the language defined
by the grammar. The results of the parsing step are passed to the later phases of the
compilation process. Translation from one language to another begins with parsing,
when the source language is defined by a context-free grammar. The grammar is said
to define the syntaz of the language, while the subsequent phases of compilation are
said to represent the semantics of the language. Excellent tools are available that
automate the task of generating a parser from a grammar. Such tools are often called
“compiler-compilers” even though they only automate the generation of the parser.
To specify the semantics of the language with a compiler-compiler, one must specify
the action associated with each grammar rule.

The result of parsing is often referred to as the parse tree. A parse tree is a hi-
erarchical representation of information that conforms to a data model defined by
the grammar. The fact that a grammar defines a data model was first observed by
Gonnet and Tompa [GT87], whose p-string data model has powerful query operations
for grammatical data models. Since then, there has been much work on elaborate
grammatical data modeling languages, such as SGML and HTML/XML. For a de-
tailed discussion of the limitations of grammars as data models see [Bac91l]. The
reverse of parsing represents a parse tree as linear text. This process is linearization
or “pretty printing.”

The rest of this section presents an example to compare the modeling power of
grammars with object-oriented modeling languages.

State Machine

name
. 1..1 .
contains 1.1 contains
*
Transition
State |* . ~ransition
EE— . T | outgoing * d
1
label . .
N 1..1 incoming * label
description 0
condition

Figure 1 State Machine Data Model

Consider the example of a database of state machines as specified in Figure 1. This
figure uses a simplified form of the UML notation to define a data model. The data

4

model in the figure is similar to the state machine concept, but it is not the same, for
the sake of simplicity. Each state and each transition is contained in a state machine,
and each transition links exactly two states. State machines, states and transitions
have various attributes. The name of a state machine is unique. The identifier of a
transition is unique within the state machine that contains it. There is no requirement
that a transition join states in the same state machine. If a transition joins states in
the same state machine, then the transition is contained in the same state machine as
the states. If a transition joins states in different state machines, then the transition
can be contained in the state machine of either state.

One can represent an instance of the state machine data model as a parse tree in
a variety of ways. One could represent it as a list of state machines, each of which
contains a list of states and transitions. In addition, each transition is related to
exactly one incoming state and exactly one outgoing state. This suggests that the
following grammar represents the state machine data model:

Root <« State_Machine
State_Machine < string State® Transition®
State < string string
Transition < string string string State State

A subtle problem with the above grammar is that the state objects contained in
a transition object are different objects from the ones contained in the state ma-
chine objects and those contained in the other transition objects. The nonterminals
of a grammar represent nodes in a tree, and the nodes that occur below a Transi-
tion nonterminal cannot occur below a State_Machine nonterminal or below another
Transition node. Such an arrangement would violate the requirement that the parse
tree be a tree. One could, in theory, add the constraint that each state linked by a
transition must have the same information as one of the states contained in a state
machine. Aside from the huge amount of redundancy that is caused by this design, it
is also ambiguous because there could be states that have exactly the same attributes,
since there is no uniqueness condition imposed on the states.

Alternatively, one might try to represent the relationships between states and
transitions by including lists of incoming and outgoing transitions in each state, but
now it is the transition objects that are being redundantly represented. Yet another
possibility is to represent the two relationships as two independent entities. This
design is even worse than the others, for now one is representing both the state
objects and the transition objects redundantly.

In order to represent the incoming and outgoing relationships of the state machine
data model, it is necessary to introduce some kind of reference mechanism. For
example, instead of having two state objects within each transition object, one might
specify that each transition object contain two state identifiers. This would work
if states had unique identifiers, but there is no uniqueness condition on the state
attributes. In the grammar above transition objects are uniquely identified within
each state machine, so a compound identifier consisting of a state machine name and
a transition id will uniquely identify each transition, because state machine names are
unique. Assuming that most transitions will be contained in the same state machine
as the states being linked, one should also allow transition references to consist of
just a transition id which can be disambiguated by the context. The following is the
grammar in this case:

Root <« State_Machine®

Object-Oriented Transformation 5

State_Machine < string State” Transition”
State < string string transition_ref" transition_ref"
Transition < string string string

transition_ref < string | string string

It appears that one has, at last, fully represented the original data model of Figure 1
as a grammar. However, a number of important considerations are not included in the
grammar specification. The strings occurring in each transition reference must occur
as state machine names or as transition ids with the following additional constraints:

1. If just one string occurs, then it represents the transition id of a transition in
the same state machine as the state.

2. If two strings occur, then the first must be a state machine name and the
second is the transition id of a transition in that state machine.

These constraints must be enforced by actions triggered by the grammar rules.

If this example seems a little contrived, exactly the same issues arise in program-
ming languages for which identifiers are used for variables and methods within classes
and the same identifier may be used in different classes. In programming languages
the disambiguation of identifiers is a very complex problem.

This example also shows that expressing an object-oriented data model in terms of
a grammar typically results in a grammar that is much more complex and awkward
than the data model. However, tree representations of data do have some advantages.
There are easily available tools for automatically generating parsers from a grammar,
and there are several tools for transforming trees in one grammar to trees in another
grammar.

3. A NEW APPROACH TO TRANSFORMATIONS

The purpose of the nu& Project [Bac90a, Bac90b, BMNRR9] is to provide auto-
mated support for transformations from one language to another with emphasis on
object-oriented modeling languages. This project combined the advantages of au-
tomated parser generation with the modeling power of object-oriented data models.
Like grammar-based compiler-compilers, the nu& tools automatically generate parsers.
However, the nu& toolkit uses the more powerful object-oriented data models rather
than grammars, and the nu& toolkit transforms linear text directly into an object-
oriented data structure. The toolkit can also be used to linearize an object-oriented
database. Parsing and linearization of object-oriented data structures are similar to
the marshaling and unmarshaling of data structures in remote procedure call mech-
anisms. The main distinction between RPC and the nu& toolkit is that nu& allows
one to specify details about the grammar that is produced so that the resulting lin-
ear representation is readable. RPC linear representations, by contrast, are neither
flexible nor intended to be read by people.

While the automated generation of parsers and linearizers is a useful feature, the
main function of the nu& toolkit is to support transformations from one modeling lan-
guage to another. In this respect, the nu& toolkit is similar to transformational reuse
systems, such as Refine [Ref90], except that nu& supports a large variety of data mod-
eling languages, including object-oriented data models while existing transformational
reuse systems are grammar-based.

One of the problems with traditional approaches to transformations is the in-
sistence on communicating using linear text. This is fine for simple transforma-

6

tions and has proved to be very effective in environments, such as the Unix shell,
where “pipelines” join together relatively simple transformations to form more com-
plex transformations. For example, sort file | uniq -c | sort -nr | head -20
will compute the 20 most commonly occurring lines in a file. However, this tech-
nique becomes increasingly unwieldy as the complexity of the textual representation
increases. For more complex languages, one requires a parser to produce a parse tree
from the text, after which the identifiers in the parse tree must be disambiguated using
a symbol table, and finally an internal (sometimes called an intermediate representa-
tion) is constructed. The intermediate representation is then processed to produce
linear text to be used in the next stage of the pipeline.

Counsider the problem of transforming a CASE tool diagram to a formal methods
language. The traditional approach requires a series of transformational stages, each
consisting of a series of steps. Each step involves processing output of the previous
step. The whole process forms a pipeline of steps. To simplify the transformation, the
diagram is first transformed to an object-oriented formal methods language, which
is then transformed to a more traditional formal methods language. The formal
specification can then be used to generate code in a programming language.

To illustrate the traditional transformational pipeline, we will use the example of
the Slang formal methods language[W198], and the O-SLANG object-oriented formal
methods language [DeL96]. The O-SLANG language was developed in [DeL96] as
a target structure that could be later transformed into Slang. O-SLANG is based
on the formalization of object-oriented concepts defined via a theory-based object
model [DH99].

The full pipeline looks like that depicted in Figure 2. The middle column in this

par:

CASE Diagram e Export Format *_ Parse Tree

symbol table

Intermediate = parse
- -

Structure translate O SLANG

Parse Tree

symbol table

O-SLANG Structure ————— Slang N Parse Tree

translate

symbol table

Slang Structure —— Programming _ parse _ Parse Tree

code generate Language

Symbol table

Intermediate = . . generatefFxecutable
————— Intermediate Code ——
Structure optimize Code

Figure 2 Transformation Pipeline

Object-Oriented Transformation 7

figure consists of the various linear representations that act as the communication
language between the processing modules in the pipeline. The original diagram is
dumped to a standard format of some kind. This standard format is parsed, and
the identifiers placed in a symbol table, so that when one is encountered, it can be
replaced with a reference to the object being referenced. The result is an intermediate
structure which is essentially equivalent to the original diagram. This structure is
then translated to the O-SLANG object-oriented formal methods language and given
to the O-SLANG compiler. The same kind of parsing and symbol table manipulation
is then performed so that O-SLANG can be translated to the Slang formal methods
language, which is then used to generate code in a programming language. Finally,
the programming language is compiled. A specific example of the transformation
pipeline in Figure 2 is given in Section 5 below.

While many of the steps in the pipeline of Figure 2 are important, many of them
represent duplication of effort. None of the steps in the traditional transformational
pipeline are easy for nontrivial languages, and any one of the steps is a source of error.
Proving the correctness of the entire pipeline is a difficult task. Reducing the number
of steps is certainly desirable in itself, and this is one of the primary motivations for
the nu& approach.

Using the nu& toolkit, one can make significant simplifications to the transforma-
tional pipeline of Figure 2. In Figure 3, the CASE diagram is isomorphic to a CASE
tool’s intermediate object structure. This structure is typically translatable to any

CASE Diagram

Intermediate
Structure

translate
O-SLANG Structure

translate

Programming parse

lan r re ——— :
Slang Structu € code gonerate Language Parse Tree

Symbol table

Intermediate - > ; generatefxecutable
St Tontimize Intermediate Code ——
ructure p Code

Figure 8 Simplified Transformation Pipeline

kind of new structure by a vendor-provided scripting language. Rather than translate
the CASE diagram to text in any form (as suggested by Figure 2), the nu& approach
is to translate directly to the O-SLANG structure using object-oriented techniques and
to continue to translate entirely at the level of data structures (i.e., the left column

8

of Figure 3). Unfortunately, it is difficult to streamline the entire transformation
pipeline because one rarely has access to all of the internal data structures. For ex-
ample, it is not currently possible to circumvent the parser of a compiler and present
it with its intermediate representation directly.

Another possibility for simplifying Figure 2 would be to transform at the level
of the parse tree (i.e., the right column in Figure 2). This is the approach taken
by traditional transformational code generation systems such as Refine [Ref90] and
GenVoca [BO92, BG97]. While this approach is certainly simpler than the original
pipeline, it has the disadvantage that the translation code must deal with the table of
identifiers, so that identifier lookup and resolution must be handled at the same time
as the transformation. Another disadvantage is that the parse tree structures (right
column in Figure 2) are generally more complex and unwieldy than the internal data
structures (left column in Figure 2).

4. THEORY-BASED OBJECT MODEL

In object-oriented systems, the object class defines the structure of an object and its
response to external stimuli based on its current state. In our theory-based object
model, we capture the structure of a class as a theory presentation, or algebraic spec-
ification, in O-SLANG, an object-oriented algebraic specification language. Figure 4
shows some other correspondences between UML notions and theory-based object
model notions.

O-SLANG Component Meaning
sort collection of values
class type structure of an object and its response to stimuli
class sort all possible value representations of objects of the class
abstract class class with no direct instances
concrete class blueprint for instances
attribute function that returns data values or objects
— an observable class characteristic
axiom class attribute value invariant or specification of
a function’s semantics
state sort all possible states of an object
state attribute function mapping from class sort to state sort
state invariant constraint on class attributes in a given state

Figure 4 Some Components of the Theory-Based Object Model

UML, O-SLANG and Slang must be expressed at the metalevel for any trans-
formation to be possible. In the traditional transformation pipeline, the metalevel
is expressed using a grammar and implicit constraints. The nu& approach uses an
object-oriented definition of the metalevel. The UML metalevel is defined by the
UML Semantics Guide [BRJ97a, BRJ97b]. The O-SLANG metalevel is discussed in
[DeL96]. Excerpts from the grammar defining the O-SLANG metalevel are given in
the Section 5 below.

For example, the meta-class for the O-SLANG class concept is defined as follows.

class 0SlangClass {
String name;
Sort classSort;

Object-Oriented Transformation 9

Set<0Operationdecl> operations;
Set<0SlangClass> imports;
Set<Sort> sorts;

}

Compare this definition with the grammar for O-SLANG defined in the next section.
The grammar can be generated by the nu& toolkit from the O-SLANG metalevel class
definitions.

We are building a collection of UML to Slang translation rules for the Core Pack-
age of UML. Because UML is only a semi-formal modeling language many modeling
constructs have alternative choices for their semantics. Inheritance, for example, can
be formalized in many ways, and we have developed a framework that includes most
of the variations that have been used in object-oriented programming languages as
well as many others. The variations include both structural variations such as vir-
tual versus nonvirtual derivation in C++ and behavioral variations such as the many
method dispatch mechanisms. These results will be appearing in subsequent reports
and papers.

5. STATE MACHINE EXAMPLE
In this section, we will give an example of the traditional transformational pipeline
outlined in the previous section. We then compare it to the nu& approach.

Traditional Pipeline Approach

This example is derived from [DeL96]. In UML, a state diagram is one technique for
describing the behavior of a class. The objective in this example is to convert a state
machine diagram to its corresponding O-SLANG specification. In this example, we
will use the class pump whose state diagram is given in Figure 5.

new-pump(pump-id)/create-pump(pump-id)

enable-pump(x:pump-id)[x=pump-id]/send(start-pump-motor);send(reset-display)

enable-pump(x:pump-id)[x < >>pump-id]
disable-pump

Figure 5 Pump State Diagram

The CASE tool used by DeLoach was a commercially available object-oriented
drawing package, ObjectMaker?. The textual output from ObjectMaker is parsed
into a Refine parse tree using a Refine-based parser. Once in Refine, a rule-based
conversion program translates the ObjectMaker parse tree into a Generic parse tree
which is isomorphic to the original CASE diagram.

Once in the Generic parse tree, a rule-based transformation program implementing
the transformation rules translates the Generic parse tree into an O-SLANG parse tree
within the Refine environment. Once in a valid O-SLANG parse tree, the Dialect pretty
printer is used to produce a textual representation of the O-SLANG parse tree. The

10

actual transformation is performed by creating the root node of the O-SLANG parse
tree and then automatically translating each class and association, one at a time,
from the Generic parse tree to the O-SLANG parse tree.

The actual Refine transformation code is more complex than even Figure 2 sug-
gests. The Export Format of ObjectMaker has a structure that is complex enough to
require an additional transformation stage. The actual transformation from CASE
Diagram to O-SLANG consists of the pipeline shown in Figure 6. The Refine tool

parse

CASE Diagram Jump Export Format

symbol table

Parse Tree

Export

: _ Intermediate _parse
Structure convert Format

= Parse Tree

Symbol table

parse (O-SLANG
Parse Tree

CASE Diagram]
Structure tansiate O-SLANG

Figure 6 Actual Transformation Pipeline from CASE Diagram to O-SLANG

allows some of the steps in the pipeline to be combined, but it is still necessary to
write (and debug) five separate Refine specifications to achieve the entire transforma-
tion from CASE Diagram to O-SLANG. Several hundred lines of code are needed for
specifying the rules for transforming a state machine diagram. We now show some
excerpts from this code.

The grammar for the dynamic model portion of a Generic class is the following:

Generic-Class = <name, {Superclass}, [Connection], {Attribute}, {State},
{Transition}, {Axiom}, {Operation}, {Function}>

State = <name, {State}, {Axiom}>

Transition = <name, [Parameter], Axiom, {Action}, FromState, ToState>

FromState = name

ToState = name

Action = <name, [Parameter], {Action}>

Parameter = <name, datatype>

A simplified version of the O-SLANG grammar is shown below. Notice that both
StateAttr and State are defined as functions. StateAttr is a function that takes an
object as its domain and returns a state value as its range. States are defined as
nullary functions that return specific values of the state attribute.

Class = <name, ClassSort, {Operation}, {Import}, {Sort}, {Attribute},
{Method}, {StateAttr}, {Event}, {State}, {Axiom}>

StateAttr = Operationdecl

State = Operationdecl

Operationdecl = <name, [Domain-Ident], [Range-Ident]>

Axiom = complex definition of 1st order predicate logic

Object-Oriented Transformation 11

There are three distinct steps to transforming the dynamic model from the Generic
parse tree to the O-SLANG parse tree: (1) creation of state attributes, (2) creation of
state values, and (3) creation of axioms that implement the transitions. For simplicity,
we will just consider the axioms for transitions. Translation of the Generic Transitions
into O-SLANG axioms is performed by breaking down each Generic Transition object
and processing it in five parts: the current state, transition guard, new state, method
invocation, and the sending of any new events.

function create-oslang-transition-axiom (x: Transition)
Axiom-Def = let (s:object=undefined)
s <- Make-OslangAxiom(

concat (create-oslang-current-state-string(x),
create-oslang-guard-string(x),
create-oslang-new-state-string(x),
create-oslang-method-invocation-string(x),
create-oslang-send-event-string(x),

||)||))

The five parts are concatenated into a string which is parsed into an O-SLANG axiom
parse tree by the Make-OslangAxiom function of the form

old-state A\ guard-condition = new-state A method-invocations A event-sends

The final result of the pipeline is an O-SLANG parse tree which can be linearized into
the following textual form:

class Pump is
class-sort Pump
import Pump-Id, Reset-Display, Start-Pump-Motor, Pump-Aggregate
sort Pump-State
attributes
pump-id : Pump -> integer
pump-state : Pump -> Pump-State
operations
attr-equal : Pump, Pump -> Boolean
states
pump-disabled : -> Pump-State
pump-enabled : -> Pump-State
events

methods
axioms
pump-disabled <> pump-enabled;
attr-equal(P1, P2) <=> (pump-id(P1) = pump-id(P2));
(pump-state(P) = pump-enabled) =>
(pump-state(disable-pump(P)) = pump-disabled);

(pump-state (new-pump (P, A)) = pump-disabled
& attr-equal (new-pump(P, A), create-pump(Ad)));

end-class

12

Object-Oriented Transformation

By contrast the transformation code using the nu& toolkit simply constructs each of
the components occurring in the O-SLANG data structure as objects. One can use
either rules or a series of nested loops to express the transformation. The following
are some fragments of the code that illustrate the nu& nested loop approach:

for every c in allClasses {
0SlangClass oclass = new 0SlangClass (c.name);

for every state in oclass.states {
oclass.states.add (new State (state.name));

for every transition in state.outTransitions {
oclass.events.add (new Event (transition.name));
oclass.axioms.add
(new Axiom (transition.currentState && transition.guard,
transition.newState && transition.methodInvocation
&% transition.sendEvent));

}
}
}

In addition to requiring fewer steps, the nu& approach involves much simpler code
that focuses on the fundamental issues rather than myriad syntactic and symbol
table issues.

6. RELATED WORK

Several authors have proposed techniques for transforming informal system require-
ments and specifications into formal specifications. Babin, Lustman, and Shoval pro-
posed a method based on an extension of Structured System Analysis. The method
uses a ruled-based transformation system to help transform the semi-formal specifi-
cation into a formal specification [BT91]. Fraser, Kumar, and Vaishnavi proposed an
interactive, rule-based transformation system to translate Structured Analysis spec-
ifications into VDM specifications [F+94]. In both cases, the output of the process
is a text-based formal specification that would require parsing for further automated
refinement.

Specware [Spe94] is a transformational program derivation system based on Slang
[W198] which is the end target for this work. Specware provides the automated
tool support for developing and transforming specifications using the Slang formal
specification language. Once defined in Slang, all transformations — including algo-
rithm design and optimization, data type refinement, integration of reactive system
components, and code generation — are performed on an internal AST-based repre-
sentation of Slang. However, Specware does not provide the front end as described in
our research: an object-oriented, graphically-based semi-formal, community accepted
representation.

Although not specifically concerned with formalization, there have been many
research efforts and commercial products that support transformations from one lan-
guage to another. Such tools are called transformational code generators or generative
reuse tools. Krueger [Kru92] has a survey of such tools. Some of the most prominent

Object-Oriented Transformation 13

among these tools are Batory’s GenVoca [BO92, BG97], Neighbors’ Draco [Nei84],
and Reasoning Systems’ Refine [Ref90]. While the output of these transformational
systems can be object-oriented (e.g., by using components from and generating code
in an object-oriented programming language), all of these systems use a specification
language that is grammar-based. The nu& toolkit, by contrast, not only can gener-
ate object-oriented data structures, but also supports object-oriented specifications.
As noted in Section 3, transforming object-oriented data structures is simpler, more
powerful and less error-prone than transforming parse trees.

7. CONCLUSIONS

While object-oriented languages have become very popular in both programming and
software specification, the formalism for representing their structure is still that of a
context-free grammar, even though this formalism was developed mainly for a differ-
ent kind of language. In this paper, we argued that for object-oriented representations
data models are better suited than such context-free grammars. We showed with an
example the difficulties involved in representing an object-oriented diagram using a
context-free grammatical representation. We analyzed two possibilities for transform-
ing object-oriented representations (UML diagrams) into formal non-object-oriented
representations (Slang specifications):

1. Transform the data model of UML into a context-free grammar and then per-
form consecutive transformations in the realm of context-free grammars using
CASE tools available for such translations, and

2. Translate the UML data model into an intermediate object-oriented repre-
sentation and perform consecutive translations in the object-oriented domain,
while translating into the context-free target language as the last step.

We argued for the latter approach. We showed that this approach is simpler in the
sense that it consists of fewer transformational steps, and thus is less error-prone.

Notes

1. Refine is a trademark of Reasoning Systems Inc. Palo Alto California
2. ObjectMaker is a registered trademark of Mark V Systems Limited Encino California

References

[BT91] G. Babin et al. Specification and design of transactions in information systems:
A formal approach. IEEE Transactions on Software Engineering, 17:814-829,
August 1991.

[Bac90a) K. Baclawski. The nu& object-oriented semantic data modeling tool: intermedi-
ate report. Technical Report NU-CCS-90-18, Northeastern University, College
of Computer Science, 1990.

[Bac90b] K. Baclawski. Transactions in the nu& system. In OOPLSA/ECOOP’90 Work-
shop on Transactions and Objects, pages 65-72, October 1990.

[Bac91] K. Baclawski. Panoramas and grammars: a new view of data models. Technical
Report NU-CCS-91-2, Northeastern University College of Computer Science,
1991.

[BGIT] D. Batory and B. Geraci. Composition validation and subjectivity in Gen-

Voca generators. IEEE Transactions on Software Engineering, 23:67-82, 1997.
DARPA and WL supported project under contract F33615-91C-1788.
[BMNR89] K. Baclawski, T. Mark, R. Newby, and R. Ramachandran. The nu& object-
oriented semantic data modeling tool: preliminary report. Technical Report
NU-CCS-90-17, Northeastern University, College of Computer Science, 1989.

14

[BO92] D. Batory and S. O’Malley. The design and implementation of hierarchical
software systems with reusable components. ACM TOSEM, October 1992.

[BRJ97a] G. Booch, J. Rumbaugh, and I. Jacobsen. UML Notation Guide, Version 1.1,
September 1997.

[BRJ97b] G. Booch, J. Rumbaugh, and I. Jacobsen. UML Semantics, September 1997.

[DeL96] S. DeLoach. Formal Transformations from Graphically-Based Object-Oriented
Representations to Theory-Based Specifications. PhD thesis, Air Force Institute
of Technology, WL AFB, OH, June 1996. Ph.D. Dissertation.

[DH99] S. DeLoach and T. Hartnum. A theory-based representation for object-oriented
domain models. In IEEE Trans. Software Engineering, 1999. to appear.

[Fto4] M. Fraser et al. Strategies for incorporating formal specifications. Communica-
tions of the ACM, 37:74-86, 1994.

[GT87] G. Gonnet and F. Tompa. Mind your grammar: a new approach to modelling
text. In Proc. 13" VIL,DB Conf., pages 339-346, Brighton, UK, 1987.

[Kru92] C. Krueger. Software reuse. ACM Computing Surveys, 24:131-183, June 1992.

[Neig4] J. Neighbors. The Draco approach to constructing software from reusable com-
ponents. IEEE Trans. Software Engineering, pages 564-574, Sept. 1984.

[Ref90] Refine 8.0 User’s Guide, May 25, 1990.

[Spe94] Specware™ User Manual: Specware™ Version Core4, October 1994.

[W+98] R. Waldinger et al. Specware™ Language Manual: Specware™ 2.0.2, 1998.

About the Authors

Kenneth Baclawski is an Associate Professor of Computer Science at Northeastern Uni-
versity. His research interests include Formal Methods in Software Engineering, High Per-
formance Knowledge Management, and Database Management. He has participated in and
directed many large research projects funded by government agencies including the NSF,
DARPA and NIH. He is a co-founder and Vice President for Research and Development
of Jarg Corporation which builds Internet-based, high performance knowledge management
engines.

Scott A. DeLoach is currently an Assistant Professor of Computer Science and En-
gineering and Director of the Agent Lab at the Air Force Institute of Technology (AFIT).
His research interests include design and synthesis of multiagent systems, knowledge-based
software engineering, and formal specification acquisition. Prior to coming to AFIT, Dr. De-
Loach was the Technical Director of Information Fusion Technology at the Air Force Research
Laboratory. Dr. DeLoach received his BS in Computer Engineering from Iowa State Univer-
sity in 1982 and his MS and PhD in Computer Engineering from the Air Force Institute of
Technology in 1987 and 1996.

Mieczyslaw M. Kokar is an Associate Professor of Electrical and Computer Engineer-
ing at Northeastern University. His technical research interests include formal methods in
software engineering, intelligent control, and information fusion. Dr. Kokar teaches graduate
courses in software engineering, formal methods, artificial intelligence, and software engi-
neering project. Dr. Kokar’s research has been supported by DARPA, NSF, AFOSR and
other agencies. He has an M.S. and a Ph.D. in computer systems engineering from Technical
University of Wroclaw, Poland. He is a member of the IEEE and of the ACM.

Jeffrey Smith is a Senior Principle Engineer at Sanders and PhD candidate in Com-
puter Systems Engineering at Northeastern University. His research interests include For-
mal Methods in Software Engineering, Operating Systems and High Performance Computing
Frameworks. He has applied his research in defense based applications, as both a practitioner
and manager for more than twenty years.

