
Chapter 6

THE MASE METHODOLOGY

Scott A. DeLoach

Abstract MaSE provides a detailed approach to the analysis and design of MAS. MaSE
combines several established models into a comprehensive methodology and
provides a set of transformation steps that shows how to derive new models
from the existing models. Thus MaSE guides the developer in the analysis and
design process. Future work on MaSE will focus on specializing it for use in
adaptive multiagent and cooperative robotic systems based on an organizational
theoretic approach. We are currently developing an organizational model that
will provide the knowledge required for a team of software or hardware agents
to automatically adapt to changes in their environment and to organize and re-
organize to accomplish team goals. Much of the information needed in this
organizational model – goals, roles, and agents – is already captured in MaSE.
However, we will have to extend MaSE analysis to capture more detail on roles,
including the capabilities required to play roles.

1. Introduction

This chapter provides an introduction to Multiagent Systems Engineering
(MaSE), which is a full-lifecycle methodology for analyzing, designing, and
developing heterogeneous MAS. To accomplish this, MaSE uses a number of
graphically based models derived from standard UML models to describe the
types of agents in a system and their interfaces to other agents, as well as an
architecture-independent detailed definition of the internal agent design. The
primary focus of MaSE is to guide a designer from an initial set of requirements
through the analysis, design, and implementation of a working MAS.

MaSE views MAS as a further abstraction of the object-oriented paradigm
where agents are specialized objects. Instead of simple objects, with methods
that can be invoked by other objects, agents coordinate with each other via
conversations and act proactively to accomplish individual and system-wide
goals. Therefore, MaSE builds upon well-founded object-oriented techniques
and applies them to the specification and design of MAS.



108 Methodologies and Software Engineering for Agent Systems

MaSE is also the basis for the agentTool development system. agentTool can
be downloaded free from the agentTool Web page at http://www.cis.ksu.

edu/~sdeloach. agentTool is a graphically based, fully interactive software
engineering tool, which fully supports each step of MaSE analysis and design.
agentTool also supports automatic verification of inter-agent communications,
semi-automated design, and code generation for multiple MAS frameworks.
MaSE and agentTool are both independent of any particular agent architecture,
programming language, or communication framework.

2. Methodology

The MaSE methodology is a specialization of more traditional software en-
gineering methodologies. The general operation of MaSE follows the phases
and steps shown below and uses the associated models.

Phases
1. Analysis Phase

a. Capturing Goals
b. Applying Use Cases
c. Refining Roles

2. Design Phase
a. Creating Agent Classes
b. Constructing Conversations
c. Assembling Agent Classes
d. System Design

The MaSE Analysis phase consists of three steps: Capturing Goals, Apply-
ing Use Cases, and Refining Roles. The Design phase has four steps: Creating
Agent Classes, Constructing Conversations, Assembling Agent Classes, and
System Design. While presented sequentially, the methodology is, in prac-
tice, iterative. The intent is that the designer is free to move between steps
and phases such that with each successive pass, additional detail is added and,
eventually, a complete and consistent system design is produced.

One strength of MaSE is the ability to track changes during the whole pro-
cess. Every object created during the analysis and design phases can be traced
forward or backward through the different steps to other related objects. For
instance, a goal derived in the Capturing Goals step can be traced to a specific
role, task, and agent class. Likewise, an agent class can be traced back through
tasks and roles to the system level goal it was designed to satisfy.

3. Analysis Phase

Models

Goal Hierarchy
Use Cases, Sequence Diagrams
Concurrent Tasks, Role Model

Agent Class Diagrams
Conversation Diagrams
Agent Architecture Diagrams
Deployment Diagrams

The MaSE Analysis phase produces a set of roles and tasks, which describe
how a system satisfies its overall goals. Goals are an abstraction of the detailed



The MaSE Methodology 109

requirements and are achieved by roles. Typically, a system has an overall goal
and a set of sub-goals that must be achieved to reach the system goal. Goals
are used in MaSE because they capture what the system is trying to achieve
and tend to be more stable over time than functions, processes, or information
structures.

A role describes an entity that performs some function within the system.
In MaSE, each role is responsible for achieving, or helping to achieve specific
system goals or sub-goals. MaSE roles are analogous to roles played by actors
in a play or by members of a typical company structure. The company (which
corresponds to system) has roles such as “president,” “vice-president,” and
“mail clerk” that have specific responsibilities, rights and relationships defined
in order to meet the overall company goal.

The overall approach in the MaSE Analysis phase is straightforward: define
system goals from a set of requirements and then define the roles necessary to
meet those goals. To help in defining roles to meet specific goals, MaSE uses
Use Cases and Sequence Diagrams. The individual steps of the Analysis phase
of Capturing Goals, Applying Use Cases, and Refining Roles are presented
next.

3.1 Capturing Goals
The first step in the MaSE Analysis phase is Capturing Goals, whose pur-

pose is to transform an initial system specification into set of structured sys-
tem goals. The initial system context, the starting point for MaSE analysis, is
usually a software requirement specification with a well-defined set of require-
ments. These requirements tell the analyst the services that the system must
provide and how the system should or should not behave based on inputs to
the system and its current state. There are two sub-steps in Capturing Goals:
identifying goals and structuring goals. First, goals must be identified from the
initial system context. Next, the goals are analyzed and put into a hierarchical
form. Each of these sub-steps is described in detail below.

Identifying Goals. The goal of the step named Identifying Goals is to
capture the essence of an initial set of requirements. This process begins by
extracting scenarios from the initial specification and describing the goal of
that scenario.

Throughout this chapter, we will use the conference management system
example, which has become fairly common in AOSE circles. The conference
management system is a MAS supporting the management of various sized
international conferences that require the coordination of several individuals
and groups. We define the basic system requirements below.



110 Methodologies and Software Engineering for Agent Systems

Authors should be able to submit their papers electronically to a conference paper
database system. During the submission phase, authors should be notified of paper
receipt and given a paper submission number.

After the deadline for submissions has passed, the papers will be divided among the
program committee (PC), who has to review the papers themselves or by contacting
referees and asking them to review a number of the papers.

Reviewers should be able to get papers directly from the central database and submit
their reviews to a central collection point.

After the reviews are complete, a decision on accepting or rejecting each paper must be
made.

After the decisions are made, authors are notified of the decisions and are asked to
produce a final version of their paper if it was accepted.

The conference management system is an organization whose membership
(authors, reviewers, decision makers, review collectors, etc.) may change dur-
ing the process. In addition, since each agent is associated with a human, it
is easy to imagine that these agents could be coerced into displaying oppor-
tunistic behaviors that would benefit their owner to the detriment to the overall
system. Such behaviors could include reviewing ones own paper or inequitable
allocation of work, etc.

An example of the goals derived from these requirements is shown below.
Notice that all the details on how to perform system functions are not included
as goals.

1. Collect papers
2. Distribute papers
3. Assign papers to PC members
4. Assign papers to reviewers
5. Submit reviews
6. Collect reviews
7. Select/reject papers
8. Inform authors

Goals embody the critical system requirements; therefore, an analyst should
specify goals as abstractly as possible without losing the spirit of the require-
ment. This abstraction can be performed by removing detailed information
when specifying goals. For example, to “Inform authors” is a goal, the details
on how to actually inform them may change over time and are not.

Once the goals have been captured, they provide the foundation for the anal-
ysis model; all roles and tasks defined in later steps must support one of the
goals. If, later in the analysis, the analyst discovers roles or tasks that do not
support an existing system goal, either the roles and tasks are superfluous or a
new goal has been discovered.

Structuring Goals. The final step in Capturing Goals is structuring the
goals into a Goal Hierarchy Diagram, as shown in Figure 6.1. A Goal Hierar-
chy Diagram is a directed, acyclic graph where the nodes represent goals and



The MaSE Methodology 111

the arcs define a sub-goal relationship. A goal hierarchy is not necessarily a
tree as a goal may be a sub-goal of more than one parent goal.

To develop the goal hierarchy, the analyst studies the goals for their impor-
tance and inter-relationships. Even though goals have been captured, they are
of various importance, size, and level of detail. The Goal Hierarchy Diagram
preserves such relationships, and divides goals into sub-goals that are easier to
manage and understand.

Figure 6.1. Example Goal Hierarchy Diagram

which is placed at the top of the Goal Hierarchy Diagram. However, it is often
the case, as in our example above, that a single system goal cannot be directly
extracted from the basic requirements. In this case, the highest-level goals
are summarized to create an overall system, in our case “Produce conference
papers.” Once a basic goal hierarchy is in place, goals may be decomposed into
new sub-goals. Each sub-goal must support its parent goal in the hierarchy and
defines what must done to accomplish the parent goal.

Although similar, Goal decomposition is not simply “functional decompo-
sition.” Goals describe what, while functions describe how. Instead of a set of
goals describing what the system will do, functional decomposition typically
results in a set of steps prescribing how the system will do it. For example,
functional steps for implementing the goal “Assign papers to PC members”
might be to (i) group papers based on similar keywords; and (ii) select PC
members whose expertise matches the paper groups. However, the appropri-
ate sub-goals would be to: (i) “Partition papers”; and (ii) “Assign reviewers.”
The fact that the papers are partitioned and PC members are assigned to papers
are goals, how we divide the papers or on what basis we assign reviewers are
immaterial at this point and will be decided on by the agents responsible for
those goals. Goal decomposition continues until any further decomposition

The first step in building is to identify the overall system goal,



112 Methodologies and Software Engineering for Agent Systems

would result in functions instead of a goals (i.e., the analyst prescribes how a
goal should be accomplished).

There are four special types of goals in a Goal Hierarchy Diagram. These
are: summary, partitioned, combined, and non-functional. Goals can have at-
tributes of more than one special goal type; however, they do not necessarily
have to be one of these types at all.

A summary goal is derived from a set of existing “peer” goals to provide a
common parent goal. This often happens at the highest levels of the hierarchy
as was the case in the overall system goal in our example.

Some goals do not functionally support the overall system goal, but are
critical to system operation. These non-functional goals are often derived from
non-functional requirements such as reliability or response times. For example,
if a system must be able to find resources dynamically, a goal to facilitate
locating dynamic resources may be required. In this case, another “branch” of
the Goal Hierarchy Diagram can be created and placed under an overall system
level goal.

There are often a number of sub-goals in a hierarchy that are identical or
very similar that can be grouped into a combined goal. This often happens
when the same basic goal is a sub-goal of two different goals. In this case, the
combined goal becomes a sub-goal of both the goals.

A partitioned goal is a goal with a set of sub-goals that, when taken collec-
tively, effectively meet that goal. While this is always true of summary goals,
it may be true of any goals with a set of sub-goals. By defining a goal as “par-
titioned,” it frees the analyst from specifically accounting for it in the rest of
the analysis process. Partitioned goals are annotated in a Goal Hierarchy Dia-
gram using a gray goal box instead of a clear box (e.g., goals 1, 1.1, and 1.2 in
Figure 6.1).

At the conclusion of Capturing Goals, system goals have been captured and
structured into a Goal Hierarchy Diagram. The analyst can now move to the
second Analysis step, Applying Use Cases, where the initial look at roles and
communication paths takes place.

3.2 Applying Use Cases

The Applying Uses Cases step is crucial in translating goals into roles and
associated tasks. Use cases are drawn from the system requirements and de-
scribe sequences of events that define desired system behavior; they are exam-
ples of how the system should behave. To help determine the actual communi-
cations in a MAS, the use cases are converted into Sequence Diagrams. MaSE
Sequence Diagrams are similar to standard UML sequence diagrams except
that they are used to depict sequences of events between roles and to define the
communications between the agents that will be playing those roles. The roles



The MaSE Methodology 113

identified here form the initial set of roles used in the next step while the events
are also used later to define tasks and conversations.

The first step in Applying Use Cases is to extract Use Cases from the initial
system context, which should include both positive and negative Use Cases. A
positive Use Case describes what should happen during normal system opera-
tion. However, a negative Use Case defines a breakdown or error. While Use
Cases cannot be used to capture every possible requirement, they are an aid
in deriving communication paths and roles. Cross checking the final analysis
against the set of derived goals and Use Cases provides a redundant method
for deriving system behavior.

3.3 Refining Roles
The purpose of the Refining Roles step is to transform the Goal Hierarchy

Diagram and Sequence Diagrams into roles and their associated tasks, which
are forms more suitable for designing MAS. Roles form the foundation for
agent classes and correspond to system goals during the Design phase. It is
our contention that system goals will be satisfied if every goal is associated
with a role and every role is played by an agent class.

The general case transformation of goals to roles is one-to-one, with each
goal mapping to a role. However, there are situations where it is useful to
have a single role be responsible for multiple goals, including convenience or
efficiency. One mapping of the goals from our previous example to a set of
roles is shown below.

PaperDB
Partitioner
Assigner
Reviewer
Collector
DecisionMaker

(1.1.1, 1.1.2, 1.1.2.1)
(1.2.1)
(1.2.2)
(1.3.1)
(1.4)
(1.5, 1.5.1)

Due to the simplicity of our example, we mapped goals to individual roles
with a two exceptions. Goals, 1, 1.1, 1.2, and 1.3 were not mapped to roles
since they were partitioned. However, the PaperDB role was assigned all the
goals associated with goal 1.1, namely 1.1.1, 1.1.2, and 1.1.2.1. In addition,
the DecisionMaker role was assigned both 1.5 and 1.5.1, which are closely
related.

Related goals can often be combined into a single role. For example, the
“collect papers,” “distribute papers,” and “distribute abstracts” goals are com-
bined into the single PaperDB role since they are closely related and require
the same type of access techniques. While combining goals makes the role
more complex, it may simplify the overall design.

In general, interfacing with external or internal resources requires a separate
role to act as an interface to the rest of the system. We generally consider



114 Methodologies and Software Engineering for Agent Systems

a human user as an external resource. In MaSE we do not explicitly model
human-computer interaction; we create a specific role to encapsulate the user
interface. In this way, we can define the ways in which a user can interface
with the system without defining the user interface itself. Other resources such
as databases, files or legacy systems may also require their own interface role.
In our example, the Author role does not satisfy any system goals as it is an
interface to the user; however, without it, the system is not needed.

Role definitions are captured in a MaSE Role Model as shown in Figure 6.2,
which includes information on interactions between role tasks and is more
complex than traditional role models, as described in (Kendall, 1998). Roles
are denoted by rectangles, while a role’s tasks are denoted by ovals attached
to the role. Lines between tasks denote communications protocols with the ar-
row pointing from the initiator to the respondent. Solid lines indicate external
communications while dashed lines denote communication between tasks in
the same role instance.

Figure 6.2. MaSE Role Model

The tasks are generally derived from the goals for which a task is respon-
sible. For instance, the PaperDB role is responsible for attaining goals 1.1.1,
1.1.2, and 1.1.2.1. Therefore, to accomplish this goal, the role must be able
to collect papers and distribute them and their abstracts. Therefore, we cre-
ated three interrelated tasks: Collect Papers, Distrib Papers, and GetAbstracts.



The MaSE Methodology 115

While we could have specified all three goals in a single task, partitioning them
in this was is modular and effectively encapsulates the actual approach used.

Roles should not share or duplicate tasks. Sharing of tasks is a sign of
improper role decomposition. Shared tasks should be placed in a separate role,
which can be combined into various agent classes in the Design phase.

Concurrent Task Model. After roles are created and tasks identified, the
developer captures the role’s behavior by defining the details of the individual
tasks. A role may consist of multiple tasks that, when taken together, define the
required behavior of that role. Each task executes in its own thread of control,
but may communicate with each other. Concurrent tasks are defined in Con-
current Task Models (see Figure 6.3) and are specified as finite state automata,
which consist of states and transitions. States encompass the processing that
goes on internal to the agent while transitions allow communication between
agents or between tasks.

Figure 6.3. Concurrent Task Diagram

A transition consists of a source state, destination state, trigger, guard condi-
tion, and transmissions and uses the syntax trigger [guard] ^ transmission(s).
Multiple transmissions may be separated with a semicolon (;), however, no
ordering is implied. Generally, events on triggers or transmissions are to be
associated with a task within the same role, thus allowing internal task coor-
dination. However, two special events, send and receive, are used to indicate
messages sent between agents. The send event (denoted send(message, agent))
is used to send a message to another agent while the receive event (denoted as
receive(message, agent)) signifies the receipt of a message. The message is
defined as a performative, which describes the intent of the message, along
with a set of parameters that are the content of the message (i.e., performa-



116 Methodologies and Software Engineering for Agent Systems

tive(p1 ... pn) where p1 ...pn denotes n parameters). It is also possible to send
a message to a group of agents via multicasting using a < group-name > versus
a single agent name.

States may contain activities that represent internal reasoning, reading a per-
cept from sensors, or performing actions via actuators. Multiple activities may
be included in a single state and are performed in an uninterruptable sequence.
Once in a state, the task remains there until the activity sequence is complete.
The variables used in activity and events definitions are visible within the task,
but not outside of the task or within activities. All messages sent between roles
and events sent between tasks are queued to ensure that all messages are re-
ceived even if the agent or task is not in the appropriate state to handle the
message or event immediately.

Concurrent tasks have predefined activities to deal with mobility and time.
The move activity specifies that the agent is to move to a new address and
returns a Boolean value (Boolean = move(location)), which states whether the
move actually occurred. The agent can reason over this value and deal with it
accordingly.

To reason about time, the Concurrent Task Model provides a built in timer
activity. An agent can define a timer using t = setTimer (time), the setTimer
activity. The setTimer activity takes a time as input and returns a tinier that
will timeout in exactly the time specified. The timer that can then be tested via
the timeout activity, which returns a Boolean value, to see if it has “timed out”
(Boolean = timeout(t)).

Once a transition is enabled, it is executed instantaneously. If multiple tran-
sitions are enabled, the following priority scheme is used.

Transitions whose triggers are internal events.

Transitions whose transmissions are internal events.

Transitions whose trigger receives a message from another role.

Transitions whose transmissions are a message to another role.

Transitions with valid guard conditions only.

1

2

3

4

5

Figure 6.3 shows the Assign to Reviewers task for the Assigner role. The
task is initiated upon receipt of a makeAssigns message from a Partitioner
agent, which includes a list of papers to be assigned. After the message is
received, the task goes to the MakeAssignments state where it computes a list
of reviewers for the papers (a process that is as yet undefined). Once these
list is defined, the task transitions to the RequestReviews state where the top
reviewer/papers tuple is taken off the list. A reviewPapers message is then sent
to the reviewer effectively requesting that the agent provide a review for the



The MaSE Methodology 117

associated papers, which is denoted by the paps parameter. The task remains
in the Wait state until a reply from the reviewer is received. If the reviewer
declines (via a decline message), the task returns to the MakeAssignment state
where it computes a new list of reviewers for the remaining papers. If the
reviewer accepts the request via an accept message, the task transitions to the
updatePaperList state where the list of papers is updated by adding the name
of the reviewer to the papers that they will be reviewing. If the list is not
empty, the task returns to the RequestReviews state to make a request of the
next reviewer on the list. If the size of the reviewers list is empty, the task ends
by sending an assignmentComplete message to the Partitioner agent.

3.4 Analysis Phase Summary

Once the concurrent tasks of each role are defined, the Analysis phase is
complete. The MaSE Analysis phase is summarized as follows:

Identify goals and structure them into a Goal Hierarchy Diagram.

Identify Use Cases and create Sequence Diagrams to help identify roles
and communications paths.

Transform goals into a set of roles.

1

2

3

(a)

(b)

Create a Role Model to capture roles and their tasks.

Define role behavior using Concurrent Task Models for each task.

4. Design Phase

There are four steps to the designing a system with MaSE. The first step is
Creating Agent Classes, in which the designer assigns roles to specific agent
types. In the second step, Constructing Conversations, the conversations be-
tween agent classes are defined while in the third step, Assembling Agents
Classes, the internal architecture and reasoning processes of the agent classes
are designed. Finally, in the last step, System Design, the designer defines the
number and location of agents in the deployed system.

4.1 Creating Agent Classes

In the Creating Agent Classes step, agent classes are created from the roles
defined in the Analysis phase. This phase produces an Agent Class Diagram,
which depicts the overall agent system organization consisting of agent classes
and the conversations between them. An agent class is a template for a type
of agent in the system and are defined in terms of the roles they will play and
the conversations in which they may participate. If roles are the foundation
of MAS design, then agent classes are the bricks used to implement MAS.



118 Methodologies and Software Engineering for Agent Systems

These two different abstractions manipulate two distinct system dimensions.
Roles allow us to allocate system goals while agent classes allow us to consider
communications and other resource usage.

The first step is to assign roles to each agent class. If assigned multiple
roles, agent classes may play them concurrently or sequentially. To ensure
that system goals are accounted for, each role must be assigned to at least one
agent class. The analyst can easily change the organization and allocation of
roles among agent classes during design, since roles can be manipulated mod-
ularly. This allows consideration of various design issues, which are based on
standard software engineering concepts such as functional, communicational,
procedural, or temporal cohesion.

During this step, we also identify the conversations in which different agent
classes must participate. An agent’s conversations are derived from the exter-
nal communications of the agent’s assigned roles. For instance, if roles A and
B communicate with each other, then, if agent 1 plays role A and agent 2 plays
role B, then there must be a conversation between agent 1 and agent 2.

The agent classes and conversations are documented via Agent Class Dia-
grams, which are similar to object-oriented class diagrams with two main dif-
ferences. First, agent classes are defined by the roles they play, not by attributes
and methods. Second, all relationships between agent classes are captured as
conversations. A sample Agent Class Diagram is shown in Figure 6.4. The
boxes in Figure 6.4 denote agent classes and contain the class name and the set
of roles each agent plays. Lines with arrows identify conversations and point
from the conversation initiator to the responder. In this design, the PC Chair
agent plays the Partitioner, Collector, and Decision Maker roles while the PC
Member agent plays both the Assigner and Reviewer roles. Outside of Au-
thors, the only other agent is the DB agent, which provides an interface to the
database containing papers, abstracts, and author information.

Figure 6.4. Agent Class Diagram

The Agent Class Diagram is the first design object in MaSE that depicts the
entire MAS in its final form. If we have carefully followed MaSE to this point,
the system represented by the Agent Class Diagram will support the goals and
Use Cases identified in the Analysis phase. Of particular importance at this



The MaSE Methodology 119

point is the system organization – the way that the agent classes are connected
with conversations.

4.2 Constructing Conversations

Constructing Conversations is the next MaSE Design phase step. So far, the
designer has only identified conversations; the goal of this step is to define the
details of those conversations based on the internal details of concurrent tasks.

A conversation defines a coordination protocol between two agents and
is documented using two Communication Class Diagrams, one each for the
initiator and responder. A Communication Class Diagram, as shown in Fig-
ure 6.5, is similar to a Concurrent Task Model and defines the conversation
states of the two participant agent classes. The initiator begins the conversa-
tion by sending the first message. When the other agent receives the message,
it compares it to its active conversations. If it finds a match, the agent tran-
sitions the appropriate conversation to a new state and performs any required
actions or activities from either the transition or the new state. Otherwise, the
agent assumes the message is a new conversation request and compares it to
the conversations it can participate in with the sending agent. If the agent finds
a match, it begins a new conversation.

As stated above, communication class diagrams use states and transitions
to define the inter-agent communication. Transitions use the following syntax:
rec-mess(args1) [cond] / action ^ trans-mess(args2). This states that if the
message rec-mess is received with the arguments args1 and the condition cond
holds, then the method action is called and the message trans-mess is sent with
arguments args2.

The transition from the start state in Figure 6.5 (left) indicates that it is the
initiator half of a conversation, since it transmits a message. The conversation
describes how the PCChair agent (the conversation initiator) sends a message
to the Author agent notifying it of the acceptance. At this point, the PCChair
enters a wait state. If the Author can still attend the conference, it sends an
accept message (Figure 6.5 right) and the conversation is completed. If the
Author cannot attend the conference, it returns a decline message. After re-
ceiving a decline message, the PCChair performs the updatePapers activity to
update its list of attendees.

As discussed above, the designer establishes an agent’s set of conversations
by the roles it has been assigned. In the same way, the conversation design is
derived from the concurrent tasks associated with those roles. Since a concur-
rent task integrates inter- and intra-role interactions, it provides the information
required to define conversations. Each task that defines external communica-
tion creates one or more conversations. If all task communication is with a
single role, or set of roles that have all been mapped to a single agent class, the



120 Methodologies and Software Engineering for Agent Systems

Figure 6.5. Inform authors conversation initiator and responder

task can be mapped directly to a single conversation. More generally, however,
concurrent tasks spawn multiple conversations.

Once the information from Concurrent Task Models has been integrated
into conversations, the designer must ensure that other factors, such as robust-
ness and fault tolerance, are taken into account. For instance, if a particular
agent sends a message to another agent requesting an action be performed, the
conversation should be able to handle the other agent’s refusal or inability to
complete the request.

4.3 Assembling Agents

Agent class internals are designed during the step Assembling Agents, that
includes two sub-steps: defining the architecture of agents and defining the ar-
chitecture’s components. Designers have the choice of either designing their
own architecture or using predefined architectures such as BDI. Likewise, a
designer may use predefined components or develop them from scratch. Com-
ponents consist of a set of attributes, methods, and possibly a sub-architecture.

An example of an Agent Architecture Diagram is shown in Figure 6.6. Ar-
chitectural components (denoted by boxes) are connected to either inner- or
outer-agent connectors. Inner-agent connectors (thin arrows) define visibility
between components while outer-agent connectors (thick dashed arrows) de-
fine external connections to resources such as agents, sensors and effectors,
databases, and data stores. Internal component behavior may be represented
by formal operation definitions or state-diagrams. The architecture and in-
ternal definition of the components must be consistent with the conversations
defined in the previous step. At a minimum, this requires that each action or
activity defined in a Communication Class Diagram be defined as an operation
in one of the internal components. The internal component state diagrams and
operations can also be used to initiate and coordinate various conversations.



The MaSE Methodology 121

Figure 6.6. PCChair Agent Architecture

The PCChair agent architecture is shown in Figure 6.6. The PCChair agent
has three components, which basically implement a pipeline architecture. The
Partitioner component receives abstracts and uses the partitionPapers method
to break the list into sets based on content. The Partitioner then calls the collec-
tReviews method of the Collector component, which waits and collects all the
reviews from the reviewer. Once all papers have been reviewed, the Collector
component calls the selectPapers method of the DecisionMaker component,
who selects the best papers and notifies the authors.

4.4 System Design

System Design is the final step of the MaSE methodology and uses Deploy-
ment Diagrams to show the numbers, types, and locations of agent instances
in a system. System design is actually the simplest step of MaSE, as most of
the work was done in previous steps. Figure 6.7 shows a Deployment Diagram
for the conference management system. The three-dimensional boxes repre-
sent agents while the connecting lines represent actual conversations between
agents. The agents are identified by their class name in the form of instance-
name : class. Dashed boxes define physical computational platforms.

A designer should define the system deployment before implementation
since agents typically require Deployment Diagram information, such as a
hostname or address, for communications. Deployment Diagrams also offer
an opportunity for the designer to tune the system to its environment to max-
imize available processing power and network bandwidth. In some cases, the
designer may specify a particular number of agents in the system or the specific
computers on which certain agents must reside. The designer should also con-
sider the communication and processing requirements when assigning agents
to computers. To reduce communications overhead, a designer may choose
to deploy agents on the same machine. However, too many agents on a single
machine destroys the advantages of distribution gained by using the multiagent
paradigm. Another strength of MaSE is that a designer can make these mod-



122 Methodologies and Software Engineering for Agent Systems

Figure 6.7. Deployment Diagram

ifications after designing the system organization, thus generating a variety of
system configurations.

4.5 Design Phase Summary

Once the Deployment Diagrams are finished, the Design phase is complete.
The MaSE Design Phase can be summarized as follows:

Assign roles to agent classes and identify conversations.

Construct conversations, adding messages/states for robustness.

Define internal agent architectures.

Define the final system structure using Deployment Diagrams.

1

2

3

4

5. agentTool

The agentTool system (DeLoach and Wood, 2001) has been developed to
support and enforce MaSE. Currently agentTool implements all seven steps of
MaSE as well as automated design support. The agentTool user interface is
shown in Figure 6.8. The menus across the top allow access to several sys-
tem functions, including analysis to design transformations (Sparkman et al.,
2001), conversation verification (Lacey et al., 2000), and code generation. The
buttons on the left add specific items to the diagrams while a text window dis-
plays system messages. The different MaSE diagrams are accessed via the
tabbed panels across the top of the main window. When a MaSE diagram is
selected, the designer can manipulate it graphically in the window. Each panel



The MaSE Methodology 123

has different types of objects and text that can be placed on them. Selecting an
object in the window enables other related diagrams to become accessible.

Figure 6.8. agentTool

While the designer may use existing architectures or design a new one from
scratch, agentTool also provides the ability to semi-automatically derive the
agent architecture directly from the roles and tasks defined in the analysis
phase. This approach has the advantage of providing a direct mapping from
analysis to design. Each task from each role played by an agent defines a com-
ponent in the agent class. The concurrent task itself is transformed into a com-
bination of the component’s internal state diagram and a set of conversations.
Activities identified in the concurrent task become methods of the component.

The transformation is actually a sequence of transformations that incre-
mentally change roles and tasks into agent classes, components, and conver-
sations. Before beginning the analysis-to-design transformation process, the
Role Model and its set of concurrent tasks, and the assignment of roles to
agent classes must exist. During the first stage of the transformation process,
agentTool derives agent components from their assigned roles and assigns ex-
ternal events to specific protocols. In the second stage, agentTool annotates
the component state diagrams to determine where conversations start and end.
During the last stage, agentTool extracts the annotated states and transitions
and uses them to create new conversations, replacing them in the component
state diagram with actions initiating the conversation.

A second set of transformations that is currently implemented in agentTool
consists of transformations to add functionality required for mobility. In the



124 Methodologies and Software Engineering for Agent Systems

analysis phase, mobility is specified using a move activity in the state of a
concurrent task diagram. This move activity is copied directly into the as-
sociated component state diagram during the initial set of analysis-to-design
transformation described above. During the mobility transformation, the ex-
isting design is modified to coordinate the mobility requirements between all
components in the agent design. In the derived mobility design, the Agent-
Component is responsible for coordinating the entire move and working with
the external agent platform to save its current state and actually carry out the
move.

The agentTool system also provides automatic verification of conversations.
The verification process begins with the fully automated translation of system
conversations into the Promela modeling language. Then, the Promela model
is automatically analyzed using the Spin verification tool to detect errors such
as deadlock, non-progress loops, syntax errors, unused messages, and unused
states (Holzmann, 1997). Feedback is provided to the designer automatically
via text messages and graphical highlighting of error conditions.

6. Applications

MaSE has been successfully applied in many graduate-level projects as well
as several research projects. The Multiagent Distributed Goal Satisfaction
project used MaSE to design the collaborative agent framework to integrate dif-
ferent constraint satisfaction and planning systems. The Agent-Based Mixed-
Initiative Collaboration project also used MaSE to design a MAS focused on
distributed human and machine planning. MaSE has been used successfully
to design an agent-based heterogeneous database system as well as a multia-
gent approach to a biologically based computer virus immune system. More
recently, we applied MaSE to a team of autonomous, heterogeneous search and
rescue robots (DeLoach et al., 2003). The MaSE approach and models worked
very well. The concurrent tasks mapped nicely to the typical behaviors in robot
architectures. MaSE also provided the high-level, top-down approach missing
in many cooperative robot applications.

7. Comparison with other Methodologies

There have been several methodologies proposed for developing MAS (see
chapter 7). However, we only compare MaSE against the two other method-
ologies presented in this book: Gaia (see chapter 4) and Tropos (see chapter 5).

The Gaia method, as presented in chapter 4, is one of the best-known ap-
proaches to building MAS and has many similarities with MaSE. As in MaSE,
Gaia uses roles as building blocks. In general, both the analysis phases of
MaSE and Gaia capture much of the same type of information, although in
different types of models. The major difference is in the level of support for



The MaSE Methodology 125

detailed agent design provided by Gaia. Gaia produces a high-level design
and assumes the details will be developed using traditional techniques whereas
MaSE provides models and guidance on creating the detailed design.

Tropos, which was presented in chapter 5, take a significantly different ap-
proach than MaSE. Tropos focuses on early requirements definition, which is
not stressed with MaSE. Tropos uses Yu’s i* framework (Yu, 2001), which
provides a nice front end to Tropos. In fact, the Tropos early requirements ap-
proach could be used with MaSE as the goal model of each methodology are
essentially the same.


