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Abstract
Moving-target defense has been hypothesized

as a potential game changer in cyber defense, in-
cluding that for computer networks. However there
has been little work to study how much proac-
tively changing a network’s configuration can in-
crease the difficulty for attackers and thus improve
the resilience of the system under attack. In this pa-
per we present a basic design schema of a moving-
target network defense system. Based on this design
schema, we conducted a simulation-based study to
investigate the degree to which proactively chang-
ing a network’s various parameters can decrease an
adversary’s chance for success. We believe this is
an important first step towards understanding why
and how the concept of a moving target can be suc-
cessfully applied to computer network defenses.

1 Introduction
In cyber space, attackers have an asymmet-

ric advantage in that they have time to study our
networks to determine potential vulnerabilities and
choose the time of attack and gain the maximum
benefit. Additionally, once an attacker acquires a
privilege, that privilege can be maintained for a long
time without being detected [5]. The static nature of
current network configuration approaches has made
it easy to attack and breach a system and to main-
tain illegal access privileges for extended periods of
time. Thus, a promising new approach to network

security has been suggested called the moving target
defense (MTD) [1]. While there are many facets of
MTD, for computer networks, one can broadly in-
terpret MTD as the fact that the network constantly
changes to reduce/shift the attack surface area avail-
able for exploitation by attackers. Here, the attack
surface consists of the system resources exposed to
attackers (e.g. the software residing on the hosts,
the ports open to communicate between hosts, and
vulnerabilities in the various components) as well
as compromised network resources that can be used
to further penetrate the system. While promising,
there is little research to show that MTDs can work
effectively in realistic networked systems. In fact,
the approach is so new that there is no standard def-
inition of what an MTD is in the context of network
defense, what is meant by attack surface, or metrics
to define the effectiveness of such systems.

We believe a set of objective analytical mod-
els should exist to predict the effectiveness of MTD
systems to protect computer networks. Ideally,
these analytical models would be useful at both de-
sign time and runtime. As inputs to the models,
a set of objective metrics are required that capture
specific information related to the exploitable fea-
tures of the system. The metrics must capture (1)
the area that an attacker must search to determine
the configuration of the system, (2) the modifiable
aspects of the system, and (3) what is changing in
the system configuration and how fast the configu-
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ration is changing. While the metrics capture what
and how the system is adapting, they should be re-
latable to the effort required by an attacker to attack
the system. Based on the configuration of the net-
work being defended, the analytical models should
capture the basic steps required to attack the system
and determine the effectiveness of a proposed MTD
system to defeat attacks attempting to exploit both
known as well as unknown vulnerabilities.

In this paper we present our preliminary design
of a network moving-target defense system. Based
on the design schema, we design analytical models
and methods with an eye towards capturing the ef-
fectiveness of the proposed MTD system. We then
conduct simulation-based experimentation to exam-
ine quantitatively the assumption that the MTD sys-
tem can decrease attacker’s success likelihood. We
believe such an analytical step is critical before one
sets out to build a MTD network defense system.
This is just our first step towards understanding and
quantifying the impact of moving target defenses on
computer networks. Our current analytical model
is preliminary and only captures the attacker’s per-
spective. A more comprehensive analysis will also
take into account the cost and overhead of deploying
the MTD system on the mission the network sup-
ports. We will continue our research into a more
comprehensive understanding and more realistic es-
timation of MTD’s effectiveness on computer net-
work defense, based on the insights gained from this
initial first step.

2 MTD design principles
An MTD system is generally portrayed as a sys-

tem that adapts randomly over time to make the net-
work configuration appear chaotic to a potential at-
tacker. An architecture of such a system is shown in
Figure 1. Here, an Adaptation Engine orders (what
appears to be) random adaptations to the network
configuration at random intervals. These adapta-
tions are carried out by a Configuration Manager
who controls the configuration of the Physical Net-
work. However, adaptations that were truly random
in nature could quickly yield the system inopera-
ble since services could be assigned to inappropriate

Figure 1: Basic MTD system

hosts or the communications paths required for the
system to work appropriately could be interrupted.
To enable apparently random adaptations work ef-
fectively, the underlying MTD system must have
an understanding of the functional and security re-
quirements of the system. In our system, this un-
derstanding is based on a Logical Mission Model
that reflects the current Physical Network configu-
ration as well as the functional and security require-
ments of the network. With this information, the
MTD system can make apparently random adapta-
tions with an understanding of the requirements of
the system and the current configuration.

An alternative vision for MTD systems com-
bines apparently random changes with intelligent
control. In this version, adaptations can be selected
either randomly or based on risk indicators such
as vulnerability scanning results and IDS alerts.
The basic concept combines purely random adapta-
tions with fully reactive intrusion response systems,
where all responses are made in terms of adapta-
tions. The use of intelligent control techniques al-
lows the MTD to react to suspected intrusions in-
stead of simply adapting randomly. However, addi-
tion of the random adaptations allows the MTD to
effectively mitigate unpredicted attacks as well as
mask the actions of the intelligent control system.
By incorporating reactions into adaptations, the sys-
tem can react to suspected intrusions much sooner
than a normal intrusion response system since even
responses to false positives will leave the system
in an operational state with no more overhead ex-
pended than for a random adaptation. The basic ar-
chitecture of an intelligent MTD system is shown in
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Figure 2: Intelligent MTD system

Figure 2, which extends the basic MTD system of
Figure 1. Figure 2 adds two new entities and ex-
tends the function of the existing entities. The ba-
sic operation of the random adaptation remains the
same. However, we have added an Analysis Engine
that takes real-time events from the Physical Net-
work and the current configuration from the Config-
uration Manager to determine possible vulnerabili-
ties and on-going attacks. The Adaptation Engine
now looks at the network’s current state along with
the security state to determine if there is a security
issue that needs to be addressed via a system adap-
tation. If so, a set of adaptations dealing with the
security issue is sent to the configuration manager
in addition to other random adaptations.

Adapting a network’s configuration will impact
attack success for two main reasons: 1) the attacker
needs to spend more time canvassing the network
in order to identify topological information (both
physical and logical) that will be useful in further
attacks, and 2) the attacker cannot keep privileges
gained for long and will have to frequently regain
privileges. However, these reasons for success also
imply two inherent challenges for an MTD sys-
tem. First, the MTD system must provide legiti-
mate users and applications with a way of locat-
ing required resources in the midst of the adapta-
tions. However, once a user account or application
is compromised, the attacker would gain this abil-
ity to locate resources, thus limiting the effective-
ness of MTD systems. To address this challenge,
the MTD system must limit the damage incurred by

a compromised system component by limiting the
knowledge the component has regarding the adapta-
tion process. That is, a compromised user or appli-
cation will not give an attacker complete knowledge
of the locations of other resources. Nevertheless,
an MTD will not be invincible simply because it is
moving. An attacker can still incrementally accu-
mulate knowledge and privileges as long as he is not
detected. Thus rigorous analysis is needed to under-
stand to what extend MTD can reduce the likelihood
an attack can succeed in reaching its goal. The sec-
ond challenges is that, while the MTD system can
adapt by moving or “refreshing” an application or
resource (e.g. using a fresh clean virtual machine
(VM) to replace an existing VM), the transition pro-
cess will likely disrupt services and introduce a nec-
essary overhead cost. Thus, an understanding of
the effect of adaptations on both the system per-
formance and security improvement must be under-
stood so that appropriate trade-offs can be made.

2.1 Proof-of-concept MTD system
Due to the lack of existing MTD systems to

analyze, we must design a parameterized proof-of-
concept MTD as a first step towards understand-
ing and validating the technical merits of a MTD
network defense system. While existing research
on adaptive defense systems have focused on mod-
ification of single low-level aspects of a network
such as IP addresses, our vision is to develop a
framework in which multiple aspects of the system
can be modified simultaneously. Aspects that we
plan to consider include IP addresses, ports, firewall
settings, host-application assignments, application
types/versions, and protocols. An overview of our
framework is shown in Figure 3, which is similar to
Figure 2 with details added. We illustrate our ap-
proach with a simple example that supports a mis-
sion planning system as well as allowing users to
access mission related e-mails. The mission plan-
ning system accesses three different databases: an
asset database that includes the types and numbers
of assets available to carry out mission planning, a
target database that includes the latest intelligence
on targets of interest, and a geographical database
that includes maps and related geographical infor-
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Figure 3: Design scheme for a network MTD system

mation about the areas required for planning appro-
priate ingress, target attack, and egress routes. We
assume the planner also requires access to e-mail to
coordinate with other organizations and users.

A key concept of our design is the abstract Log-
ical Mission Model that captures the network re-
sources, the services used, and the dependencies be-
tween services that are required to achieve the over-
all mission of the network. The Logical Mission
Model is based on DeLoach’s Organizational Model
for Adaptive Computational Systems (OMACS) [7].
OMACS is a model based on human organizations
that allows intelligent reasoning algorithms to as-
sign agents to play roles in an organization in or-
der to achieve specific organizational goals. Agents
can only be assigned to a role if they possess all
the capabilities required by that role. The OMACS
model is general-purpose and has been successfully
applied to multiagent systems, cooperative robotics,
and distributed sensor networks. In this research,
services are the network “roles” such as the Planner,

AssetDB, TargetDB, and GeoDB. These roles sup-
port the main “goals” of the network, which include
allowing users to plan missions (Plan Mission) and
allowing users to access e-mail (Email Access). In
the implementation each role is instantiated on an
physical or virtual host, which equate to OMACS
“agents”. In addition, required network commu-
nications between the roles is also specified in the
Logical Mission Model.

The moving-target mechanism is created by re-
assigning physical (or virtual) resources (agents)
to various roles as required to support the goals
of the mission goal model. This process is car-
ried out by the Adaptation Engine, which can be
based on existing OMACS-based reorganization al-
gorithms. These are closely related to traditional al-
gorithms for allocating single-agent tasks to single-
task agents, for which efficient suboptimal algo-
rithms exist [7, 8, 20]. The Adaptation Engine de-
termines an acceptable assignment of roles to phys-
ical resources based on the security state or a ran-
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Figure 4: Resource Mapping System

dom trigger, role requirements and computational
capabilities required. An acceptable assignment is
a near optimal assignment that is sufficiently differ-
ent from the previous set of assignments so as to
ensure the adaptation appears chaotic to an attacker.

2.1.1 Resource Mapping System
The reason for adapting can be either (1) purely

random or (2) based on identification of possible at-
tacks or known vulnerabilities by the Analysis En-
gine, which produces a Conservative Attack Graph
that indicates such potential threats. A conservative
attack graph’s nodes represent captured assets by at-
tackers. Unlike traditional attack graphs, a conser-
vative attack graph will err on the security side and
assume there is an attack path between any two as-
sets as long as the attacker is able to identify the
target asset from the source asset. Since the sys-
tem is constantly adapting, the mapping from a role
to the actual resources used to instantiate the role,
including its IP addresses, is also constantly chang-
ing. Thus in general an attacker will not be able
to launch an attack from an asset to any other as-
set. However, the assets need to perform their ex-
pected functionalities and for this reason they need
to know the assets with which they need to com-
municate with (the dotted lines in Figure 4). There
needs to be a mechanism to enable such legitimate
locating of resources. In our design we call it the
Resource Mapping System (RMS).

The purpose of the RMS system is to serve as a
security policy enforcement unit for each role. It is
best implemented as a hardened system component.

As shown in Figure 4, the role of the RMS module
in our MTD design is two-folded:

1. It coordinates with the Configuration Man-
ager, which pushes the configuration to var-
ious resources. All communication between
system services must go through the RMS so
that communications can be maintained even
as the location of the services change.

2. In an attempt to access and exploit services,
the attacker may either (1) follow the RMS
or (2) try to guess their locations. The
first option forces them to follow a pre-
defined pattern that significantly simplifies in-
trusion detection and prevention. The sec-
ond forces them to repeatedly conduct exten-
sive reconnaissance to re-identify service lo-
cations, thus increasing the attackers’ effort
and the likelihood of revealing themselves.

We envision that each critical role will be as-
signed to a single VM, which will have a dedicated
RMS to handle communication with other critical
roles. Each RMS will only know the locations of
the roles it needs to communicate with as defined
by the communication requirements of its associ-
ated role. The RMS could be transparent, working
as an IP-layer proxy, or provide an API for send-
ing network packets to abstract resources. In either
case, all communications between mission-critical
roles are controlled by the RMS even as their loca-
tions change dynamically.

A drawback to the RMS occurs if attackers com-
promise a critical role/VM. In this case other roles
for which the compromised role initiates commu-
nications can be easily located and attacked since
the compromised role’s RMS knows their location.
However, the attacker must follow the exact com-
munication pattern defined by the role model, thus
dramatically reducing the potential attack surface.
Here, adaptation comes to the rescue. Eventually,
the VM of the compromised role will change and
the attacker will lose any gained privileges. In this
case, even low-confidence alerts could be used to
trigger adaptations. We believe that the RMS sys-
tem is best implemented as a thin layer between the
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virtual machine monitor (VMM) and the VM’s op-
erating system, so that a compromised VM cannot
directly corrupt the integrity of the RMS.

The actual reconfiguration of the physical re-
sources is carried out via a Configuration Man-
ager, which must be highly secure since obtaining
it would enable an attacker to determine the system
configuration quickly at any time. The Configura-
tion Manager will work closely with the RMS to
handle the communication among the critical ser-
vices.

2.2 Conservative Attack Graph
An integral aspect of MTDs is that an attacker

must continually re-gain the knowledge and privi-
leges obtained through prior attacks. For example,
VM refreshing will eliminate all privileges gained
on the VM effectively forcing the attacker to take a
step back in the plan toward the goal. This effect
invalidates the typical monotonicity assumption [2]
found in most attack-graph works where an attacker
cannot lose a privilege after gaining it. In an MTD
system, it becomes important to model losing privi-
leges due to constant changes in the system config-
uration. The frequency of such MTD mechanisms
will affect how far an attacker can move forward in
a system. Modeling such dynamism requires a state-
machine model, rather than the commonly used de-
pendency attack graphs [10, 12, 14]. Previous state-
enumeration attack graphs [15, 19] have encoun-
tered scalability challenges when applied to large
networks [14]. However, for analyzing the MTD ef-
fect on computer networks, we do not need to apply
a fine-grained attack-graph model. Thus, we pro-
pose a conservative attack graph, which assumes
the existence of unknown vulnerabilities without
enumerating every one of them. This assumption
actually makes the state model smaller and will
likely lend itself to stochastic analysis.

As an example, Figure 5 shows the conserva-
tive attack graph for the mission planning system
depicted in Figure 3. The topology of the con-
servative attack graph is partially derived from the
role model that supports the mission goals. As
shown in Figure 3, the Planner role initiates inter-
actions (depicted by the arrows between roles) with
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Figure 5: Conservative Attack Graph

the AssetDB, TargetDB, GeoDB, and Mail Server
roles. In our MTD system design, this security pol-
icy is enforced by the RMS explained above. The
only legitimate access paths in the system are (1)
from the Internet to the Planner or the Mail Server
and (2) from the Planner to the Mail Server and
the three database servers (AssetDB, TargetDB, and
GeoDB). The conservative attack graph captures
these logical access paths.

A key motivation of MTDs is that if an attacker
deviates from the presumed access paths, e.g. by
guessing wrong the location of the service to attack,
it will fall into a decoy that can issue alerts and track
the attacker’s activities. The RMS components on
the virtual machines implement the network com-
munication policy (derived from the role model) to
adhere to the logical paths. If an RMS component
is compromised, the attacker would be able to by-
pass this control and try to access a service that is
not exposed to the VM. However, in such situations
the compromised RMS (and the attacker) would not
know the location of those services and thus the at-
tacker would have to correctly guess the IP address
and port (among other aspects) of the next target,
which is a low-probability event. Thus we can as-
sume that a successful attack must follow the pre-
defined service access paths, which dramatically re-
duces the attack surface of the system.

The conservative attack graph can be viewed as
a state-transition system. Each arrow is annotated
with a label describing the activities involved to
move from one state to the next. The effort involved
in the activities can be measured in various ways.
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For example, one can ascribe a success-likelihood to
time diagram to indicate how much time it will take
the attacker to reach a certain success likelihood for
a specific action. From each state, there will also be
a probability for the attacker to be forced to “move
back” to one of the prior state along the path, due
to the MTD mechanisms. These will be added as
additional transitions among states when designing
metric models.

3 Simulation-based Experiments
To determine if our approach has merit, we

devised a high-level simulation that reflects a
MTD system. The simulation testbed was built
on an existing network security simulator called
NeSSi2 [18]. NeSSi2 is an open-source, discrete-
event based network security simulator with exten-
sive support for constructing complex application-
level scenarios based on a simulated TCP/IP proto-
col stack. Figure 6 shows our simulated network
topology created in NeSSi2.

3.1 Simulation Assumptions
As the first step in our simulation-based re-

search, we made a number of simplifying assump-
tions in the adversary model and adaptation mecha-
nisms. Such limitations are not inherent in the MTD
system design and will be removed in our future re-
search.

3.1.1 Assumptions on adversary model
We assume that once a node is compromised,

the attacker can immediately use the RMS to attack
the next node in the attack path. The attacker is as-
sumed to know the basic system architecture as de-
fined by the Role Model and thus the attack is re-
stricted to the four VMs assigned to the four roles.
The attacker is assumed to know immediately when
a resource it has compromised has been refreshed.

3.1.2 Assumptions on the adaptation mecha-
nisms

All adaptations are applied at a specified time
interval and are random in nature. Adaptations are
limited to VM refreshing, and all VMs assigned to
a given role have the same configuration except for
its ID and IP address.

While these assumptions make the simulation
easier, they are also tilted in favor of the attacker.
First, we assume only a simple (as opposed to in-
telligent) MTD system. Second, we only use VM
refreshing thus we do not assume any variability
of software versions, operating systems, etc. that
would make compromises more difficult. We also
assume the attacker knows the system design and
that the attacker can immediately compromise the
RMS thus allowing the attacker to immediately at-
tack the next target.

3.2 Moving mechanisms and attacks
The three main components of our testbed in-

clude the Defense component, the Attack compo-
nent and the Ground Truth component. The De-
fense component contains the Configuration Man-
ager, three physical resources (hosts) and four active
VMs. These four VMs can be assigned to any host
to play any of the four roles: Planner, TargetDB,
AssetDB, or GeoDB. The Configuration Manager
is the core of the Defense component and combines
the functionality of the Configuration Manager and
the Adaptation Engine from Figure 3. At each simu-
lation time interval, the Configuration Manager se-
lects an adaptation by creating a new task, tnew =
{role, host, vmid, ip}, by (1) randomly picking a
role, (2) randomly picking a host, (3) generating a
new unique VM ID, and (4) randomly picking an
unassigned IP address. The Configuration Manager
finds the associated old task, told = {role, host′,
vmid′, ip′}, within its set of existing tasks, T , by
matching role names. It then informs the old task’s
current host, host′, to shut down the vmid′ VM and
tells the new host, host, to start up a new VM at ad-
dress ip to play the role. Finally, the Configuration
Manager updates the Ground Truth component with
the current configuration.

The Attack component is responsible for sim-
ulating the attack and makes extensive use of the
CAG, which allows the attacker to know exactly
where to attack in order to achieve its overall at-
tack goal (to compromise the TargetDB). The At-
tack component uses the CAG shown in Figure 7 to
guide the attack. As we can see, the only available
attack path is to penetrate from Internet to Planner,
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Figure 6: Network Topology
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then from Planner to TargetDB. The edge values in
the CAG denote the attacker’s probability of success
of an attack launched from the one node to the next,
if both nodes remain static. For example the 0.4 be-
tween planner and TargetDB means that the attacker
has a 40% chance of compromising the TargetDB
if (1) it has already compromised the Planner and
(2) the Configuration Manager does not adapt either
the Planner or the TargetDB during the time step. In
the real system, the edge values will be computed
based on combining the probability of unknown and
known vulnerabilities of the roles in the current con-
figuration.

Each simulated attack has several steps. First
the current CAG is retrieved from the Ground Truth
component. Next, after waiting ∆t time intervals
(which simulates the time required to launch an at-
tack), an updated version of the CAG is retrieved
and used to determine whether the attack has suc-
ceeded or not. To determine attack success, we first
generate a random value and check to see if it ex-
ceeds the CAG edge value for the current attack. If it

does, the simulation determines if the VMs on either
the attacker’s current node or the attacked node have
been refreshed; if either of them has been refreshed,
the attack fails. If the attacker’s current node was
the VM that was refreshed, the attacker is pushed
back to its previous node. If neither were refreshed,
the attack succeeds.

The Ground Truth component maintains the cur-
rent CAG and provides the connection between the
Attack component and Defense component. The
Ground Truth component receives task information
from Configuration Manager and updates the CAG
as required. It also supplies information from the
current CAG to the Attack component when re-
quested.

The Attack component, Defense component,
and Ground Truth component are implemented as
NeSSi2 components along with the three host re-
sources: hostA, hostB, hostC. These six compo-
nents are loaded onto the corresponding nodes as
shown in Figure 6. The hosts do not actually per-
form their assigned role responsibilities, but merely
exist to give the attacker something to attack. The
results of our initial experiments are presented in the
next section.

4 Results and Discussion
We conducted several experiments to see how

the frequency of system adaptation could impact in-
trusion attempts. We also included a control experi-
ment where no adaptation occurred. In each exper-

8



Figure 8: Success of Individual Attacks

iment, we assume a fixed ∆t between each attack
of 50 time intervals. However, due to the message
delivery delay in the NeSSi2 simulator between the
Attack and Ground Truth components (52 time in-
tervals), the actual ∆t was 102 time intervals. We
ran 1000 experiments each for 5 different adaptation
intervals (20, 50, 100, 200 and ∞). The adaptation
interval corresponds to the time interval between the
the Configuration Manager’s adaptation (∞ corre-
sponds to the static system).

Figure 8 shows the success of each individual
attack between nodes for each adaptation interval.
While the lines for each adaptation interval fluc-
tuates initially due to small number of samples, it
becomes more stable as the number of attacks in-
crease. We can see that when the configuration re-
mains static, the success ratio of each attack is ap-
proximately 50%. However, as the adaptation inter-
val shrinks, the individual attack success ratio also
shrinks, eventually reaching 16.2% for a adaptation
interval of 20 time intervals.

Figure 9 provides a more complete look at the
effect of the MTD as it measures the ability of the
MTD to deter a completed attack from the Inter-
net through the Planner to the TargetDB. Figure 9
clearly shows that as the adaptation interval is re-
duced, the effect of the MTD defense is clearly vis-
ible. When the configuration is static, the number
of completed attacks (out of 1000) is 245, while an

Figure 9: Attacks Completed Against TargetDB

adaptation interval of 100 reduces that number to 50
and an adaptation interval of 20 allows only 5 suc-
cessful attacks against the TargetDB.

4.1 Discussion
We believe these results demonstrate the

promising effectiveness of moving target defense
for enterprise computer networks.

The design of our MTD is based on understand-
ing the current situation, which is captured in a set
of runtime models. These runtime models allow the
system to reason over the current state of the sys-
tem and produce adaptations to confuse and rebuff
potential attackers. The simulation presented here is
our first, and one of the first anywhere, simulation of
MTD for enterprise network security. As such, the
simulation implemented only a simple MTD system
and did not demonstrate the full power of an MTD
system. However, the results demonstrate a poten-
tial effectiveness of MTD for enterprise computer
networks and, thus, we plan to continue to make the
simulated system more complex, increase the so-
phisticated of the simulated attacks, and integrate
in the full power of an intelligent MTD system.

It is also clear that the simplicity of our exam-
ple network made the task much easier for the at-
tacker. Since the ability of the attacker to reach a
particular node in the network is directly related to
the length of the path the attacker must traverse to
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reach it, it seems that the longer the path in the CAG
to a node of interest, the more protection an MTD
system provides. In the future we plan to further in-
vestigate this phenomenon to see how it can be used
in designing systems that are expected to work in an
MTD environment.

5 Related Work
Most of the prior work on MTDs in a network

context has been related to low-level techniques
such as IP address shifting and network routing and
topology control. We discuss several efforts.

Dynamic network address translation. As part
of the DARPA Information Assurance Program
starting in 1999, BBN developed a dynamic ap-
proach to active network defense in order to demon-
strate the hypothesis that “Dynamic modification
of defensive structures improves system assur-
ance” [11]. Their goal was to inhibit an attacker’s
ability to map the network, thus making attacks
more difficult. Their approach made it appear as
though the addresses and port numbers used by the
network’s computers changed dynamically via Dy-
namic Network Translation (DYNAT), which dis-
guised host identity information in TCP/IP packets.

BBN and Sandia National Labs ran several ex-
periments of DYNAT’s capability to degrade an ad-
versary’s ability to map a network. The experiments
showed that DYNAT made it almost impossible to
map the network while significantly increasing the
attacker’s effort [11]. Even when teams discovered
a host’s location or were able to hijack a session,
their advantage was time-limited due to dynamic
changes to translation seed values. The results also
showed that DYNAT highlighted typical attacker ac-
tions as obvious anomalies that made spotting the
attacks much easier. Beating DYNAT is difficult
[16] as a direct assault requires detailed knowledge
of the address hopping mechanism as well as the
compromise of a trusted device, algorithm, and ini-
tial values and keying material. Indirect assaults us-
ing phishing schemes could compromise the system
and allow an external system to participate in the
address hopping. However, there are several draw-
backs [13, 16]; DYNAT requires that trusted com-

puters on both sides of the communication be within
the protection of DYNAT processes and there are
problems related to application interoperability.

Applications that participate in their own de-
fense. In the DARPA’s APOD (Applications that
Participate in their own Defense) project [4], BBN
also proposed port and address hopping techniques
to confuse would-be attackers and thus prevent them
from identifying and ultimately attacking network
computers. Essentially, this approach was similar to
DYNAT, except that it applied port and address hop-
ping at layers above TCP such as in CORBA calls
and used off-the-shelf utilities for a more general so-
lution. However, the same advantages and problems
exist with the APOD approach as with the DYNAT
approach.

Network address space randomization. Anto-
natos et al. use a similar network address space
randomization (NASR) scheme to thwart hit list
worms [3]. Their implementation, however, is much
different as they configure DHCP servers to ex-
pire the leases of hosts at various intervals to sup-
port address randomization. They consider sev-
eral different expiration policies including chang-
ing host addresses only when hosts are rebooted as
well as using timer-based settings. The soft change
timer specifies the minimal interval between address
changes when there is no activity on the host, while
a hard change timer specifies the maximum time a
host can maintain a given address, regardless of ac-
tivity. Several experiments concluded that NASR
can be useful for hit list worm defense, although ad-
ditional research is needed. As with the DYNAT
approach above, the researchers found that the ap-
proach is also beneficial in making the worms easier
to detect.

Dynamic route adaptation. In [6], Compton pro-
posed an approach to dynamically changing net-
work packet routes so that observable traffic pat-
terns change on a regular basis [6]. The goal of this
work is to make network mapping more difficult and
to make packet sniffing less effective. They devel-
oped a new metric for topological network change
that captures the difference in the required band-
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width between two nodes. This measure was com-
bined with a mixed integer linear programming ob-
jective function designed to produce the optimal
topology to produce near optimal solutions that are
significantly different from the current solution. Re-
sults showed that, on average, links were only ac-
tive 33% of the time. The main drawback to this
approach is the time required to come up with solu-
tions, which ranged from minutes to days. To solve
this problem, Greve developed a heuristic solution
called the Network Obfuscation Heuristic (NOH)
[9], which was created by supplementing a greedy
pricing algorithm to produce a polynomial-time ap-
proximation. Although the experiments to compare
the two algorithms are not complete, they do re-
veal that NOH significantly decreases the runtime in
all cases (2 orders of magnitude for networks larger
than 20 nodes) and that the deviation from the opti-
mal solution is also acceptable for larger networks.

Proactive obfuscation Proactive obfuscation is an
approach to creating almost identical replicas of
software applications that share identical function-
ality with fewer shared vulnerabilities [17]. The ap-
proach restarts fresh versions of servers periodically
that react differently to identical attacks. Gener-
ally, when attacked using known vulnerabilities, the
modified servers either do not respond as expected
or crash instead of being compromised. The authors
propose to create these near identical replicas using
semantics-preserving code transformations. The au-
thors showed that with sufficient entropy in the ex-
ecutables, the approach was effective at thwarting
known attacks while their approach to automatically
generate diverse executables did not greatly increase
costs.

6 Conclusion
In this paper we presented a preliminary design

of a network moving-target defense system. We
conducted simulation-based experiments to study
the effects of randomly changing one aspect of the
system — role to VM mapping, in reducing at-
tacker’s success likelihood. The results show, as
expected, reduced attack success likelihood with in-
creasing frequency of changes. This is our very pre-

liminary first step towards building a comprehen-
sive evaluation and analysis framework for network
moving-target defense research.
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