Mission-oriented Moving Target Defense Based on
Cryptographically Strong Network Dynamics

Justin Yackoski Jason Li
Intelligent Automation, Inc.
_ Rockville, MD USA
{jyackoski, jli}@i-a-i.com

ABSTRACT

This paper describes a computer network moving target de-
fense (MTD) system that incorporates the benefits of both
literal modifications of various network aspects along with
semantic changes made to several fundamental aspects of
the network. The result is a cryptographically strong MTD
system that is transparent to legitimate users while appear-
ing random and chaotic to potential attackers.

Categories and Subject Descriptors

K.6.5 [Security and Protection]: Unauthorized access—
Management of computing and information system

Keywords

moving target defense, enterprise network security

1. INTRODUCTION

The static nature of current networks gives attackers time
to study our networks, determine potential vulnerabilities
and choose the time of attack. In addition, once attackers ac-
quire a privilege, they can maintain that privilege for a long
time without being detected. Further, detection-based secu-
rity approaches are likely to remain imperfect. A promising
approach to eliminating these advantages is called the mov-
ing target defense (MTD) [1], which, for computer networks,
can be interpreted as changing various aspects of the net-
work constantly to reduce/shift the attack surface available
for exploitation by attackers. It is also possible to implement
an MTD by constantly manipulating the appearance of the
network, where dynamics are imposed at the network layer
to secure attributes such as device location/identity, service
availability, user authentication, and network topology.

In this paper we present a preliminary design of a moving-
target defense system that incorporates both physical mod-
ifications of various network aspects with semantic adapta-
tion at the network layer. The result is a cryptographically

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CSIIRW ’11 October 12-14, Oak Ridge, Tennessee, USA

Copyright 2011 ACM 978-1-4503-0945-5 ISBN ...$15.00.

Approved for Public Release; Distribution Unlimited: 88ABW-2012-4397,
10-Aug-2012

Scott A. DeLoach ~ Xinming Ou
Kansas State University
Manhattan, KS USA
{sdeloach, xou}@ksu.edu

strong MTD system that is transparent to users yet appears
random and chaotic to potential attackers.

2. MTD POLICY MANAGEMENT

Our vision for MTD supports adapting multiple aspects of
a network (e.g., IP addresses, ports, firewall settings, host-
application assignments, application types/versions, proto-
cols, etc.) simultaneously and continually, all while being
transparent to legitimate users. An overview of our frame-
work is shown in Figure 1, which combines the ability to
adapt randomly over time with intelligent control to make
the network configuration appear chaotic to a potential at-
tacker. A more detailed discussion of our proposed design
and results of experiments showing its potential effectiveness
can be found in [4].

The general operation of the MTD system is driven by
the Adaptation Engine, which orders adaptations to the cur-
rent configuration. These adaptations are carried out by the
Configuration Manager, which creates a set of configuration
policies that are implemented on the Physical Network. The
state of the network is reflected in a Logical Mission Model
and a Logical Security Model, which are fed back into the
Adaptation Engine.

While the Adaptation Engine orders what appears to be
random adaptations to the network configuration at ran-
dom intervals, in reality these adaptations can be chosen
randomly or based on risk indicators such as vulnerability
scanning results and IDS alerts. However, without great
care, adapting the network on the fly would quickly yield
the system inoperable since services could be assigned to
inappropriate hosts or the communications paths required
for the system to work appropriately could be interrupted.
To enable real-time adaptations to work effectively, the un-
derlying MTD system must have an understanding of the
functional and security requirements of the system. In our
system, this understanding is based on a Logical Mission
Model and the Logical Security Model, which reflect the cur-
rent network configuration and security state as well as the
functional and security requirements of the network. With
this information, the MTD system can make apparently ran-
dom adaptations with an understanding of the requirements
of the system and the current configuration.

A key enabler of our design is the abstract Logical Mission
Model, which captures the network resources, the services
used, and the dependencies between services that are re-
quired to achieve the overall mission of the network. A key
element of the Logical Mission Model is the Mission Goal
Model, which captures the overall mission of the network

Physical
Network

Physical
Resource
Model

assigned

reflection

me ok

Role Model

Logical Mission Model
supports

I issi
Select | compositioms | Mission Goal

Targer |\ PlanMission) Model

% value N
pan Mission
_Route / Goal
"/Tail\‘(value N
| Access
configuration policies ~ - 4
l current state
= Random
Configuration) . .
su <——————— adaptations Adaptation Engine
Manager
security stateT
real time events s q B N
. . Logical Security Model
configuration .
Conservative Attack Graph [AsseB D
\ g o>\ ¢ ity Goal
o] Plan Mission] ecurity Goa
I i /kTargetDB)—-%) Assurance Model
q q % value
Analysis Engine > ssetdi i |
/\Assurance/ i 4]
- ID Vulnerabilties]/ Email Access —2Me Goal Y,
- Exploit Vulnerabilities Assurance |
S e
\ J

Figure 1: Design scheme for a network MTD system

and decomposes that mission into subgoals achievable by
various parts of the system. The rest of the Logical Mission
Model is based on the Organizational Model for Adaptive
Computational Systems (OMACS) [2], which allows intelli-
gent reasoning algorithms to assign agents (hosts) to play
roles (provide services) in an organization (system) in order
to achieve specific goals. The logical design of services is
captured in the Role Model, which shows how various roles
interact to achieve the mission goals. The Adaptation En-
gine determines an acceptable assignment of roles to physical
resources based on the security state, role requirements and
computational capabilities required.

The Analysis Engine takes real-time events from the Phys-
ical Network and the current configuration from the Config-
uration Manager to determine possible vulnerabilities and
on-going attacks, which enables intelligent control. The use
of intelligent control techniques allows the MTD to react to
suspected intrusions as well as adapting randomly, which al-
lows the MTD to mitigate unpredicted attacks and mask in-
telligent control system actions. By incorporating reactions
into adaptations, the system can react to suspected intru-
sions much sooner than a normal intrusion response system
since even responses to false positives will leave the system in
an operational state with no more overhead expended than
for a random adaptation.

The Analysis Engine updates the Logical Security Model,
which captures potential attacks and known vulnerabilities
via a Conservative Attack Graph (CAG) and their effect on
the security goals of the system as defined in the Security
Goal Model. The CAG is a novel abstraction that captures
the ability of the attacker to gain and lose privileges as adap-
tations will affect how far an attacker can move forward in
a system. Unlike traditional attack graphs, a CAG assumes
there is an attack path between any two assets as long as the
attacker is able to identify the target asset from the source
asset. Thus, we do not need a fine-grained attack-graph,

but instead propose a conservative attack graph as shown
in Figure 1, which assumes the existence of unknown vul-
nerabilities without enumerating them. The topology of the
conservative attack graph is partially derived from the Role
Model and assumes attack paths are constrained by the Self-
shielding Dynamic Network Architecture (SDNA) explained
below. A CAG can be viewed as a state-transition system,
where each arrow is annotated with a label describing the
activities involved to move from one state to the next. The
effort involved in these activities can be measured in various
ways such as a success-likelihood versus time graph. From
each state, there is also a probability for the attacker to be
forced to “move back” to one of the prior states along the
path, due to the MTD mechanisms.

Adaptations are implemented by a Configuration Man-
ager who controls the configuration of the Physical Network.
Besides informing physical hosts how to adapt their current
configuration (e.g., in terms of adapting the virtual machines
(VMs) running on them, the applications/operating systems
running on the VMs, etc.), the Configuration Manager also
determines the configuration policies required for operation
of the SDNA.

An MTD system creates significant challenges in a net-
work setting, the most important of which is allowing legit-
imate users/roles to locate required resources in the midst
of the adaptations. Thus, there must be a mechanism that
allows valid roles to communicate securely via valid access
paths by mapping the semantic views defined by these roles
into the current state of the network. We propose using
the Self-shielding Dynamic Network Architecture (SDNA)
as described in Section 3, to provide this functionality. A
key motivation of our design is that if an attacker deviates
from the access paths allowed by the SDNA they become ex-
tremely obvious, allowing the generation of alerts and track-
ing of the attacker’s activities. SDNA implements the net-
work communication policy (derived from the Role Model)

network

Host 1 Host 2 Host 3 Host 4
M VM VM wm VM
H 55 e T Semantlcally
. . 2 3 A static

SDNA

Configuration
Manager

—

| adaptations

K g
SDNA -
SDNA

controlled
dynamic
network

-

3 Configuration/Policy Commands |
— — ¥ SDNA dynamic communication
<------> Legacy host communications

Figure 2: Self-shielding Dynamic Network Architecture

to adhere to the logical paths. If an SDNA-protected node
is compromised, the attacker would also be limited to those
logical paths and thus we can assume that a successful at-
tack must follow the pre-defined service access paths, which
dramatically reduces the attack surface of the system.

3. INCORPORATING A SELF-SHIELDING

DYNAMIC NETWORK ARCHITECTURE

In our vision, the Self-shielding Dynamic Network Archi-
tecture (SDNA) serves as the security policy enforcement
unit for each role/VM. As such, SDNA’s purpose is to (1)
coordinate with the Configuration Manager via policies to
provide legitimate access to services as the location of those
services change, and (2) to limit attackers that have com-
promised a protected node to following defined paths, signif-
icantly limiting the scope of attacks and simplifing intrusion
detection and prevention. SDNA is designed to maintain
compatibility with existing operating systems, applications,
and network hardware to avoid affecting legitimate users
while simultaneously dramatically impacting the actions of
malicious users [3]. By inserting a hypervisor in each host
as shown in Figure 2, SDNA makes the network appear dy-
namic to observers while retaining the semantics necessary
for transparency to legitimate users. In the network “below”
SDNA, packets traverse a dynamic network while on the OS
and application side of SDNA, the dynamics are concealed
to provide an abstract but semantically valid view of the
network.

SDNA provides cryptographically-secure mechanisms to
add network dynamics that prevent attackers from gather-
ing and acting on information about the network using a
combination of existing networking techniques, hypervisor
technology, Common Access Card (CAC)-based authentica-
tion, and IPv6.

The objective of these dynamics is to, first, force the at-
tacker to spend significant resources to carefully guide at-
tacks, as packets sent that do not correctly follow the net-
work dynamics allow the attack to be easily and immediately
detected. Second, SDNA reveals a view of the network that
is sanitized, ambiguous, and time-varying to any attempts
to probe or map the network (including attempts from the
SDNA-protected VM). Finally, we inhibit malicious behav-
iors from within the protected VM by varying the availabil-
ity of services based on user needs and credentials.

The challenge of achieving such a vision lies in the need to

impose dynamics for an attacker while simultaneously hiding
the dynamics from existing operating systems, applications,
user expectations, routers, switches, and other components.
One aspect not to be overlooked when imposing dynamics
in this way is that the network’s semantic meaning must
be preserved at some level of abstraction. As a result, such
techniques need mechanisms to share information about the
dynamics as well as to ensure that those “in the know” re-
garding the network dynamics are legitimate and that the
information available is abstracted to limit its usefulness.

3.1 Security Controls Provided by SDNA

SDNA uses a combination of techniques including packet
manipulation via a node’s hypervisor, communication through

intermediate nodes, DNS manipulation, and credentials. These

techniques allow manipulation of the network’s appearance
in ways that improve the security of existing technologies
such as firewalls, VPNs, and IDSs. Figure 2 shows how
SDNA'’s dynamics can be enacted and managed by a set of
policies provided by a Configuration Manager.

e Protection against information gathering and
sharing — SDNA prevents nodes from determining the
actual nodes they communicate with or that provide
specific services.

e Protection of vulnerable services — Services can
be protected against all attacks by redirecting packets
unless its originator has been verified, thus protecting
the OS by removing several common attack vectors.
This forces the attacker into revealing a set of valid
credentials under their control (limiting their future
use) and creating an audit trail (allowing faster recov-
ery from the attack).

e Fine-grained security controls — SDNA allows poli-
cies to be easily defined and applied down to granular-
ity of creating individualized views of each service/role
for each user (i.e. potential attacker). Since the OS
of a compromised node does not directly access the
network, attackers cannot overcome this protection.

3.2 Implementation and a concrete example

SDNA has been tested with existing operating systems,
applications, and on network devices including laptops, PCs,
routers, and switches. While several deployment options are
supported by our implementation, in this paper we describe

time 0 1 2 3 4 5 6 7
{

| L
f f t t t 1 t

A Aisinfected

B o .\

I < X
C N ‘Cis infected
D S\

. o\

E ® N
F &“ Fis infected
G %

Figure 3: Worm’s actions in unprotected network

an unmodified operating system (Windows, Linux, etc.) sep-
arated from SDNA logic using the Xen hypervisor.

To show how adding dynamics into a network can im-
prove security, a simple concrete example is provided where
a worm has infected a node and tries to spread to the rest of
the network. We assume several nodes share a common vul-
nerability that allows remote infection via a single packet.
In a typical IPv6 network, the worm will likely attempt to
send the infection packet to other nodes by observing IPs
used, guessing the IP assignment scheme, or querying DNS
hostnames. We assume that initial infection of node A re-
sults in an ordered list of six targets (B thru G). As shown
in Figure 3, suppose node C (the second host attempted)
results in a successful infection and thus node A can divide
the remaining effort needed to spread through the network
with node C. If F is the only additional host found to be
vulnerable and infected, a total six infection packets will be
sent and two additional nodes will have been infected. As-
suming the attacker knows the IDS will trigger an alert if
more than one infection packet is sent per minute by a node
given, the entire process takes 4 minutes.

In an SDNA enabled network, the attack is affected sig-
nificantly as shown in Figure 4. Suppose SDNA has been
given policies that require C to be available to A (e.g. A has
a user that requires access to C’s service/role), but F is not
available to either A or C. In this case, node A can still infect
node C. However once C is infected, the remaining scanning
cannot be distributed. For example, while A could not in-
fect or contact B, it may be due to dynamics that hide B
from A but not C. C must therefore re-scan B. For the same
reason, A and C must each attempt to contact nodes D thru
G as a node that is not available to A it may be available to
C and vice versa. Infection of F is not possible in this case
since neither A and C have a policy-defined availability to
F. Beyond simply limiting the spread of the worm to node C
instead of both C and F as in the previous case, the amount
of time, effort, and risk required by the attacker has been
increased since a total of 11 infection packets must now be
sent (6 by A, 5 by C) and the attack takes 7 minutes to
complete (note that C doesn’t begin scanning until after it
is infected and the same IDS detection threshold is present).

4. DISCUSSION

A drawback to any MTD system is that there are a set of
critical roles that must exist. In other words, the network
must still function to allow the mission to be conducted.
However, by slowing the attacker’s use of these roles and
creating an abstract view of the network that requires addi-
tional time and effort from the attacker, the system’s secu-
rity can be improved even in the case of a compromised node
in the network. This power of combining SDNA with vir-

time ,0 1 2 3 4) 6 7.
f

A Aisinfected

Cc N RN Sié‘i{\fecteq

E % U8

F ® R

G % 0»

Figure 4: Worm’s actions under SDNA’s dynamics

tual machine (VM) level dynamics through a cohesive MTD
policy system is made clear by this example. If the MTD
includes VM refreshing as an adaptation mechanism, SDNA
will slow the spread of such worms to allow time to eventu-
ally refresh all VMs (including those infected) thus removing
the worm from the system.

In our approach, if a node is compromised, other nodes
along valid access paths become potentially vulnerable since
communication with them may appear to be valid. However,
due to SDNA, the attacker must follow the exact commu-
nication paths defined by the configuration policies and the
abstract view provided by SDNA requires more effort from
the attacker, thus dramatically reducing the attack surface
and simplifying detection. Here, adaptation comes to the
rescue as, eventually, the compromised node’s VM will be
refreshed and the attacker’s privileges will be lost.

While SDNA has been implemented and demonstrated in
a variety of configurations, a complete MTD system is cur-
rently being developed. Building on SDNA will provide a
solid foundation for our MTD work as communications be-
tween the network nodes will occur in a secure manner. By
removing the ability to map the network based on analyzing
communication patterns and packets while simultaneously
changing the network topology (randomly or based on in-
trusion alerts), we believe we can eliminate the advantages
currently enjoyed by attackers thus greatly increasing net-
work security.

S. ACKNOWLEDGEMENT

This work was supported by the Air Force Office of Sci-
entific Research under award no. FA9550-12-1-0106, the Air
Force Research Laboratory under award no. FA8750-11-C-
0179,and U.S. National Science Foundation under award no.
1038366 and 1018703.

6. REFERENCES

[1] National Cyber Leap Year Summit 2009 co-chairs’
report, networking and information technology research
and development. Technical report, Sept. 2009.

[2] S. A. DeLoach, W. Oyenan, and E. Matson. A
capabilities-based model for adaptive organizations.
Autonomous Agents and Multi-Agent Systems,
16:13-56, 2008.

[3] J. Yackoski, P. Xie, H. Bullen, J. Li, and K. Sun. A
self-shielding dynamic network architecture.
Proceedings of IEEE MILCOM, pages 1381-1386, 2011.

[4] R. Zhuang, S. Zhang, S. A. DeLoach, X. Ou, and
A. Singhal. Simulation-based approaches to studying
effectiveness of moving-target network defense. In
National Symposium on Moving Target Research, 2012.

