
Category Theoretic Approaches of Representing

Precise UML Semantics

Jeffrey Smith1, Scott DeLoach2, Mieczyslaw Kokar3 and Ken Baclawski3

1 Mercury Computer Systems Inc.
2 Northeastern University

3 Air Force Institute of Technology

1 Introduction

There have been a number of formal approaches for specifying UML semantics [2–4, 8–
11]. Unlike these approaches, the purpose of this position paper is to present a case for
the community defining precise UML semantics to consider category theoretic approaches
for representing UML semantics based on the authors actual experiences. Category theory
has been gaining popularity for formal approaches in software engineering. While many
formal specification techniques provide the ability to describe the structure and behavior of
specification objects, category theory explicitly captures relationships between specification
objects. The motivation for considering a category theory based approach is:

– At least a portion of the pUML group is searching for diagrammatic techniques for formal
semantic representations based on last year’s workshop held concurrent with OOPSLA’99.

– To have tool support for developing domain theories (ontological engineering), code from
specifications, specifications from code and specification refinement.

– The graphical and language support for specification composition is much more powerful
than Z-like includes or with simple algebraic specification techniques.

– The general theory of diagrams enables nodes and arcs to be related in a way that
preserves the structure and content of the source diagram in the target diagram making
it possible for diagrams of specifications to be parameterized and instantiated where the
result is a diagram, not a single specification [12].

– Category theory is intensional versus extensional - implicit versus explicit [5], i.e. to check
an instance of a UML diagram against a category theory based form of semantics one
would show that the class of models of any instance is within the class of models of
the UML metamodel, rather than show an explicit association (of classes of models with
algebraic specifications in both the source and target specifications).

– Category theory has been described as a potential formal foundation for the emerging
UML RT standard [7].

DeLoach [13] motivated the research described in this position paper by specifying OMT
semantics using category theory arrows to map from the internal structure between cate-
gory objects (objects in the category of interest), so specification morphisms can map the
axioms in a specification to theorems of the derived specification. In this research, DeLoach
had developed an object oriented extension of Kestrel Institute’s Slang [17] - an algebraic

specification language where specifications are theory presentations using higher order logic
extended with category operations e.g. products, coproducts, quotients, subsorts and dia-
grams. This Slang extension, called O-Slang, was developed to incorporate the category
theory operations necessary to define relationships between object classes.

We’ve constructed two methods of implementing correctness proving transformations
from UML to a Slang formal specification. One approach was to construct a Slang form
of a Core metamodel portion of the UML Semantics Guide [1] (by coincidence, this Core
metamodel is very much like the one defined by the pUML group in [4]) and to ensure that
a transformation from a UML application to Slang is consistent with the Slang form of
UML Semantics [15, 16]. Another approach was to define a theory-based object model, with
an associated object-based formal specification language (viz. O-Slang) and to translate
UML applications to O-Slang. In a related effort, we’ve performed the language-to-language
translation of O-Slang to Slang. The first approach is distinguished from the second in
that,

– The focus was to definitize UML through formalizing the UML metamodel rather than
creating a theory-based object model that could be used for other object oriented speci-
fication paradigms.

– The goal was on the meta-modeling and validation process and tool support, generalizable
to formalization of many semi-formal modeling languages.

– An object and instance are both meta-objects, specified in the UML Semantics Guide,
and are dependent on a meta-object hierarchy that includes specifications of many other
meta-objects, e.g. Classifier, Association, Attribute, etc., all of which have only semi-
formal semantic specification.

In either method, the translation of UML diagrams to formal semantics was automated. In
this paper, we give a brief overview of each technique and pointers to the complete research
descriptions to further a workshop discussion on the use of category theory as a formalism
that could be used to represent UML semantics. The next step would be to compare our
two implementation approaches with other similar category theoretic efforts and work with
the community defining precise UML semantics, contributing portions of an agreed upon
rigorous UML semantic description of consensus.

2 Method 1 - Category Theory Based Form of UML Semantic

Representation and Validation Overview

The purpose of this research was to bridge formal and CASE-based development methods
by deriving a methodical process for checking the correctness of the automatic translation
of a UML diagram to a formal language with respect to the UML metamodel. This process
consisted of formalizing a subset of the UML metamodel and showing that the class of models
generated by the translator was within the class of models of the UML metamodel.

The formalization of both UML, and UML application specifications, must be performed
in an extensible and automatable fashion that supports specification composition and CASE

tool interoperability. The focus of this research was in the meta-modeling and validation
process and tool support generalizable to the formalization of many semi-formal modeling
languages. This UML formalization process approach is portrayed in Figure 1.

Fig. 1. UML Semantic Formalization Process

Mapping 1 describes the formalization of the UML metamodel. Formalization rules de-
scribe how to translate UML Semantics Guide (meta) objects into Slang, with a rationale
for each formalization rule and a description of formalization rule alternatives.

Mapping 2 shows the software and tool support needed to automatically translate UML
applications (described as the UML Graphical Domain) to Slang, according to the formal-
ization rules described in the last paragraph. The Slang version of the UML Graphical
Domain is called the UML Formal Domain.

Mapping 3 represents the verification of the correctness of the translation. Here, instances
of the Slang form of the UML Graphical Domain (i.e. the UML Formal Domain) are checked
for compatibility with the Slang representation of abstract UML theory, viz. the UML
Formal Semantics in Figure 1. Instances are checked to ensure that the Slang form of the
UML Graphical Domain translation preserves the UML semantics captured in mapping 1. To
explain this step, both the specification of the UML metamodel, and of any UML diagram,
are viewed as a presentation of a theory (in Slang). The goal is to ensure that the class of
models of the theory, obtained as a translation of any UML diagram, is a subclass of models
of the theory of the UML metamodel. In order to show this, it must be shown, for each
such translation, there exists a morphism from the UML metamodel theory to the theory
representing a given UML diagram.

Mapping 4 is a mapping of all possible UML diagrams that can be produced within
a UML CASE tool into the UML metamodel. In other words, mapping 4 represents an
interpretation of a UML diagram in the UML metamodel. Mappings 1 and 4 collectively
constitute the formalization of UML diagrams. Mapping 5 shows the check of UML semantics
and constraints that is assumed to be performed within a CASE tool.

3 Method 2 - Theory-based Specification Overview

The goal of the theory-based specification method was to transform graphically based object-
oriented diagrams into working code. Our approach was to define a theory-based object model
that captured all the important characteristics of object-orientation without regard to the
actual UML Semantics. While not actually part of the translation process, the theory-based
object model was central to the research as it defined how we could represent object-oriented
concepts in an algebraic specification language. The translation then became a matter of
mapping UML concepts to the generically defined object model. In addition, because it is
not strictly tied to the UML semantics, the theory-based object model can be used for other
object-oriented techniques and methods (e.g. OMT).

Theory-based
model

(O-Slang)

UML Graphical
Domain

Formal
Semantics

1. Automatic
 Translation

3. O-Slang
 Definition

2. Formal
 Definition

Fig. 2. Theory-based Translation

However, to show that the translation from UML to the theory-based model was correct,
we had to show that it preserved the semantics of the UML diagrams. Since no formal
semantics had been established, we defined our own. The basic approach is shown in Figure 2.

Translation 1 is the automated translation from UML to O-Slang as described in [14].
This translation maps each construct in a UML diagram to an equivalent construct in O-
Slang. This transformation is defined formally and implemented in software.

Translation 2 is the formal definition of UML diagrams. This can be any formal definition
that suits the purpose. For instance, for Statechart Diagrams we used an extension to the
standard automata theory definitions.

Translation 3 is a bijective mapping fromO-Slang to the same formal definitions used for
the UML diagrams. Once these mapping were complete, we showed that the transformation
via translation 1 was equivalent to the mapping of translation 2 composed with translation
3. Translation 1 was then implemented and shown to be a practical approach to generating
formal specifications from graphical object oriented diagrams.

4 Conclusion

Despite the differences mentioned in the introduction section, the two methods described in
this paper have a lot in common. In Method 2, the underlying system model was based on a
combination of algebraic and category theory based specification methods - a mathematical
base that was used to help implement and enforce software/specification in Method 1. Both
approaches also used Kestrel’s Specware to demonstrate a thread of each complete approach
for proof-of-concept. The research described with both methods primarily differs in the foun-
dation for formalization. The formalization in Method 2 was based on a theory-based object
model DeLoach formulated. The research in Method 1 used a formalized form of the UML
Semantics Guide as an object model.

Other groups are also looking at category theory to describe UML (or other object ori-
ented systems) [6, 7]. The authors are aware of other activities that may become mature
enough to also discuss at ECOOP. While the pUML group is exploring rigorous methods of
representing UML semantics with significant tool support, it would be worth exploiting the
lessons learned from the cited research in this paper in upcoming UML formalization efforts,
e.g. the one described with UML RT.

References

1. G. Booch, J. Rumbaugh and I. Jacobsen, UML Semantics, Version 1.1, Rational Software Corp., 1997.
2. R. Breu and U. Hinkel et al: Towards a Formalism of the Unified Modeling Language, ECOOP ’97, pg. 344-366,

1997.
3. A. Evans, R. France, K. Lano and B. Rumpe: The UML as a Formal Modeling Notation, pUML Working Group,

1998.
4. A. Evans and S. Kent: Core Meta-Modeling Semantics of UML: The pUML Approach, UML99 - The Unified

Modeling Language: Beyond the Standard, Second International Conference Proceedings, Springer, ISBN 3-540-
66712-1, October 1999.

5. J. Fiadeiro and T. Maibaum: Category Theory for the Object Technologist, OOPSLA-94,
ftp://ftp.fc.ul.pt/pub/papers/modeling/94-FM-OOPSLA-TutCateg.ps.gz.

6. J. Fiadeiro and T. Maibaum: Describing, Structuring and Implementing Objects, Rex90 Workshop on the Foun-
dations of Object Oriented Languages (eds. J. de Bakker, W-P de Roever, G. Rozenberg), LNCS 489, pp. 274-310,
Springer-Verlag, 1991.

7. R. Grosu, M. Broy, B. Selic and G. Stefǎnescu: What is Behind UML-RT, ISBN 0-7923-8629-9, Kluwer Publishing,
10/99.

8. S. Kim and D. Carrington: Formalizing the UML Class Diagram Using Object-Z, UML’99 - The Unified Modeling
Language: Beyond the Standard, Department of Computer Science and Electrical Engineering, The University
of Queensland, Brisbane, Australia, Lecture Notes in Computer Science, Springer, ISBN 3-540-66712-1, 10/99.

9. K. Lano and J. Bicarregui: Formalising the UML in Structured Temporal Theories, Seventh OOPSLA Workshop
on Behavioral Semantics of Object Oriented Business and Systems Specifications, TUM-I9813, Aug. 1998.

10. G. Övergaard: The Semantics of the Unified Modeling Language - Tutorial at OOPSLA ’96, San Jose, Oct. 1996.
11. J. Robbins, N. Medvidovic, D. Redmiles and D. Rosenblum: Integrating Architecture Description Languages with

a Standard Design Method, White paper based on work sponsored by NSF grants CCR-9924846 and CCR-9701973
and DARPA, RL and USAF, University of CA, Irvine.

12. T. Schorsch: Formal Representation and Application of Software Design Information, PhD thesis, Air Force
Institute of Technology, Wright-Patterson AFB, OH, September 1999.

13. S. A. DeLoach, Formal Transformations from Graphically-Based Object-Oriented Representations to Theory-
Based Specifications, PhD Thesis, Air Force Institute of Technology, June 1996, PhD Dissertation.

14. S. DeLoach, T. Hartrum and J. Smith, A Theory-Based Representation for Object-Oriented Domain Models,
IEEE Transactions on Software Engineering, 1999. (to appear).

15. J. Smith, M. Kokar and K. Baclawski: Formal Verification of UML Diagrams: A First Step Towards Code
Generation, OOPSLA’99, November 1999.

16. J.Smith, UML Formalization and Transformation, Ph.D. Thesis, Northeastern University, College of Engineering,
1999.

17. R. Waldinger et al, SPECWARE Language Manual: Specware 2.0.3, Kestrel Institute, 1998.

