
Trace-Based Specification of Law and Guidance Policies
for Multi-Agent Systems�

Scott J. Harmon, Scott A. DeLoach, and Robby

Kansas State University, Manhattan KS 66506, USA
{harmon,sdeloach,robby}@ksu.edu

Abstract. Policies have traditionally been a way to specify properties of a sys-
tem. In this paper, we show how policies can be applied to the Organization
Model for Adaptive Computational Systems (OMACS). In OMACS, policies
may constrain assignments of agents to roles, the structure of the goal model
for the organization, or how an agent may play a particular role. In this paper,
we focus on policies limiting system traces; this is done to leverage the work
already done for specification and verification of properties in concurrent pro-
grams. We show how traditional policies can be characterized as law policies;
that is, they must always be followed by a system. In the context of multiagent
systems, law policies limit the flexibility of the system. Thus, in order to preserve
the system flexibility while still being able to guide the system into preferring
certain behaviors, we introduce the concept of guidance policies. These guidance
policies need not always be followed; when the system cannot continue with the
guidance policies, they may be suspended. We show how this can guide how the
system achieves the top-level goal while not decreasing flexibility of the system.
Guidance policies are formally defined and, since multiple guidance policies can
introduce conflicts, a strategy for resolving conflicts is given.

1 Introduction

As computer systems have been charged with solving problems of greater complexity,
the need for distributed, intelligent systems has increased. As a result, there has been a
focus on creating systems based on interacting autonomous agents. This investigation
has created an interest in multiagent systems and multiagent system engineering, which
proscribes formalisms and methods to help software engineers design multiagent sys-
tems. One aspect of multiagent systems that is receiving considerable attention is the
area of policies. These policies have been used to describe the properties of a multiagent
system–whether that be behavior or some other design constraints. Policies are essen-
tial in designing societies of agents that are both predictable and reliable [1]. Policies
have traditionally been interpreted as properties that must always hold. However, this
does not capture the notion of policies in human organizations, as they are often used
as normative guidance, not strict laws. Typically, when a policy cannot be followed in
a multiagent system, the system cannot achieve its goals, and thus, it cannot continue

� This work was supported by grants from the US National Science Foundation (0347545) and
the US Air Force Office of Scientific Research (FA9550-06-1-0058).

A. Artikis et al. (Eds.): ESAW 2007, LNAI 4995, pp. 333–349, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

334 S.J. Harmon, S.A. DeLoach, and Robby

to perform. In contrast, policies in human organizations are often suspended in order to
achieve the overall goals of the organization. We believe that such an approach could be
extremely beneficial to multiagent systems residing in a dynamic environment. Thus,
we want to enable developers to guide the system without constraining it to the point
where it cannot function effectively or looses its autonomy.

The main contributions of this paper are: (1) a formal trace-based foundation for law
(must always be followed) and guidance (need not always be followed) policies, (2)
a conflict resolution strategy for choosing between which guidance policies to violate,
and (3) validation of our approach through a set of simulated multiagent systems.

The rest of the paper is organized as follows. In Section 2, we give some background
on multiagent systems policies along with two multiagent system examples. In Sec-
tion 3, we define the notion of system traces for a multiagent system, which are later
used to describe policies. Section 4 defines law policies as well as guidance policies; we
give examples and show how guidance policies are useful for multiagent systems and
describe a method for ordering guidance policies according to importance. Section 5
presents and analyzes experimental results from applying policies to the two multia-
gent system examples. Section 6 concludes and presents some future work.

2 Background

Policies have been considered for multiagent systems for some time. Efforts have been
made to characterize, represent, and reason [2] about policies in the context of mul-
tiagent systems. Policies have been referred to as laws in the past. Yoav Shoham and
Moshe Tennenholtz wrote in [3] about social laws for multiagent systems. They showed
how policies could help a system to work together, similar to how our rules of driving on
a predetermined side of the road help the traffic to move smoothly.There has also been
work on detecting global properties [4] of a distributed system, which could in turn
be used to suggest policies for that system. Policies have also been proposed as a way
to help assure that agents and that the entire multiagent system behave within certain
boundaries. They have also been proposed as a way to specify security constraints in
multiagent systems [5,6]. There has been work to define policy languages by defining a
description logic [7]. Policies have also been referred to as norms. Much work has been
done on the formal specification of these norms [8]. We are taking this formal approach
in our specification of guidance and law policies. Norms, however, are usually associ-
ated with open systems–while we are concerned with closed, cooperative systems. We
want to use formal methods to prove whether a given system will abide by the policies
as expected. Thus, we must give our guidance policies for multiagent societies a solid
formal foundation. In order to achieve this end, we borrow concepts that are widely used
in program analysis, in particular, model checking. Taking a model checking approach
to policies has been done [9] and is a natural extension of program analysis.

The multiagent systems model we are using for this paper is called the Organization
Model for Adaptive Computational Systems (OMACS) [10]. Figure 1 is a graphical
depiction of the OMACS model. OMACS defines standard multiagent system compo-
nents such as goals, roles, capabilities, and agents. Roles achieve goals, agents posses
capabilities, and agents are capable of playing roles depending on the capabilities they

Trace-Based Specification of Law and Guidance Policies for Multi-Agent Systems 335

requires

Organization

PolicyRoleGoal Agent

Capabilities

Domain
Model

uses

constrains

possesses

capableachieves

Fig. 1. Organization Model for Adaptive Computational Systems

posses. The organization, which represents the entire set of agents, decides which agents
to assign to what roles to achieve particular goals. When the organization makes an as-
signment of an agent to a particular role to achieve a specific goal, the organization is
constrained by agents capabilities as well as any applicable policies. To model goals,
we use the Goal Model for Dynamic Systems (GMoDS) as defined in [11]. Events may
occur while an agent is playing a role. These events may trigger (activate) goals. Only
active goals may be assigned to an agent.

2.1 Conference Management Example

A well known example in multiagent systems is the Conference Management [12,13]
example. The Conference Management example models the workings of a scientific
conference, for example, authors submit papers, reviewers review the submitted papers,
and certain papers are selected for the conference and printed in the proceedings. Fig-
ure 2 shows the complete goal model for the conference management example, which
we are using to illustrate our policies. In this example, a multiagent system represents
the goals and tasks of a generic conference paper management system. Goals of the
system are identified and are decomposed into subgoals.

The top-level goal, 0. Manage conference submissions, is decomposed into several
“and” subgoals, which means that in order to achieve the top goal, the system must
achieve all of its subgoals. These subgoals are then associated through precedence and
trigger relations. The precedes arrow between goals indicates that the source of the
arrow must be achieved before the destination can become active. The triggers arrow
indicates that the domain-specific event in the source may trigger the goal in the des-
tination. The occurs arrow from a goal to a domain-specific event indicates that while
pursuing that goal, said event may occur. A goal that triggers another goal may trigger
multiple instances of that goal.

Leaf goals are goals that have no children. The leaf goals in this example consist of
Collect papers, Distribute papers, Partition papers, Assign reviewers, Collect reviews,
Make decision, Inform accepted, Inform declined, Collect finals, and Send to printer.
For each of these leaf goals to be achieved, agents must play specific roles. The roles
required to achieve the leaf goals are depicted in Figure 3. The role model gives seven
roles as well as two outside actors. Each role contains a list of leaf goals that the role
can achieve. For example, the Assigner role can achieve the Assign reviewers leaf goal.

336 S.J. Harmon, S.A. DeLoach, and Robby

1.
1

C
ol

le
ct

 p
ap

er
s

1.
2

D
is

tri
bu

te

pa
pe

rs

2.
1

P
ar

tit
io

n
pa

pe
rs

4.
1

C
ol

le
ct

re

vi
ew

s
4.

2
M

ak
e

de
ci

si
on

«t
rig

ge
rs

»

«t
rig

ge
rs

»

«t
rig

ge
rs

»

cr
ea

te
d(

se
t)

«o
cc

ur
s»

as
si

gn
(p

,r)

«o
cc

ur
s»

«t
rig

ge
rs

»

ac
ce

pt
ed

(p
)

de
cl

in
ed

(p
)

«o
cc

ur
s»

«o
cc

ur
s»

«p
re

ce
de

s»
«p

re
ce

de
s»

«p
re

ce
de

s»

5.
2

S
en

d
to

pr

in
te

r

«t
rig

ge
rs

»

«a
nd

»

0.
 M

an
ag

e
co

nf
er

en
ce

su

bm
is

si
on

s

«a
nd

»

1.
 G

et
 p

ap
er

s «a
nd

»

2.
 A

ss
ig

n
pa

pe
rs

«a
nd

»

4.
 S

el
ec

t p
ap

er
s

3.
 R

ev
ie

w
 p

ap
er

p
 :

P
ap

er
r :

 R
ev

ie
w

er

«p
re

ce
de

s»
5.

2
In

fo
rm

 a
cc

ep
te

d

p
: P

ap
er

5
In

fo
rm

 a
ut

ho
rs

«a
nd

»

«a
nd

»

6.
 P

rin
t

pr
oc

ee
di

ng
s

«p
re

ce
de

s»

2.
2

A
ss

ig
n

re
vi

ew
er

s

se
t :

 P
ap

er
S

et

5.
1

C
ol

le
ct

 fi
na

ls

p
 :

P
ap

er

5.
1

In
fo

rm
 d

ec
lin

ed

p
: P

ap
er

F
ig

.2
.C

on
fe

re
nc

e
M

an
ag

em
en

t
G

oa
lM

od
el

Trace-Based Specification of Law and Guidance Policies for Multi-Agent Systems 337

make assignments

review papers
submit review

retrieve abstracts

get reviews

inform authors

submit paper

Reviewer

<<achieves>> review
paper

PaperDB
<<achieves>> collect papers
<<achieves>> distribute papers
<<achieves>> collect finals

retrieve paper

Assigner

<<achieves>> assigns
reviewers

Partitioner

<<achieves>> partition
papers

Review Collector

<<achieves>> collect
reviews

Author

submit final

Finals Collector

<<achieves>> send to
printer

Printer

print proceedings

retrieve finals

Decision Maker
<<achieves>> make decision
<<achieves>> inform accepted
<<achieves>> inform declined

Fig. 3. Conference Management Role Model

In GMoDS, roles only achieve leaf goals. The arrows between the roles indicates in-
teraction between particular roles. For example, once the agent playing the Partitioner
role has some partitions, it will need to hand off these partitions to the agent playing the
Assigner role. OMACS allows an agent to play multiple roles simultaneously, as long
as it has the capabilities required by the roles and it is allowed by the policies.

2.2 Robotic Floor Cleaning Example

Another example to illustrate the usefulness of the concept of guidance policies is the
Cooperative Robotic Floor Cleaning Company Example (CRFCC), which was first pre-
sented by Robby et al. in [14]. In this example, a team of robotic agents clean the floors
of a building. The team has a map of the building as well as indications of whether a
floor is tile or carpet. Each team member will have a certain set of capabilities (e.g.
vacuum, mop, etc). These capabilities may become defective over time. In their analy-
sis, Robby et al. showed how breaking up the capabilities affected a team’s flexibility to
overcome loss of capabilities. We have extended this example by giving the information
that the vacuum cleaner’s bag needs to be changed after vacuuming three rooms. Thus,
we want to minimize the number of bag changes. For this, we introduce a guidance
policy and show how it affects the performance of the organization.

The goal model for the CRFCC system is fairly simple. As seen in Figure 4, the
overall goal of the system (Goal 0) is to clean the floors. This goal is decomposed into
three conjunctive subgoals: 1. Divide Area, 2. Pickup, and 3. Clean. The 3. Clean goal is
decomposed into two disjunctive goals: 3.1 Sweep & Mop and 3.2 Vacuum. Depending
on the floor type, only one subgoal must be achieved to accomplish the 3. Clean goal.
If an area needs to be swept and mopped (i.e. it is tile), then goal 3.1 Sweep & Mop
is decomposed into two conjunctive goals: 3.1.1 Sweep and 3.1.2 Mop. After an agent
achieves the 1. Divide area goal, a certain number of 2. Pickup goals will become active

338 S.J. Harmon, S.A. DeLoach, and Robby

3.1 Sweep & Mop

a:area

«precedes»

«and»

0. Clean floors

t::totalArea

1. Divide area

t::totalArea

«or»

3. Clean

a:area

2. Pickup

a:area
«precedes»

3.2 Vacuum

a:area

3.1.1 Sweep

a:area

3.1.2 Mop

a:area

«and»

Fig. 4. CRFCC Goal Model

Role Name Req. Capabilities Goals Achieved
Organizer org 1. Divide Area
Pickuper search, move 2. Pickup
Sweeper sweep 3.1.1 Sweep
Mopper mop 3.1.2 Mop
Vacuummer vacuum 3.2 Vacuum

Fig. 5. CRFCC Role Model

(depending on how many pieces the area is divided into). After the 2. Pickup goals are
completed, a certain number of 3. Clean goals become active, again depending on how
many pieces the area was broken into. This then will activate goals for the tile areas
(3.1.1 Sweep and 3.1.2 Mop) as well as goals for the carpeted areas (3.2 Vacuum).

Figure 5 gives the role model for the CRFCC. In this role model, each leaf goal of the
system is achieved by a specific role. The role model may be designed many different
ways depending on the system’s goal, agent, and capability models. Thus, depending
on the agents and capabilities available, the system designer may choose different role
models. For this paper, we will look at just one of these possible role models. In the
role model in Figure 5, the only role requiring more than one capability is the Pickuper
role. This role will require both the search and move capability. Thus, in order to play
this role, an agent must possess both capabilities.

3 Multiagent Traces

There are several observable events in an OMACS system. A system event is simply an
action taken by the system. In this paper, we are concerned with specific actions that the
organization takes. For instance, an assignment of an agent to a role is a system event.

Trace-Based Specification of Law and Guidance Policies for Multi-Agent Systems 339

Event Definition
C(gi) goal gi has been completed.
T (gi) goal gi has been triggered.
A(ai, rj , gk) agent ai has been assigned

role rj to achieve goal gk.

(a) System Events

Property Definition
a.reviews the number of reviews

agent a has performed.
a.vacuumedRooms the number of rooms

agent a has vacuumed.

(b) Properties

Fig. 6. Events and Properties of Interest

The completion of a goal is also a system event. In an OMACS system, we can have the
system events of interest shown in Figure 6(a).

At any stage in a multiagent system, there may be certain properties of interest.
Some may be domain-specific (only relevant to the current system), while others may
be general properties such as the number of roles an agent is currently playing. State
properties that are relevant to the examples we are presenting in the next section are
shown in Figure 6(b).

3.1 System Traces

In order to describe multiagent system execution, we use the notion of a system trace.
An (abstract) system trace is a projection of system execution with only desired state
and event information preserved (role assignments, goal completions, domain-specific
state property changes, etc). In this paper, we are only concerned with the events and
properties given above and only traces that result in a successful completion of the sys-
tem goal. Let E be an event of interest and P be a property of interest. A change of
interest in a property is a change for which a system designer has made some policy.
For example, if a certain integer should never exceed 5, a change of interest would be
when that integer became greater than 5 and when that integer became less than 5. Thus
a change of interest in a property is simply an abstraction of all the changes in the prop-
erty. ΔP indicates a change of interest in property P . A system trace may contain both
events and changes of interest in properties. Changes of interest in properties may be
viewed as events, however, for simplicity we include both and use both interchangeably.
Thus, a system trace is defined as:

E1 → E2 → . . . (1)

As shown in equation 1, a trace is simply a sequence of events. An example subtrace of
a multiagent system, where g1 is a goal, a1 is an agent, and r1 is a role, might be:

. . . T (g1) → A(a1, r1, g1) → C(g1) . . . (2)

Formula 2 means that goal g1 is triggered, then agent a1 is assigned role r1 to achieve
goal g1, finally, goal g1 is completed.

We use the terms legal trace and illegal trace. An illegal trace is an execution we do
not want our system to exhibit, while a legal trace is an execution that our system may
exhibit. Intuitively, policies cause some traces to become illegal, while others remain
legal.

340 S.J. Harmon, S.A. DeLoach, and Robby

We are able to use the notion of system traces because the framework we are using
to build multiagent systems constructs mathematically specified models (e.g [10,11])
of various aspects of the system (goal model, role model, etc.). This can be leveraged
to formally specify policies as restrictions of system traces. Once we have a formal
definition of system traces, we can leverage existing research on property specification
and concurrent program analysis.

4 Policies

Policies may restrict or proscribe behaviors of a system. Policies concerning agent as-
signments to roles have the effect of constraining the set of possible assignments. This
can greatly reduce the search space when looking for the optimal assignment set [15].

Other policies can be used for verifying that a goal model meets certain criteria. This
allows the system designer to more easily state properties of the goal model that may
be verified against candidate goal models at design time. For example, one might want
to ensure that our goal model in Figure 2 will always trigger a Review Paper goal for
each paper submitted.

Yet, other policies may restrict the way that roles can be played. For example, when
an agent is moving down the sidewalk it always keeps to the right. These behavior
policies also restrict how an agent interacts with its environment, which in turn means
that they can restrict protocols and agent interactions. One such policy might be that an
agent playing the Reviewer role must always give each review a unique number. These
sort of policies rely heavily on domain-specific information. Thus it is important to have
an ontology for relevant state and event information prior to designing policies [16].

4.1 Language for Policy Analysis

To describe our policies, we use temporal formula with quantification similar to [17].
This may be converted into Linear Temporal Logic (LTL) [18] or Büchi automata [19]
for infinite system traces, or to something like Quantified Regular Expressions [20]
for finite system traces. The formulas consist of predicates over goals, roles, events,
and assignments (recall that an assignment is the joining of an agent and role for the
purpose of achieving a goal). The temporal operators we currently use are as follows:
�(x), meaning x holds always; �(x), meaning x holds eventually; and x U y, meaning
x holds until y holds.1 We use a mixture of state properties as well as events [21] to
obtain compact and readable policies. An example of one such policy formula is:

∀a1 : Agents, L :�(sizeOf(a1.reviews) ≤ 5) (3)

Formula 3 states that it should always be the case that each agent never review more than
five papers. The L : indicates that this is a law policy. The property .reviews can be
considered as part of the system’s state information. This is domain-specific and allows
a more compact representation of the property. This policy may be easily represented
by a finite automata as shown in Figure 7.

1 We only reason about bounded liveness properties because we only consider successful traces.

Trace-Based Specification of Law and Guidance Policies for Multi-Agent Systems 341

∀a : Agents, p : Papers

a.reviews ≤ 5 Bad

a.reviews > 5

a.reviews = 5 ∧ A(a, REV IEWER,Review(p))

*

a.reviews < 5 ∨ ¬A(a,REV IEWER,Review(p))

Fig. 7. No agent may review more than five papers

The use of the A() predicate in Figure 7 indicates an assignment of the Reviewer role
to achieve the Review paper goal, which is parametrized on the paper p. This automata
depicts the policy in Formula 3, but in a manner for a model checker or some other
policy enforcement mechanism to detect when violation occurs. The accepting state
indicates that a violation has occurred. Normally, this automata would be run alongside
the system, either at design time with a model checker [22], or at run-time with some
policy enforcement mechanism [23].

We would like to emphasize here that we do not expect the designer to specify their
policies by hand editing LTL. LTL is complex and designing policies in LTL would be
very error prone and thus could potentially mislead the designer into a false sense of
security or simply compose incorrect policies. There has been some work in facilitating
the creation of properties in LTL (and other formalisms) for program analysis such as
specification patterns [24]. There has also been work done to help system property spec-
ification writers to graphically create properties [25] (backed by LTL) by manipulating
automata and answering simple questions regarding elements of the property.

4.2 Law Policies

The traditional notion of a policy is a rule that must always be followed. We refer to
these policies as law policies. An example of a law policy with respect to our conference
management example would be no agent may review more than five papers. This means
that our system can never assign an agent to the Reviewer role more than five times. A
law policy can be defined as:

L :Conditions → Property (4)

Conditions are predicates over state properties and events, which, when held true,
imply that the Property holds true. The Conditions portion of the policy may be
omitted if the Property portion should hold in all conditions, as in Formula 3.

Intuitively, for the example above, no trace in the system may contain a subtrace in
which an agent is assigned to the Reviewer role more than five times. This will limit the
number of legal traces in the system. In general, law policies reduce the number of legal
traces for a multiagent system. The policy to limit the number of reviews an agent can
perform is helpful in that it will ensure that our system does not overburden any agent

342 S.J. Harmon, S.A. DeLoach, and Robby

with too many papers to review. This policy as a pure law policy, however, could lead to
trouble in that the system may no longer be able to achieve its goal. Imagine that more
papers than expected are submitted. If there are not sufficient agents to spread the load,
the system will fail since it is cannot assign more than five papers to any agent. This is a
common problem with using only law policies. They limit the flexibility of the system,
which we define as how well the system can adapt to changes [14].

4.3 Guidance Policies

While the policy in (3) is a seemingly useful policy, it reduces flexibility. To overcome
this problem, we have defined another, weaker type of policy called guidance policies.
Take for example the policy used above, but as a guidance policy:

∀a1 : Agents, G :�(sizeOf(a1.reviews) ≤ 5) (5)

This is the same as the policy as in (3) except for the G :, which indicates that it is
a guidance policy. In essence, the formalization for guidance and law policies are the
same, the difference is the intention of the system designer. Law policies should be used
when the designer wants to make sure that some property is always true (e.g. for safety
or security), while guidance policies should be used when the designer simply wants
to guide the system. This guidance policy limits our agents to reviewing no more than
five papers, when possible. Now, the system can still be successful when it gets more
submissions than expected since it can assign more than five papers to an agent. When
there are sufficient agents, the policy still limits each agent to five or fewer reviews.

Guidance policies more closely emulate how policies are implemented in human so-
cieties. They also provide a clearer and simpler construct for more easily and accurately
describing the design of a multiagent organization. In contrast to policy resolution com-
plexity of detecting and resolving policy contradictions in [2], our methodology of using
guidance policies present an incremental approach to policy resolution. That is, the sys-
tem will still work under conflicting policies; its behaviors are amenable to analysis,
thus allowing iterative policy refinement.

In the definition of guidance policies, we have not specified how the system should
choose which guidance policy to violate in a given situation. We propose a partial or-
dering of guidance policies to allow the system designer to set precedence relationships
between guidance policies. We arrange the guidance policies as a lattice, such that a
policy that is a parent of another policy in the lattice, is more-important-than its chil-
dren. By analyzing a system trace, one can determine a set of policies that were violated
during that trace. This set of violations may be computed by examining the policies and
checking for matches against the trace. When there are two traces that violate policies
with a common ancestor, and one (and only one) of the traces violate the common
ancestor policy, we mark the trace violating that common ancestor policy as illegal.
Intuitively, this trace is illegal because the system could have violated a less important
policy. Thus, if the highest policy node violated in each of the two traces is an ancestor
of every node violated in both traces, and that node is not violated in both traces, then
we know the trace violating that node is illegal and should not have happened.

Take, for example, the four policies in the Table 1. Let these policies be arranged in
the lattice shown in Figure 8(a). The lattice in Figure 8(a) means that policy P1 is more

Trace-Based Specification of Law and Guidance Policies for Multi-Agent Systems 343

Table 1. Conference Management Policies

Node Definition
P1 No agent should review more than 5 papers.
P2 PC Chair should not review papers.
P3 Each paper should receive at least 3 reviews.
P4 An agent should not review a paper from

someone whom they wrote a paper with.

P1

P2 P3

P4

(a) Possible Partial order of
Guidance Policies.

P1

P2 P3

P4

(b) Another possible order-
ing.

Fig. 8. Partial orders of Guidance Policies

important than P2 and P3, and P2 is more important than P4. Thus, if there is any trace
that violates any guidance policies other than P1 (and does not violate a law policy), it
should be chosen over one which violates P1.

When a system cannot achieve its goals without violating policies, it may violate
guidance policies. There may be traces that are still illegal, though, depending on the
ordering between policies. For every pair of traces, if the least upper bound of the
policies violated in both traces, let us call this policy violation P , is in one (and only
one) of the traces, the trace with P is illegal. For example, consider the ordering in
Figure 8(a), let trace t1 violate P1 and P2, while trace t2 violates P2 and P3. Round
nodes represent policies violated in t1, box nodes represent policies violated in t2, and
boxes with rounded corners represent policies violated in both t1 and t2. Since P1 is the
least upper bound of P1, P2, and P3 and since P1 is not in t2, t1 is illegal.

As shown in Figure 8(b), the policies may be ordered in such a way that the policy
violations of two traces do not have a least upper bound. If there is no least upper bound,
P , such that P is in one of the traces, the two traces cannot be compared and thus both
traces are legal. The reason they cannot be compared is that we have no information
about which policies are more important. Thus, either option is legal. It is important to
see here that all the guidance policies do not need to be ordered into a single lattice.
The system designer could create several unrelated lattices. These lattices then can be
iteratively refined by observing the system behaviors or by looking at metrics generated

344 S.J. Harmon, S.A. DeLoach, and Robby

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

S
ys

te
m

 S
uc

ce
ss

 P
er

ce
nt

ag
e

Capability Failure Percentage

Guidance Policy
No Policy

Law Policy

Fig. 9. The success rate of the system given capability failure

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 10 20 30 40 50 60 70 80 90 100

T
ot

al
 E

xt
ra

 V
ac

uu
m

 A
ss

ig
nm

en
ts

 (
>

3)

Capability Failure Rate

Guidance Policy
No Policy

Fig. 10. The extra vacuum assignments given capability failure

Trace-Based Specification of Law and Guidance Policies for Multi-Agent Systems 345

for a certain policy set and ordering (e.g., [14]). This allows the system designer to
influence the behavior of the system by making logical choices as to what paths are
considered better. Using the lattice in Figure 8(a), we may even have the situation where
P1 is not violated by either trace. In this case, the violation sets cannot be compared,
and thus, both traces are legal. In situations such as these, the system designer may want
to impose more ordering on the policies.

Intuitively, guidance policies constrain the system such that at any given state, tran-
sitions that will not violate a guidance policy are always chosen over transitions that
violate a guidance policy. If guidance policy violation cannot be avoided, a partial or-
dering of guidance policies is used to choose which policies to violate.

5 Evaluation

5.1 CRFCC

Using our CRFCC example and a modified simulator from [14], we collected results
running simulations with the guidance policy: no agent should vacuum more than three
rooms. We contrast this with the law policy: no agent may vacuum more than three
rooms. The guidance policy is presented formally in Equation 6.

∀a1 : Agents, G :�(a1.vacuumedRooms ≤ 3) (6)

For this experiment, we used five agents each having the following capabilities: a1,
org, search, and move; a2, search, move, and vacuum; a3, vacuum and sweep; a4, sweep
and mop; and a5, org and mop. These capabilities restrict the roles our simulator can
assign to particular agents. For example, the Organizer role may only be played by agent
a1 or agent a5, since those are the only agents with the org capability. In the simulation
we randomly choose capabilities to fail based on a probability given by the capability
failure rate.

For each experiment, the result of 1000 runs at each capability failure rate was aver-
aged. At each simulation step, a goal being played by an agent is randomly achieved.
Using the capability failure rate, at each step, a random capability from a random agent
may be selected to fail. Once a capability fails it cannot be repaired.

Figure 9 shows that while the system success rate decreases when we enforce the
law policy, it does not, however, decrease when we enforce the guidance policy. Fig-
ure 10 shows the total number of times the system assigned vacuuming to an agent who
already vacuumed at least 3 rooms for 1000 runs of the simulation at each failure rate.
With no policy, it can be seen that the system will in fact assign an agent to vacuum
more than 3 rooms quite often. With the guidance policy, however, the extra vacuum
assignments (> 3) stay minimal. The violations of the guidance policy increase as the
system must adapt to an increasing failure of capabilities until it reaches a peak. At the
peak, increased violations do not aid in goal achievement and eventually the system
cannot succeed even without the policy. Thus, the system designer may now wish to
purchase equipment with a lower rate of failure, or add more redundancy to the system
to compensate. The system designer may also evaluate the graph and determine whether
the cost of the maximum number of violations exceeds the maximum cost he is willing
to incur, and if not, make appropriate adjustments.

346 S.J. Harmon, S.A. DeLoach, and Robby

5.2 Conference Management System

We also simulated the conference management system described in Section 2.1. We
held the number of agents constant, while increasing the number of papers submitted
to the conference. The system was constructed with a total of 13 agents, 1 PC Member
agent, 1 Database agent, 1 PC Chair agent, and 10 Reviewer agents. The simulation ran-
domly makes goals available to achieve, while still following the constraints imposed
by GMoDS. Roles that achieve the goal are chosen at random as well as agents that
can play the given role. The policies are given priority using the more-important-than
relation as depicted in Figure 8(a).

Figure 11 shows a plot of how many times a guidance policy is violated versus the
number of papers submitted for review. For each set of paper submissions (from 1 to
100) we ran the simulation 1000 times and then took the average of the 1000 runs to
determine the average number of violations. In all the runs the system succeeded in
achieving the top level goal.

As seen by the graph in Figure 11, no policies are violated until around 17 papers
(this number is explained below). The two least important policies (P2 and P3) are
violated right away. The violation of P2, however, levels off since it is interacting with
P1. The violations of P3 is seen to grow at a much greater rate since it is the least
important policy.

We then changed all the guidance policies to law policies and re-ran the simulation.
For 17 or more submissions, the system always failed to achieve the top level goal. This
makes sense because we have only 10 Reviewer agents and we have the policies: the

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 10 20 30 40 50 60 70 80 90 100

P
ol

ic
y

V
io

la
tio

ns

Papers Submitted for Review

P1 - No more than 5 papers should be reviewed by an agent
P2 - PC Chair should not review papers

P3 - Every paper receives at least 3 reviews (total reviews missing)

Fig. 11. Violations of the guidance policies as the number of papers to review increases

Trace-Based Specification of Law and Guidance Policies for Multi-Agent Systems 347

PC Chair should not review papers and no agent should review more than 5 papers. This
means the system can only produce 5× 10 = 50 reviews. But, since we have the policy
that each paper should have at least 3 reviews, 17 submissions would need 17× 3 = 51
reviews. For 16 or fewer papers submitted, the law policies perform identical to the
guidance policies.

5.3 Common Results

As the experimental results in Figure 9 show, guidance policies do not decrease the flexi-
bility of a system to adapt to a changing environment, while law policies do decrease the
flexibility of a system to adapt to a changing environment. Guidance policies, however,
do help guide the system and improve performance as shown in Figure 10 and Figure 11.
The partial ordering using the more-important-than relation helps a system designer put
priorities on what policies they consider to be more important and helps the system de-
cide which policies to violate in a manner consistent with the designer’s intentions.

6 Conclusions and Future Work

Policies have proven to be useful in the development of multiagent systems. However, if
implemented inflexibly, situations such as described in [26] will occur (a policy caused
a spacecraft to crash into an asteroid). Guidance policies allow a system designer to
guide the system while giving it a chance to adapt to new situations.

With the introduction of guidance policies, policies are an even better mechanism for
describing desired properties and behaviors of a system. It is our belief that guidance
policies more closely capture how policies work in human organizations. Guidance
policies allow for more flexibility than law policies in that they may be violated under
certain circumstances. In this paper, we demonstrated a technique to resolve conflicts
when faced with the choice of which guidance policies to violate. Guidance policies,
since they may be violated, can have a partial ordering. That is, one policy may be
considered more important than another. In this manner, we allow the system to make
better choices on which policies to violate. Traditional policies may be viewed as law
policies, since they must never be violated. Law policies are still useful when the system
designer never wants a policy to be violated–regardless of system success. Such policies
might concern security or human safety.

Policies may be applied in an OMACS system by constraining assignments of agents
to roles, the structure of the goal model for the organization, or how the agent may play
a particular role. Through the use of OMACS, the metrics described in [14], and the
policy formalisms presented here, we are able to provide an environment in which a sys-
tem designer may formally evaluate a candidate design, as well as evaluate the impact
of changes to that design without deploying or even completely developing the system.

Policies can dramatically improve run-time of reorganization algorithms in OMACS
as shown in [15]. Guidance policies can be a way to achieve this run-time improvement
without sacrificing system flexibility. The greater the flexibility, the better the chance
that the system will be able to achieve its goals.

Policies are an important part of a multiagent system. Future work is planned to ease
the expression and analysis of policies. Some work has already been done in this area

348 S.J. Harmon, S.A. DeLoach, and Robby

[24,25], but it has not been integrated with a multiagent system engineering framework.
Another area of work is to provide a verification framework from design all the way to
implementation. The goal would be to determine the minimum guarantees needed from
the agents to guarantee the overall system behavior specified by the policies. These min-
imum guarantees could then be checked against the agent implementations to determine
whether the implemented system follows the policies given.

Guidance policies add an important tool to multiagent policy specification. However,
with this tool comes complexity. Care must be taken to insure that the partial ordering
given causes the system to exhibit the behavior intended. Tools which can visually
depict the impact of orderings would be helpful to the engineer considering various
orderings. We are currently working on inferring new policies from a given set of poli-
cies. For example, if a system designer wanted to get their system to a state for which
they defined policy, we would automatically generate guidance policies. This could be
useful when the policies are defined as finishing moves in chess. That is they proscribe
optimal behavior, given a state. Thus, we would like to get to the state where we know
that optimal behavior. Another exciting area of research is to determine a method of
dynamically learning guidance policies, which would allow an organization to evolve
within its changing environment.

References

1. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1), 41–50
(2003)

2. Bradshaw, J., Uszok, A., Jeffers, R., Suri, N., Hayes, P., Burstein, M., Acquisti, A., Benyo,
B., Breedy, M., Carvalho, M., Diller, D., Johnson, M., Kulkarni, S., Lott, J., Sierhuis, M.,
Van Hoof, R.: Representation and reasoning for DAML-based policy and domain services in
KAoS and Nomads. In: AAMAS 2003: Proceedings of the second international joint confer-
ence on Autonomous agents and multiagent systems, pp. 835–842. ACM Press, New York
(2003)

3. Shoham, Y., Tennenholtz, M.: On social laws for artificial agent societies: Off-line design.
Artificial Intelligence 73(1-2), 231–252 (1995)

4. Stoller, S.D., Unnikrishnan, L., Liu, Y.A.: Efficient detection of global properties in dis-
tributed systems using partial-order methods. In: Emerson, E.A., Sistla, A.P. (eds.) CAV
2000. LNCS, vol. 1855, pp. 264–279. Springer, Heidelberg (2000)

5. Kagal, L., Finin, T., Joshi, A.: A policy based approach to security for the semantic web. In:
Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 402–418.
Springer, Heidelberg (2003)

6. Paruchuri, P., Tambe, M., Ordóñez, F., Kraus, S.: Security in multiagent systems by policy
randomization. In: AAMAS 2006: Proceedings of the fifth international joint conference on
Autonomous agents and multiagent systems, pp. 273–280. ACM Press, New York (2006)

7. Uszok, A., Bradshaw, J., Jeffers, R., Suri, N., Hayes, P., Breedy, M., Bunch, L., Johnson, M.,
Kulkarni, S., Lott, J.: Kaos policy and domain services: toward a description-logic approach
to policy representation, deconfliction, and enforcement. In: POLICY 2003: IEEE 4th Inter-
national Workshop on Policies for Distributed Systems and Networks, pp. 93–96. IEEE, Los
Alamitos (2003)

8. Artikis, A., Sergot, M., Pitt, J.: Specifying norm-governed computational societies. ACM
Transactions on Computational Logic (2007)

Trace-Based Specification of Law and Guidance Policies for Multi-Agent Systems 349

9. Viganò, F., Colombetti, M.: Symbolic Model Checking of Institutions. In: Proceedings of the
9th International Conference on Electronic Commerce (2007)

10. DeLoach, S.A., Oyenan, W., Matson, E.T.: A capabilities based theory of artificial organiza-
tions. Journal of Autonomous Agents and Multiagent Systems (2007)

11. Miller, M.: A goal model for dynamic systems. Master’s thesis, Kansas State University
(April 2007)

12. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Organisational rules as an abstraction for the
analysis and design of multi-agent systems. International Journal of Software Engineering
and Knowledge Engineering 11(3), 303–328 (2001)

13. DeLoach, S.A.: Modeling organizational rules in the multi-agent systems engineering
methodology. In: Cohen, R., Spencer, B. (eds.) Canadian AI 2002. LNCS (LNAI), vol. 2338,
pp. 1–15. Springer, Heidelberg (2002)

14. Robby, DeLoach, S.A., Kolesnikov, V.A.: Using design metrics for predicting system flexi-
bility. In: Baresi, L., Heckel, R. (eds.) FASE 2006 and ETAPS 2006. LNCS, vol. 3922, pp.
184–198. Springer, Heidelberg (2006)

15. Zhong, C., DeLoach, S.A.: An investigation of reorganization algorithms. In: Proceedings of
the International Conference on Artificial Intelligence (ICAI 2006), Las Vegas, Nevada, pp.
514–517. CSREA Press (June 2006)

16. DiLeo, J., Jacobs, T., DeLoach, S.: Integrating ontologies into multiagent systems engi-
neering. In: Fourth International Conference on Agent-Oriented Information Systems (AIOS
2002), CEUR-WS.org (July 2002)

17. Corbett, J.C., Dwyer, M.B., Hatcliff, J., Robby: Expressing checkable properties of dynamic
systems: The bandera specification language. International Journal on Software Tools for
Technology Transfer (STTT) 4(1), 34–56 (2002)

18. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems: Specifica-
tion. Springer, Heidelberg (1991)

19. Büchi, J.R.: On a decision method in restricted second-order arithmetics. In: Proceedings of
International Congress of Logic Methodology and Philosophy of Science, Palo Alto, CA,
USA, pp. 1–12. Stanford University Press (1960)

20. Olender, K.M., Osterweil, L.J.: Cecil: A sequencing constraint language for automatic static
analysis generation. IEEE Transactions on Software Engineering 16(3), 268–280 (1990)

21. Chaki, S., Clarke, E.M., Ouaknine, J., Sharygina, N., Sinha, N.: State/event-based software
model checking. In: Boiten, E.A., Derrick, J., Smith, G.P. (eds.) IFM 2004. LNCS, vol. 2999,
pp. 128–147. Springer, Heidelberg (2004)

22. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)
23. Ligatti, J., Bauer, L., Walker, D.: Edit automata: Enforcement mechanisms for run-time se-

curity policies. In: International Journal of Information Security, vol. 4, pp. 2–16. Springer,
Heidelberg (2004)

24. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-state
verification. In: Proceedings of the 1999 International Conference on Software Engineering.
IEEE, Los Alamitos (1999)

25. Smith, R.L., Avrunin, G.S., Clarke, L.A., Osterweil, L.J.: Propel: an approach supporting
property elucidation. In: ICSE 2002: Proceedings of the 24th International Conference on
Software Engineering, pp. 11–21. ACM Press, New York (2002)

26. Peña, J., Hinchey, M.G., Sterritt, R.: Towards modeling, specifying and deploying policies in
autonomous and autonomic systems using an AOSE methodology. EASE 0, 37–46 (2006)

	Trace-Based Specification of Law and Guidance Policies for Multi-Agent Systems
	Introduction
	Background
	ConferenceManagement Example
	Robotic Floor Cleaning Example

	Multiagent Traces
	System Traces

	Policies
	Language for Policy Analysis
	Law Policies
	Guidance Policies

	Evaluation
	CRFCC
	ConferenceManagement System
	Common Results

	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

