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Abstract. Human-Robot peer-based teams are evolving from a far-off possibil-
ity into a tangible reality. Human Performance Moderator Functions can be 
used to predict human behavior by incorporating the effects of internal and ex-
ternal influences, such as fatigue and workload. The applicability of human per-
formance moderator functions to human-robot teams is not proven; however, 
the presented research demonstrates the applicability of a workload human per-
formance moderator function to a human-robot reconnaissance team. The re-
search models the performance function for both human-human and human-
robot teams, empirically validates the model, and creates a simulation for allo-
cating tasks to human and robot teammates. The results show that this particular 
human performance moderator function is applicable to peer-based human-
robot teams. 
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1 Introduction 

Robotic technology continues to develop and humans are beginning to be partnered 
with robots for peer-based tasks [15, 27]. It is known that individual human perfor-
mance can impact human team performance [22]. Similarly, human performance will 
impact the task performance of human-robot teams. As human-robot team capabilities 
improve, it is necessary for the robotic team members to understand how the human’s 
performance capabilities affect the task at hand. Future human-robot team task as-
signments will need to allocate tasks to the team entities based upon the predicted 
human performance. Thus, it is necessary to understand if and how existing human 
performance moderator functions apply to human-robot teams. However, the same 
human performance moderator functions that are used in human-human scenarios 
should not be used to predict human-robot team performance without a thorough test 
of the functions’ applicability. 

Human performance moderator functions are equations derived from empirical re-
sults that predict human performance due to specific performance factors, such as 
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fatigue, mental workload or temperature. These factors greatly influence human be-
havior. Cognitive processing speed, physical capability, and stress levels can be ma-
nipulated by the progression of time on task and changes to the environment; these 
elements feed into human performance moderator functions to create performance 
predictions. Approximately 500 human performance moderator functions [30, 31] are 
known to exist, and it is well known that a number of interactions exist across human 
performance moderator functions. For example, an individual’s skill level, perhaps 
based on training, can reduce cognitive workload. In other words, tasks that become 
automatic can require lower cognitive workload. Specifically, our research investi-
gates integrating humans and robots into a single team. We have examined how hu-
man performance moderator functions can be used to predict a human’s performance 
in various team roles in order to be able to assign team members (humans or robots) 
to appropriate roles in real-time. The research has assessed the applicability of exist-
ing human performance data to human-robot teams; existing, modified, and new hu-
man performance moderator functions have been modeled, verified and validated [17, 
18, 19]. If modeled correctly, these human performance moderator functions can in-
form predictions on how the human and robot can most successfully interact and as-
sign tasks to the most appropriate team formations. In addition, we have been investi-
gating and devising a design-time and runtime framework for human-robot team sys-
tems that predicts human and robot performance for various team tasks and assigns 
appropriate humans or robots to team roles.  

Specifically, our research has focused on first response and hazardous materials 
scenarios. The first response scenario teamed an uninjured human with a robot that 
instructed the human as to how to triage injured victims in a contaminated area [17, 
19]. The hazardous materials scenario assigned specific responsibilities to both the 
human and the robot, but also required joint team decisions. This paper specifically 
focuses on the hazardous materials scenario.  

The usefulness of human performance models in making task assignments in hu-
man-robot teams was evaluated by modeling the human performance characteristics 
for each scenario (Section 2.1) and empirically validating the resulting human per-
formance model (Section 2.2). The usefulness of such models at runtime was demon-
strated by developing a simulation of the hazardous materials scenario, which used 
the human performance model to calculate the effect of the tasks on the human during 
scenario execution (Section 3). While the model outputs have yet to be used to inform 
the task assignment process, the simulation results show that the model outputs calcu-
lated at runtime were consistent with the results of the empirical experiment.  

2 Human Performance Modeling and Evaluation 

The hazardous materials evaluation required a reconnaissance of a single floor of an 
academic building after the receipt of a bomb threat. The team was responsible for 
collecting air samples, locating suspicious objects, and updating the incident com-
mander. Fig. 1 provides the layout of the entire reconnaissance area, which included a 
hallway and two laboratories. 



 
Fig. 1. A bird’s eye view of the hazardous materials scenario reconnaissance area. The 
area was divided into six areas for purposes of manipulating and measuring cognitive 

workload. 

The scenario assumes that the human partner works closely with the robotic partner 
to identify all potential suspicious items. The team was responsible for collecting air 
samples, locating suspicious objects, and updating the incident commander. If a sus-
picious object was found, it was not disturbed and information regarding its wherea-
bouts was reported immediately to an incident commander [25].  This scenario re-
quires an interactive relationship between the teammates, while also providing the 
human team member with some control over the direction of the investigation. Each 
team member had a few specific responsibilities, for example, the human was respon-
sible for looking in trash and recycling bins, while the robot was responsible for in-
vestigating fire extinguisher cabinets that were located at the height of the robot’s 
sensors and collecting chemical air samples. Although not discussed in this paper, the 
scenario also required the partners to make joint decisions regarding potential actions 
for each partner.  

The entire area to be investigated was divided into six areas of similar size, shown 
as the numbered shaded areas in Fig. 1. While the areas were divided into similarly 
sized areas, the workload within each area was manipulated based on the number of 
objects that required investigation, the complexity of the objects in the area, etc. The 
current paper focuses on the first two areas, Area 1 and Area 2. Area 1 contained two 
suspicious items and four non-suspicious bulletin boards. Area 2 contained a fire ex-
tinguisher, two suspicious items and two non-suspicious items.   

The human performance modeling and empirical validation research developed a 
model and validated the model for each team type considered. One model and valida-
tion were developed for the human-human teams (H-H) and another set for the hu-
man-robot teams (H-R). This is an important point, since it is unclear if the workload 
human performance moderator function that has been developed for other domains is 
applicable to humans working with a robot partner. The H-H team provides a baseline 
from which one can better understand for the applicability of the human performance 
moderator functions to the H-R team.  



2.1 Human Performance Modeling 

Independent computational human performance models for each team representation 
(H-H and H-R) were created to predict the workload levels experienced by the human 
teammate for each of the investigation areas. The performance models were devel-
oped using the Improved Performance Research Integration Tool (IMPRINT Pro) [1], 
which allows for the creation of a network of tasks to be completed by the team. Each 
task has an associated time and workload. The workload value is decomposed into 
seven workload channels, which include: Auditory, Visual, Speech, Tactile, Cogni-
tive, Fine Motor, and Gross Motor. IMPRINT Pro offers guidelines for assigning 
workload values for each task and provides micromodels of human performance 
based on empirical data to aid in determining the expected task time. The tool’s value 
ranges for the workload channels include different ranges for the different channels. 
For example, the cognitive channel has a range of values from 0 (little demand) to 7 
(high demand), while the visual channel has a range of 0 to 6. The modeling tool pro-
vides an estimate of the overall task execution time and the predicted workload at 
each step of the task. 

The IMPRINT models incorporate all tasks performed by the human during the re-
connaissance, including walking between locations, making decisions regarding 
whether or not an item is classified as suspicious, listening to feedback from the part-
ner, and participating in decision making tasks. This scenario incorporates uncertainty 
due to team decisions and individual differences, thus the models incorporated proba-
bility. The primary difference between the models is the incorporation of longer task 
durations. The robot spoke slower than the human and, even though the speed of the 
robot was increased, the robot was required to move more slowly than average human 
walking pace due to safety concerns when other humans (not part of the team) were 
present in the hallways. 

As previously mentioned, this paper focuses on the first two reconnaissance areas. 
Fig. 2 provides an overview of the overall workload results as determined by the H-H 
and H-R team models for each reconnaissance area. Due to the uncertainty represent-
ed in the IMPRINT models, ten trials were run for each team model. The overall 

 
Fig. 2. Scaled mean workload for the model versus the mean subjective workload results 
by condition and reconnaissance area.  Error bars represent one standard deviation above 

and below the mean. 
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workload value averages the workload values from each trial by investigation area. 
Similarly, Table 1 provides the means and standard deviation for the overall work-
load. Please note that the model workload results are scaled to a value between 1 and 
5, further details and justification of this scaling are provided in Section 2.3. 

2.2 Validation Evaluation 

The IMPRINT models were verified via a user evaluation that included both H-H and 
H-R teams. A single evaluator played the role of a trained first responder in all H-H 
condition trials. The H-R condition paired the participant with a Pioneer 2-DX robot. 
Both evaluation conditions required the team to perform a reconnaissance of all six 
areas in a continuous fashion. Unknown to participants, a remote evaluator controlled 
the robot’s speech and supervised the robot’s movement. Thirty-six participants com-
pleted the evaluation with eighteen in each condition. The 19 male and 17 female 
participants were not experts in first response or robotics and ranged in age between 
18 and 56 years old.  

The teams in each condition followed the same path from Area 1 to Area 6 (see 
Fig. 1) and the same suspicious items were placed in the same locations for both con-
ditions. The human (an experimenter) or robot partner was responsible for checking 
fire extinguishers and taking chemical air samples, and informed the participants that 
they were responsible for checking bulletin boards and trash cans, while looking for 
out of place items. At points, the team was required to make joint decisions regarding 
the appropriate action to take given the current circumstances. 

After completing the reconnaissance of a specific area (e.g., Area 1), but prior to 
beginning the reconnaissance of the next area, the participants rated their subjective 
workload on six channels: Auditory, Visual, Speech, Motor, Tactile and Cognitive. 
The modeled Fine and Gross Motor channels, presented in Sec. 2.1, were combined in 
the subjective ratings in order to facilitate participant understanding and data collec-
tion. The rating process and each channel were defined during training. The partici-
pant’s partner, either the human experimenter or the robot, asked the participant to 
rate the demands they experienced during that portion of the investigation on a scale 
from 1 (little demand) to 5 (extreme demand).  

The mean overall workload by participant was calculated by averaging the total 
demand from each area.  Fig. 2 provides the mean workload results for areas 1 and 2, 
while Table 1 provides the means and standard deviations. It is noted that the work-
load results for these two areas were lower for the H-R condition than for the H-H 

Table 1. Mean workload values and standard deviation for the model and validation results 
by condition and reconnassiance area. 

 H-H H-R 
 Model Validation Model Validation 

Area 1 12.50 (0.06) 12.67 (4.64) 12.11 (0.09) 10.78 (3.95) 
Area 2 13.65 (0.23) 13.33 (5.02) 13.31 (0.17) 10.17 (3.92) 

 



condition. This result mirrors the overall evaluation results. The mean overall work-
load for the H-H condition was 13.991 (St. Dev. = 5.215), and was 10.972 (St. Dev. = 
3.957) for the H-R condition. An ANOVA indicated that H-H condition resulted in 
significantly higher overall workload, F(1, 214) = 22.752, p < 0.001. 

2.3 Model Validation 

It is necessary to compare the results from the validation evaluation to the model trial 
results. As indicated in Section 2.1, the IMPRINT model channel ranges are not iden-
tical to the subjective workload channel ranges, thus it is necessary to convert the 
model values to the same scale as the subjective ratings. The first step sums the model 
based results for the Fine and Gross Motor workload channels. The IMPRINT work-
load channels values range from zero to a value between four and seven. The mean 
model results by channel were scaled to a value between 1 and 5 in order to match the 
subjective workload range. The total workload was calculated by summing all six 
channel values.  

 As can be seen in Fig. 2 and Table 1, there is virtually no difference between the 
workload results for the model or the evaluation for the H-H team condition. T-tests 
indicated that the H-H model and validation workload values were not significantly 
different in either reconnaissance area. This result indicates that the model is a good 
representation of empirical workload in the H-H condition. A reasonable difference 
between the model results and the evaluation results existed for the H-R team condi-
tion. The H-R model and evaluations results were not significantly different for Area 
1, but the model predictions were significantly higher than the subjective ratings for 
Area 2, t(22) = 2.521, p = 0.02. Even though this difference is significant, the H-R 
team result was within one standard deviation of the model results. In the H-R condi-
tion, the model was identical to the H-H condition model with the addition of adjust-
ments for the robot’s slower movement and speech. Overall, the model was a good 
predictor of workload in the H-H team condition in both investigation areas and for 
the H-R team condition Area 1, but it overestimated workload for the H-R condition 
in Area 2. The adjustments for predicted differences in movement time and conversa-
tion length in the H-R condition may have been insufficient to closely predict the 
difference in workload between conditions, but the model was able to provide an 
estimate within one standard deviation of the empirical results. The model can be 
adjusted to more accurately match the empirical results, but the goal of the presented 
research was to present the model as developed compared to the validation results. 

3 Agent Simulation 

The usefulness of human performance models at runtime was demonstrated by devel-
oping a simulation of the hazardous materials scenario. The simulation used the hu-
man performance model from Section 2 to calculate the effect of tasks on the human 
during scenario execution. While not complete, the purpose of the simulation was to 
demonstrate our envisioned use of human performance moderator functions in hu-



man-robot teams. The simulation is representative of the scenario described in Section 
2 for Areas 1 and 2 and was created in the Cooperative Robotic Organization Simula-
tor1 (CROS). CROS is a multithreaded, grid-based environment for simulating multi-
agent systems designed around the Organizational Model for Adaptive Complex Sys-
tems (OMACS) [11]. CROS supports grid-based environments with a variety of ob-
ject types and simulates the behavior of a set of heterogeneous agents within that 
environment. The simulation of the human-robot teams in CROS required that the 
OMACS model be extended to incorporate human performance moderator functions, 
as described in Section 3.1.  A CROS simulation of the human-robot hazardous mate-
rials scenario was created along with scripted versions of the human and robot agents. 
The resulting simulated scenario was employed to validate that the human perfor-
mance values computed by the human performance model during the simulation were 
consistent with those in the real experiments (Section 2.2).  

3.1 Chazm runtime model 

The Chazm runtime model (see Fig. 3) was designed to support the incorporation of 
humans into multiagent and multi-robot teams. Chazm is an extension of the OMACS 
runtime model, whose main use is to dynamically allocate and reallocate tasks in 
complex adaptive systems. The key elements of OMACS are Agents, Goals, Roles, 
and Capabilities. The main use of OMACS is to allow Agents to be assigned to Roles 
to achieve specific organizational Goals where, in order to be assigned to a Role, an 
agent must possess all the required Capabilities. While humans can be viewed as 
OMACS Agents, OMACS does not have the ability to capture the notion of human 
performance factors that affect the performance of assigned Roles. Thus, Chazm add-
ed two main concepts to provide a means of capturing human performance, Perfor-
                                                           
1  See http://macr.cis.ksu.edu/cros 

 

Fig. 3. Chazm Runtime Model 



mance Functions and Attributes. Attributes capture the values associated with human 
performance factors such as workload, fatigue, and experience, while Performance 
Functions determine how those Attribute values change as human agents perform 
various tasks. Thus, the ultimate research goal is to incorporate human performance 
moderator functions as Performance Functions into a runtime model (Chazm) that can 
be used to predict how a human’s performance will degrade when assigned particular 
tasks in order to optimize overall human-robot team performance. While the simula-
tion reported in this paper does not yet use Chazm to allocate/reallocate tasks, the 
objective of this paper is to demonstrate that Chazm can be used to accurately capture 
and compute such information.  

3.2 Agent Simulator 

The scenario modeled in IMPRINT Pro was recreated in the CROS simulator to 
demonstrate our proposed approach for using human performance moderator func-
tions in human-robot teams. Fig. 4 shows a screenshot representing reconnaissance 
Areas 1 and 2 in the CROS environment. The dark brown lines represent the walls, 
while the various icons next to the walls represent the objects in those areas. The rec-
tangle outlined by a dotted line in the upper right corner of Fig. 4 is shown in more 
detail in Fig. 5. All objects are positioned in the simulated environment as they were 
placed in the real world.  

 
Fig. 4. Simulated environment map for reconnaissance Area 1 and Area 2 that includes the 

robot, teammate, and various objects.  



Two agents were simulated, one agent representing the human and another repre-
senting the robot. The robot (gray and white) and the human (black, blue and white) 
are shown in the middle of the hall in Fig. 5, while a recycling bin (blue) and garbage 
bin (gray) are shown to the left of the agents along the wall and a bulletin board is 
shown below and to the right of the agents (brown). The yellow blocks in line with 
the walls represent closed doors.  

The human and robot agents possessed the same basic types of capabilities, includ-
ing movement, localization, path planning, communication, vision, and air sampling. 
Although they had the same capability types, the actual capacities of those capabilities 
varied between human and robot. For example, the human could “see” further and 
higher than the robot. These differences in capabilities led to significantly different 
behavior in the simulation. 

The first objective was to validate that the simulation produces similar workload 
results when compared to the real experiments, (Section 2). Thus, the initial simula-
tion experiments defined the agent behavior in terms of a set of predefined scripts 
designed to match the actions from the real world experiment. As each task in the 
scenario was modeled separately and executed sequentially, it was straightforward to 
translate the modeled task behavior directly into simple scripted behavior.  

Due to the large number of tasks modeled in the IMPRINT Pro (408 tasks in the 
six areas), the simulation used task categories to avoid the tedious process of creating 
a script for each individual task. The 408 tasks were categorized into 8 general cate-
gories: Walking, Listening, Speaking, Deciding, Reacting, Investigating, Taking Pic-
tures, and Waiting. Scripts were created for each task type category.   

The IMPRINT Pro model data for the scenario tasks was captured in six separate 
files, one for each reconnaissance area. An extra field was manually appended to the 
model data of each task to specify its category. A Java program was developed to 
convert the data files into script files that the simulator used directly. Essentially, the 
conversion program extracted five pieces of data from the files: the sequence number 
of the task, the task name, the task category, the total workload for the task, and the 

 

Fig. 5. A zoomed view of the upper right corner of Fig. 4, that better shows the robot, human, 
a recycling bin (blue), a garbage can (grey), and bulletin board (brown). 



time taken to perform the task. Each task category, except Walking was extracted 
directly and reformatted into a new file. For example, the task to ‘Determine if it is 
necessary to go back to look at an unnoticed object’ from the scenario was converted 
into the following script.  

 Decide {  
  index 19 
  content Determine if going back is necessary 
  workload 15.25 
  timespan 3.0 
 } 

The task category for this script is Decide, the sequence number (index) is 19, the 
name (content) is ‘Determine if going back is necessary’, the workload is 15.25, and 
the time taken to perform the task (timespan) is 3.0 seconds. The sequence number 
(index) is used to order the execution of tasks and synchronize the task executions 
between the human and the robot.  

The Walk category required additional effort. The workload needs to be computed 
based on the time required to move from one location to another in the autonomous 
simulation (see Section 3.4), thus it was necessary to verify that the workload com-
puted in the simulation (which is based on the time required to move the associated 
distance) was consistent with the workload from the IMPRINT Pro model. Since each 
grid in CROS represents 1 foot (or approximately 0.305m) and the walking speed 
modeled in IMPRINT Pro is 1.612 m/s, we computed the average time an agent 
would spend in each grid while Walking at 0.189 seconds. Thus, by knowing the 
agent’s start location and destination, the agent’s path and the total time spent Walk-
ing can be calculated. Unfortunately, since CROS uses square grids, agents may only 
move horizontally or vertically, which dramatically increases the distance and time 
required to move from one location to another. Therefore, given the objective of vali-
dating the values from the real world experiment, the time calculations use the realis-
tic assumption that humans tend to move in a straight line when possible, which is 
easily computed in a grid-based system using the Pythagorean Theorem. Thus, for the 
task ‘Walk to BB1’ (BB1 means Bulletin Board 1) the following script was generated, 
where the workload parameter is interpreted as the workload per second. 

 Walk { 
  index 2 
  content Walk to BB1 
  workload 12.73 
  timespan 2.28 
  location (160, 71) 
 } 

The scripts were parsed into the CROS simulator where each task was stored in a 
sequential list of action task objects. The human was simulated by executing each 
task in sequence from its list of action task objects. The robot was scripted by manual-



ly creating a similar set of data files based on the expected robot behavior from the 
real world experiments. Since workload is only related to the human agent, this in-
formation was omitted from the data for the robot. Scripting each agent in this manner 
enabled the simulated agents to perform the same basic tasks in the same sequence, as 
occurred in the real world experiments. 

3.3 Validation of Simulated Results 

All tasks in the scripted simulation, with the exception of Walking, are executed while 
the agents are stationary. Thus, the workload and time span values are used directly 
from the scripts, which were determined by the IMPRINT Pro model. This approach 
ensures that the IMPRINT Pro values match the values from the scripted simulation 
perfectly and no additional validation is required. However, since the Walk tasks 
required computing the time to move from one location to another, based on the actu-
al simulator time, it was necessary to validate that, on average the times were con-
sistent with those modeled in IMPRINT Pro.  

Table 2 provides a comparison of the results of the Walk tasks between the scripted 
simulation and the values produced by the IMPRINT Pro model for Areas 1 and 2. 
The Workload Unit column represents the workload unit value assigned for this spe-
cific task in the IMPRINT Pro model. The Workload Units vary between tasks as the 
unit values are assigned to the Walking tasks based on the other tasks the human is 
doing. For instance, when walking to the bulletin boards, the human may have been 
looking at the bulletin board trying to ascertain what was on it, in addition to walking. 
The Script Time column represents the time calculated for the human to move to the 
next location, which is based on an estimate of the distance in the grid-based envi-
ronment. The Model Time column represents the modeled time in IMPRINT Pro. The 
Scripted and Model Workload columns represent the total workload for each task, as 

Table 2. Walk workload for Areas 1 and 2 

Task Name 

Work-
load Unit 

(w/s) 
Scripted 
Time (s) 

Model 
Time 

(s) 

Scripted 
Workload 

(w) 

Model 
Workload 

(w) 
Walk to bulletin board 1 12.73 1.86 2.28 23.70 29.02 
Walk to bulletin board 2 12.73 1.74 3.32 22.18 42.26 
Walk to bulletin board 3 12.73 1.89 0.76 24.06 9.674 
Walk to bulletin board 4 12.73 1.70 1.24 21.65 15.79 
Walk to recycling bin 1 11.0 1.71 3.61 18.83 39.71 
Walk to backpack  13.88 3.05 2.85 42.38 39.56 
Walk to recycling bin 2 15.25 1.21 1.52 18.46 23.18 
Walk to white board  15.25 4.25 2.66 64.77 40.57 
Walk to box 14.11 1.97 1.9 27.84 26.81 
Walk to book box 16.11 2.88 4.18 46.38 67.34 
Walk to WL2 15.25 0.95 1.9 14.41 28.98 
SUM  23.21 26.22 324.66 362.90 
AVG    13.99 13.84 

 
 



estimated in the simulation and IMPRINT Pro, respectively.  
Obviously, the time spent on each Walk task does not match the IMPRINT Pro 

model exactly. This imprecision is caused by the fact that the distance is estimated 
based on a one foot grid size, which causes several location and distance errors. No-
tice, however, that when aggregated, the average walking workload in the scripted 
simulation is within two percent of the overall model workload. We believe this result 
is sufficiently close to support the investigation of using human performance modera-
tor functions and the Chazm runtime model in human-robot team systems to predict 
human performance and to assign appropriate humans or robots to team roles in order 
to increase overall team performance. 

3.4 Future Work 

In the next phase of our work, we will (1) add an autonomous (as opposed to scripted) 
mode to both the human and robot agents in the CROS simulator and (2) use runtime 
models to assign tasks to the agents. First we will use the OMACS runtime model, 
which will enable the team to assign tasks based only on the agent’s basic capabilities. 
Next we will use the Chazm runtime model, which will allow the team to assign tasks 
based on the basic capabilities of the agent’s as well as the human’s current perfor-
mance attribute values. While using Chazm, we expect that when the human’s work-
load is too high, some tasks normally assigned to the human when using OMACS will 
be assigned to the robot instead. We will determine the effect of including the hu-
man’s performance in the assignment process by measuring overall team performance  

Next, we will extend our experiments by allowing the robot to monitor the hu-
man’s performance using the Chazm runtime model.  Based on Chazm human per-
formance attribute values, we will enable the robot to autonomously adapt its behav-
ior by either assuming the human’s tasks or modifying how it executes its own tasks. 
Again, we will measure the effect of these changes on overall team performance. 

In future work, we plan to investigate allowing the robot to adapt its behavior to 
better support the human when human performance attribute values exceed appropri-
ate levels. First, we will investigate the use of adaptive automation/adjustable auton-
omy to allow the robot to take over tasks assigned to the human. We expect the robot 
will take over lower priority tasks when the human’s workload reaches some thresh-
old in order to improve overall team performance.  

Finally, we plan to investigate allowing the robot to adapt the human-robot interac-
tion in an attempt to reduce human workload even while allowing the human to con-
tinue performing high priority tasks or task only the human can perform. This type of 
adaptation requires monitoring the human in order to capture current human perfor-
mance for comparison to the predicted human performance. Our current human per-
formance results provide insights into how human performance can be monitored, but 
the future work will require the investigation on various monitoring capabilities. For 
example, wearable heart-rate monitors are easily displaced during periods of high 
activity, thus it will be necessary to devise other monitoring capabilities. We expect 
this form of human-robot interaction adaption, when coupled with adaptive automa-
tion/adjustable autonomy, will further improve team performance. 



3.5 Related Research 

Human performance modeling has traditionally focused on developing theories of 
human performance and predicting how humans will interact with systems in order to 
evaluate the system or inform system design [3]. A number of human performance 
modeling tools have been developed [1, 2, 10, 14, 16, 32, 33]. These human perfor-
mance modeling tools have been applied to a broad set of domains including aviation, 
military, and nuclear power plants [3, 14, 26] and  some work has focused on predict-
ing robot operator capacity [7, 8, 9]; however, to date little research has focused on 
applying performance modeling and human performance moderator functions to peer-
based human-robot interaction. Howard [20] focused on employing ACT-R to model 
and predict human performance for repetitive collaborative tasks in order to predict 
workload and allocate tasks between a human and a robot. The developed model was 
validated by requiring the task to be completed by a human teleoperating the robot 
and by an autonomous robot. Harriott et al. have focused on modeling and validating 
workload and reaction time for peer-based human-robot teams [17, 18, 19].  

A natural model for human-robot teams is multiagent systems, which focus on 
adapting to dynamic environments, agent failure, and lack of global knowledge. 
While multiagent systems models are often based on human organizational concepts 
(e.g., [12]), few explicitly support humans as agents or support adaptation to changes 
in agent capabilities. Humans are usually viewed as external to the multiagent systems 
or are only considered in preset roles, such as supervisors [23]. When included in 
multiagent systems, most pair humans with proxy agents [6] or only consider humans 
as they relate to user interfaces [24]. Notable attempts at integrating humans into mul-
tiagent systems include a NASA space crew/spacecraft management system [28], 
some initial work in assigning tasks in human-robot teams based solely on workload 
[20], and DeLoach’s previous work extending OMACS. OMACS supports robots 
teams in reorganizing in response to dynamic environments and changes in robot 
capabilities [11]; key entities include the team’s goals, roles, agents, and capabilities. 
The Chazm runtime model presented in this paper extends OMACS with agent attrib-
utes to capture human performance factors, such as workload and fatigue.  

3.6 Discussion 

The overall goal of our research program is to develop a framework for human-robot 
peer teams that allow robots to support their human teammates while working to 
achieve shared tasks. Unfortunately, as human performance degrades over time, the 
human’s ability to complete assigned tasks can also degrade. Thus, we plan to give 
the robot insight into this human performance degradation to allow the robot to re-
spond appropriately to its partner as the human’s performance degrades. Our first step 
is to develop a framework that allows tasks to be allocated and reallocated as appro-
priate based on team member capabilities and performance degradations. Next, we 
plan to extend the framework to support adapting the interactions between the human 
and robot during shared tasks to better support the human, 



As we move toward our goal, this paper presents potentially groundbreaking re-
search in the field of human-robot teams. First, it is one of the first known validations 
of human performance moderator functions in the domain of human robot teams. An 
existing workload human performance moderator function was modeled and analyzed 
in order to determine its applicability to human-robot teams. While the results showed 
some difference for Area 2, the model was a good predictor of workload in Area 1, 
but overestimated workload for Area 2. While the workload human performance fac-
tor may require some additional work, what was clear was that workload is the hu-
man-human team was higher than that of the human-robot team. We have hypothe-
sized that the robot’s slower movement and speech are the main cause of this result. 

This research also lays a solid foundation for demonstrating the use of human per-
formance moderator functions in human-robot teams. We demonstrated that we can 
capture human performance moderator functions in the Chazm runtime model and 
compute attribute values that show a human’s performance. We also validated that the 
values produced consistent with those from the IMPRINT Pro model. Making infor-
mation related to human performance available to the human-robot team will allow 
the team to make more informed task (re)allocation decisions and will allow the robot 
to modify its behavior in response to changes in the human’s performance. In addi-
tion, the use of runtime models will enable human performance moderator functions 
to be easily reused in new human-robot team applications. Runtime models also sup-
port the development of new methods and techniques to help designers integrate new 
human performance moderator functions into new and existing applications. 

It is well known that human performance not only varies dramatically, but can de-
grade over the course of prolonged activity. Human teammates often adapt the tasks 
and interactions to accommodate teammates whose performance ebbs and flows. The 
ability of the human teammates to adjust their interactions and task responsibilities is 
often critical to the completion of the assigned task or mission. As robot technology 
improves, and the research platforms move closer to deployment with their human 
partners, it is clear that the teammates should be initially assigned responsibilities 
based upon their current and predicted performance capabilities and that the robot 
needs to be able to adjust and adapt to the human over time. The presented human 
performance modeling and validation activities allow for the establishment of human 
performance metrics appropriate for human-robot peer-based teaming. The extension 
of OMACS to Chazm in order to account for human performance lays the foundation 
for the autonomous delegation, and reallocation of tasks between the human and robot 
teammates based on the human performance capabilities and changes. The ability of 
the robot to adapt and ensure successful task completion, either by taking on tasks 
from the human or by modifying the interaction with the human are important com-
ponents of the resulting systems.    

4 Acknowledgements 

This research has been supported by AFOSR award FA9550-09-1-0108. 



5 References  

1. Allender, L., Kelley, T. D., Salvi, L., Lockett, J., Headley, D. B., Promisel, D., Mitchell, 
D., Richer, C., and Feng, T. (1995). Verification, validation, and accreditation of a soldier-
system modeling tool. Proceedings of the Human Factors and Ergonomics Society 39th 
Annual Meeting, pp. 1219-1223. 

2. Archer, S., Gosakan, M., Shorter, P., and Lockett III, J. F., “New capabilities of the army's 
maintenance manpower modeling tool,” Journal of the International Test and Evaluation 
Association, 26, 1 (2005), 19-26. 

3. Baron, S., Kruser, D., and Messick Huey B. (Eds.). (1990). Quantitative Modeling of Hu-
man Performance in Complex, Dynamic Systems. Washington, DC: National Academy 
Press. 

4. Bonasso, P., Kortenkamp D., & Thronesbery, C. (2003). Intelligent control of a Water-
Recovery System: Three years in the trenches. AI Magazine, 24(1): 19-44. 

5. Bradshaw, J. M., Feltovich, P. J., Jung, H., Kulkarni, S., Taysom, W. & Uszok, A. (2004). 
Dimensions of Adjustable Autonomy and Mixed-Initiative Interaction. Autonomy, M. 
Nickles, M. Rovatsos & G. Weiss (Eds.), LNAI 2969, pp. 17–39. 

6. Chalupsky, H., Gil, Y., Knoblock, C.A., Lerman, K., Oh, J., Pynadath, D. V., Russ, T. A., 
& Tambe, M. (2002). Electric Elves: Agent technology for supporting human organiza-
tions. AI Magazine, 23(2): 11-24. 

7. Crandall, J. W. and Cummings, M. (2007). Identifying predictive metrics for supervisory 
control of multiple robots. IEEE Transactions on Robotics, 23(5): 1-10. 

8. Crandall, J. W., Goodrich, M. A., Olsen, Jr., D. R., and Nielsen, C. W. (2005). Validating 
human-robot interaction schemes in multitasking environments. IEEE Transactions on 
Systems, Man and Cybernetics – Part A, 35(4): 438-449. 

9. Cummings, M. & Mitchell, P. J. (2008). Predicting controller capacity in supervisory con-
trol of multiple UAVs. IEEE Transactions on Systems, Man and Cybernetics – Part A. 
38(2): 451-460. 

10. Dahn, D. and Belyavin, A. (1997). The Integrated Performance Modeling Environment A 
tool for simulating human-system performance. Proceedings of the 41st Annual Human 
Factors and Ergonomics Society Meeting, pp 1037-1041. 

11. DeLoach, S. A., Oyenan, W., & Matson, E. T. (2008). A capabilities based model for arti-
ficial organizations. Journal of Autonomous Agents and Multiagent Systems, 16(1): 13-56. 

12. Dignum, V., Vázquez–Salceda, J., and Dignum, F. (2004). Omni: Introducing social struc-
ture, norms and ontologies into agent organizations. Proceedings of the Second Interna-
tional Workshop on Programming Multi-Agent Systems, LNCS 3346, pp. 181–198, Berlin: 
Springer. 

13. Fowles-Winkler, A. M. (2003). Modelling with the integrated performance modelling en-
vironment (IPME), Proceedings of the 15th European Simulation Symposium, A. Ver-
braeck and V. Hlupic (Eds.). 

14. Foyle, D. C. and Hooey, B. L. (Eds.) (2008). Human Performance Modeling in Aviation. 
Boca Raton, FL: CRC Press. 

15. Goodrich, M.A., and Schultz, A.C.  2007. Human-Robot Interaction: A Survey, in Foun-
dations and Trends in Human-Computer Interaction. 1, 3, 203-275. 

16. Gore, B.F., and Jarvis, P.A. (2005). New integrated modeling capabilities: MIDAS‚ recent 
behavioral enhancements. Eighth Proceeding of the Annual SAE International Conference 
and Exposition - Digital Human Modeling for Design and Engineering, SAE Paper #2005-
01-2701. 



17. Harriott, C. E., Zhang, T. & Adams, J. A. (2011). Evaluating the applicability of current 
models of workload to peer-based human-robot teams. Proceedings of the 6th ACM/IEEE 
International Conference on Human-Robot Interaction, pp. 45-52. 

18. Harriott, C. E., Zhang, T. & Adams, J. A. (2012). Assessing Workload in Human-Robot 
Peer-Based Teams. Proceedings of the 7th ACM/IEEE International Conference on Hu-
man-Robot Interaction. 

19. Harriott, C. E., Zhang, T. & Adams, J.A. (2011). Predicting and validating workload in 
human-robot teams. Proceedings of the 20th Conference on Behavior Representation in 
Modeling and Simulation, pp. 162-169. 

20. Howard, A. M. (2007). A systematic approach to predict performance of human-
automation systems. IEEE Transactions on Systems, Man and Cybernetics – Part C, 37(4): 
594-601. 

21. Kaber, D. B., Riley, J. M., Tan, K.-W. & Endsley, M. R. (2001). On the Design of Adap-
tive Automation for Complex Systems. International Journal of Cognitive Ergonomics, 
5(1): 37-57. 

22. Katzenbach, J.R., and Smith, D. K. Best of HBR 1993-The discipline of teams. Harvard 
Business Review. (July-Aug. 2005), 1-10.  

23. Kostuik, K. & Vassileva, J. (1999). Free market control for a multi-agent based peer help 
environment. Proceedings of the Workshop on Agents for Electronic Commerce and Man-
aging the Internet-Enabled Supply Chain. 

24. Maes, P. (1994). Agents that reduce work and information overload. Communications of 
the ACM, 37(7): 30-40. 

25. Mahoney, P. F. Businesses and bombs: Preplanning and response. Facilities. 12, 10 
(1994), 14-21.  

26. Pew, R. W. and Mavor, A. S. (Eds.) (1998). Modeling Human and Organizational Behav-
ior: Applications to Military Simulations. Washington, DC: National Academies Press. 

27. Scholtz, J. 2003. Theory and Evolution of Human Robot Interactions, in Proc. of IEEE 
36th Int. Conf. on System Sciences, 5, 125 - 134. 

28. Schreckenghost, D., Martin, C., Milam, T., and Bonasso, R. P. (2004). Modeling humans 
for coordinating distributed human-agent teams in space operations. Agent Tracking 
Workshop at the International Joint Conference on Autonomous Agents and Multi-Agent 
Systems. 

29. Silverman, B. G. (2004). Toward realism in human performance simulation. The science 
and simulation of human performance, J. W. Ness, D. R Ritzer, and V. Tepe (Eds). New 
York: Elsevier, pp. 469-498. 

30. Silverman, B. G., Johns, M., Cornwell, J., & O’Brien, K. (2006). Human behavior models 
for agents in simulators and games: Part I: Enabling science with PMFServ. Presence: Tel-
eoperators and Virtual Environments, 15(2): 139-162. 

31. Silverman, B.G., Johns, M., Shin, H., and Weaver, R. 2002.  Performance Moderator 
Functions for Behavior Modeling in Military Situations. Human Behavior Program–
Defense Modeling Simulation Office. 

32. Tyler, S., Neukom, C. Logan, M. and Shively, J. (1998). The MIDAS human performance 
model. Proceedings of the Human Factors and Ergonomics Society 42nd Annual Meeting, 
pp. 320-325. 

33. Zachary, W. Ryder, J. Stokes, J. Glenn, F. Le Mentec, J-C and Santarelli T. (2005). A 
COGNET/IGEN cognitive model that mimics human performance and learning in a simu-
lated work environment. Modeling Human Behavior with Integrated Cognitive Architec-
tures, K. A. Gluck and R. W. Pew (Eds.), pp. 113 – 176. 

http://satchmo.cs.columbia.edu/aamas04/
http://satchmo.cs.columbia.edu/aamas04/

	1 Introduction
	2 Human Performance Modeling and Evaluation
	2.1 Human Performance Modeling
	2.2 Validation Evaluation
	2.3 Model Validation

	3 Agent Simulation
	3.1 Chazm runtime model
	3.2 Agent Simulator
	3.3 Validation of Simulated Results
	3.4 Future Work
	3.5 Related Research
	3.6 Discussion

	4 Acknowledgements
	5 References

