
Category Theory Approach to Fusion of Wavelet-Based Features

Scott A. DeLoach
Air Force Institute of Technology

Department of Electrical and Computer Engineering
Wright-Patterson AFB, Ohio 45433

Scott.DeLoach@afit.af.mil

Mieczyslaw M. Kokar
Northeastern University

Department of Electrical and Computer Engineering
Boston, Massachusetts 02115

kokar@coe.neu.edu

Abstract

This paper discusses the application of category theory as
a unifying concept for formally developed information
fusion systems. Category theory is a mathematically sound
technique used to capture the commonalties and
relationships between objects. This feature makes category
theory a very elegant language for describing information
fusion systems and the information fusion process itself.
After an initial overview of category theory, the paper
investigates the application of category theory to a wavelet
based multisensor target recognition system, the Automatic
Multisensor Feature-based Recognition System (AMFRS),
which was originally developed using formal methods.

1. Introduction

The goal of information fusion is to combine multiple
pieces of data in a way so we can infer more
information than what is contained in the individual
pieces of data alone. This requires us to be able to
determine how the individual pieces of data are
related. It would also be nice if we could describe
this relationship between data in a formal way so that
we can automatically reason over the process without
the use of unreliable and brittle heuristics. In this
paper we present category theory as a unifying
concept for formally defining information fusion
systems. The goal of category theory is to define the
relationships between objects in a category of related
objects. Category theory also provides operators that
allow us to reason over these relationships. In
previous research we have shown category theory to
be useful for defining relationships between object
classes in object-oriented systems [1] and now we do
the same for information fusion systems.

The first section of the paper is a tutorial on algebraic
specifications and category theory. Next we describe
a formally defined fusion system, the Automatic
Multisensor Feature-based Recognition System
(AMFRS), and describe how we could incorporate
category theory constructs to provide a provably
correct technique for implementing the system.

2. Theories and Specifications

The notation generally used to capture the formal
definitions of systems is a formal specification.
There are two types of formal specifications
commonly used to describe the behavior of software:
operational and definitional. An operational
specification is a “recipe” for an implementation
that satisfies the requirements while a definitional
specification describes behavior by listing the
properties that an implementation must posses.
Definitional specifications have several advantages
over operational specifications because they are
generally shorter and clearer than operational
specifications, easier to modularize and combine, and
easier to reason about, which is the key reason they
are used in automated systems.

It is recognized that creating correct, understandable
formal specifications is difficult, if not impossible,
without the use of some structuring technique or
methodology. Algebraic theories provide the
advantages of definitional specifications along with
the desired structuring techniques. Algebraic theories
are defined in terms of collections of values called
sorts, operations defined over the sorts, and axioms
defining the semantics of the sorts and operations.
The structuring of algebraic theories is provided by
category theory operations and provides an elegant
way in which to combine smaller algebraic theories
into larger, more complex theories.

Categories are an abstract mathematical construct
consisting of category objects and category arrows.
In general, category objects are the objects in the
category of interest while category arrows define
a mapping from the internal structure of one category
object to another. In our research, the category
objects of interest are algebraic specifications and the
category arrows are specification morphisms. In this
category, Spec, specification morphisms map the
sorts and operations of one algebraic specification
into the sorts and operations of a second algebraic
specification such that the axioms in the first

specification become provable theorems in the
second specification. Thus, in essence, a specification
morphism defines an embedding of one specification
into a second specification.

2.1. Algebraic Specification

In this section, we define the important aspects of
algebraic specifications and how to combine them
using category theory operations to create new, more
complex specifications. As described above, category
theory is an abstract mathematical theory used to
describe the external structure of various
mathematical systems. Before showing its use in
relation to algebraic specifications, we give a formal
definition [6].

Category. A category C is comprised of

• a collection of things called C-objects;

• a collection of things called C-arrows;

• operations assigning to each C-arrow f a C-object dom f
(the domain of f) and a C-object cod f (the “codomain”
of f). If a = dom f and b = cod f this is displayed as

f
f: a → b or a ⎯→ b

• an operation, “�”, called composition, assigning to each
pair 〈g, f〉 of C-arrows with dom g = cod f, a C-arrow g �
f: dom f → cod g, the composite of f and g such that the
Associative Law holds: Given the configuration

 f g h
a ⎯→ b ⎯→ c ⎯→ d

of C-objects and C-arrows, then

h � (g � f) = (h � g) � f.

• an assignment to each C-object, b, a C-arrow, idb: b→b,
called the identity arrow on b, such that the Identity Law
holds: For any C-arrows f: a → b and g: b → c

idb � f = f and g � idb = g.

2.1.1. The Category of Signatures

In algebraic specifications, the structure of a
specification is defined in terms of an abstract
collection of values, called sorts and operations over
those sorts. This structure is called a signature [7]. A
signature describes the structure that an
implementation must have to satisfy the associated
specification; however, a signature does not specify
the semantics of the specification. The semantics are
added later via axiomatic definitions.

Signature. A signature Σ = 〈S, Ω〉, consists of a set S of
sorts and a set Ω of operation symbols defined over S.
Associated with each operation symbol is a sequence of
sorts called its rank. For example, f:s1,s2,... ,sn → s
indicates that f is the name of an n-ary function, taking
arguments of sorts s1, s2, …, sn and producing a result of

sort s. A nullary operation symbol, c: → s, is called a
constant of sort s.

An example of a signature is shown in Figure 1. In
the signature RING there is one sort, ANY, and five
operations defined on the sort.

signature Ring is
sorts ANY
operations

plus : ANY × ANY → ANY
times : ANY × ANY → ANY
inv : ANY → ANY
zero : → ANY
one : → ANY

end

Figure 1. Ring Signature

In our research, signatures define the required
structure for formally describing wavelet-based
models. Signatures provide the ability to define the
internal structure of a specification; however, they do
not provide a method to reason about relationships
between specifications. To create a theory of
information fusion using algebraic specifications,
operations to define relations between specifications
must be available. There must be a well-defined
theory about how specifications relate to one another.

As might be expected, signatures (as the “C-objects”)
with the correct “C-arrows” form a category that is of
great interest in our research. For signatures, the C-
arrows are called signature morphisms [7].
Signatures and their associated signature morphisms
form the category, Sign.

Signature Morphism. Given two signatures Σ = 〈S, Ω〉 and
Σ ' = 〈S ', Ω '〉, a signature morphism σ : Σ → Σ ' is a pair
of functions 〈σS : S → S', σΩ : Ω → Ω '〉, mapping sorts to
sorts and operations to operations such that the sort map is
compatible with the ranks of the operations, i.e., for all
operation symbols f:s1,s2,... ,sn → s in Ω, the operation
symbol σΩ (f):σS(s1), σS(s2),... ,σS(sn) → σS(s) is in Ω'. The
composition of two signature morphisms, obtained by
composing the functions comprising the signature
morphisms, is also a signature morphism. The identity
signature morphism on a signature maps each sort and
each operation onto itself. Signatures and signature
morphisms form a category, Sign, where the signatures are
the C-objects and signature morphisms are the C-arrows.

Given the signatures RING from Figure 1 and
RINGINT from Figure 2, a signature morphism σ :
RING → RINGINT, is shown in Figure 3. As required
by the definition of a signature morphism, σ consists
of two functions, σS and σΩ as shown. σS maps the
sort ANY to Integer while σΩ maps each operation to
an operation with a compatible rank.

Signature morphisms map sorts and operations from
one signature into another and allow the restriction of
sorts as well as the restriction of the domain and

range of operations. However, to build up more
complex signatures, introduction of new sorts and
operations into a signature is required. This is
accomplished via a signature extension.

Spec RingInt is
sorts Integer
operations

+ : Integer × Integer → Integer
× : Integer × Integer → Integer
- : Integer → Integer
0 : → Integer
1 : → Integer

end

Figure 2. Integer Ring Signature

σS = {ANY � Integer}

σΩ = {plus � +, times � ×, inv � -, zero � 0, one � 1}

Figure 3. Signature Morphism

Extension. A signature Σ2 = 〈S2, Ω2〉 extends a signature Σ1

= 〈S1, Ω1〉 if S1 ⊆ S2 and Ω1 ⊆ Ω2.

Signature extensions allow the definition of entirely
new signatures and the growth of complex signatures
from existing signatures.

2.1.2. The Category of Specifications

To model semantics, signatures are extended with
axioms that define the intended semantics of the
signature operations. A signature with associated
axioms is called a specification [7].

Specification. A specification SP is a pair 〈Σ, Φ〉 consisting
of a signature Σ = 〈S, Ω〉 and a collection Φ of Σ-sentences
(axioms).

Although a specification includes semantics, it does
not implement a program nor does it define an
implementation. A specification only defines the
semantics required of a valid implementation. In
fact, for most specifications, there are a number of
implementations that satisfy the specification.
Implementations that satisfy all axioms of a
specification are called models of the specification
[7]. To formally define a model, we first define a Σ-
algebra [7].

Σ-algebra or Σ-model. Given a signature Σ = 〈S, Ω〉, a Σ-
algebra A = 〈AS, FA〉 consists of two families:

• a collection of sets, called the carriers of the algebra,
AS = {As | s ∈ S}; and

• a collection of total functions, FA = {fA | f ∈ Ω} such
that if the rank of f is s1,s2, ..., sn → s, then fA is a
function from As1 × As2 × … × Asn to As. (The symbol ×
indicates the Cartesian product of sets here.)

Model. A model of a specification SP = 〈Σ, Φ〉 is a Σ-
algebra, M, such that M satisfies each Σ-sentence (axiom)
in Φ. The collection of all such models M is denoted by

Mod[SP]. The sub-category of Mod(Σ) induced by
Mod[SP] is also denoted by Mod[SP].

An example of a specification is shown in Figure 4.
This specification is the original RING signature of
Figure 1 enhanced with the axioms that define the
semantics of the operations. Valid models of this
specification include the set of all integers, Z, with
addition and multiplication as well as the set of
integers modulo 2, Z2 = {0, 1}, with the inverse
operation (-) defined to be the identity operation.

As signatures have signature morphisms,
specifications also have specification morphisms.
Specification morphisms are signature morphisms
that ensure that the axioms in the source specification
are theorems (are provable from the axioms) in the
target specification. Showing that the axioms of the
source specification are theorems in the target
specification is a proof obligation that must be shown
for each specification morphism. Specifications and
specification morphisms enable the creation and
modification of specifications that correspond to
valid signatures within the category Sign. However,
before we can formally define a specification
morphism, we must first define a reduct [7].

spec Ring is
sorts ANY
operations

as defined in Figure 1
axioms

∀a,b,c ∈ ANY
a plus (b plus c) = (a plus b) plus c
a plus b = b plus a
a plus zero = a
a plus(inv a) = zero
a times (b times c) = (a times b) times c
a times one = a
one times a = a
a times (b plus c) = (a times b) plus (a times c)
(a plus b) times c = (a times c) plus (b times c)

end

Figure 4. Ring Specification

Reduct. Given a signature morphism σ:Σ → Σ ' and a Σ '-
algebra A', the σ-reduct of A', denoted A'|σ, is the Σ-
algebra A = 〈AS, FA〉 defined as follows (with Σ = 〈S, Ω〉):

AS = Aσ(s)' for s ∈ S, and
fA = (σ(f))A', for f ∈ Ω

A reduct defines a new Σ-algebra (or Σ-model) from
an existing Σ'-algebra. It accomplishes this by
selecting a set or functions for each sort or operation
in Σ based on the signature morphism from Σ to Σ '.
Thus if we have a signature, Σ ', and a Σ '-model, we
can create a Σ-model for a second signature, Σ, by
defining a signature morphism between them and
calculate the associated reduct. A reduct is now used
to extend the concept of a signature morphism to
form a specification morphism [7].

Specification Morphism. A specification morphism from a
specification SP = 〈Σ, Φ〉 to a specification SP' = 〈Σ ', Φ'〉
is a signature morphism σ: Σ → Σ ' such that for every
model M ∈ Mod[SP'], M|σ ∈ Mod[SP]. The specification
morphism is also denoted by the same symbol, σ: Σ → Σ '.

We now turn to the definition of theories and theory
presentations. Basically a theory is the set of all
theorems that logically follow from a given set of
axioms [6]. A theory presentation is a specification
whose axioms are sufficient to prove all the theorems
in a desired theory but nothing more. Put succinctly,
a theory presentation is a finite representation of a
possibly infinite theory. To formally define a theory
and theory presentation we must first define logical
consequence and closure [6].

Logical Consequence. Given a signature Σ, a Σ-sentence
ϕ is said to be a logical consequence of the Σ-sentences
ϕ1,...,ϕn, written ϕ1,...,ϕn |= ϕ, if each Σ-algebra that
satisfies the sentences ϕ1, ... ,ϕn also satisfies ϕ.

Closure, Closed. Given a signature Σ, the closure,
closure(Φ), of a set of Σ-sentences Φ is the set of all Σ-
sentences which are the logical consequence of Φ, i.e.,
closure(Φ) = {ϕ | Φ |= ϕ}. A set of Σ-sentences Φ is said to
be closed if and only if Φ = closure(Φ).

Theory, presentation. A theory T is a pair 〈Σ, closure(Φ)〉
consisting of a signature Σ and a closed set of Σ-sentences,
closure(Φ). A specification 〈Σ, Φ〉 is said to be a
presentation for a theory 〈Σ , closure(Φ)〉. A model of a
theory is defined just as for specifications; the collection of
all models of a theory T is denoted Mod[T]. Theory
morphisms are defined analogous to specification
morphisms.

Specification morphisms complete the basic tool set
required for defining and refining specifications.
This tool set can now be extended to allow the
combination, or composition, of existing
specifications to create new specifications. This is
where category theory is extremely useful in
information fusion. Often two specifications that
were originally extensions from the same ancestor
need to be combined. Therefore, the desired
combined specification consists of the unique parts of
two specifications and some “shared part” that is
common to both specifications (the part defined in
the shared ancestor specification). This combining
operation is called a colimit [6]. The colimit
operation creates a new specification from a set of
existing specifications. This new specification has all
the sorts and operations of the original set of
specifications without duplicating the “shared” sorts
and operators. To formally define a colimit, we must
first define a cone (or cocone) [6].

Cone. Given a diagram D in a category C and a C-object c,
a cone from the base D to the vertex c is a collection of C-
arrows {fi: di → c | di ∈ D}, one for each object di in the

diagram D, such that for any arrow g: di → dj in D, the
diagram shown in Figure 5 commutes i.e., g � fj = fi.

c

fi fj

gdi dj

Figure 5. Cone Diagram

Colimit. A colimit for a diagram D in a category C is a C-
object c along with a cone {fi: di → c | di ∈ D} from D to c
such that for any other cone {fi': di → c' | di ∈ D} from D to
a vertex c', there is a unique C-arrow f: c → c' such that for
every object di in D, the diagram shown in Figure 6
commutes (i.e., f � fi = fi').

c c’

fi

f

di

f’i

Figure 6. Colimit Diagram

Conceptually, the colimit of a set of specifications is
the “shared union” of those specifications based on
the morphisms between the specifications. These
morphisms define equivalence classes of sorts and
operations. For example, if a morphism for
specification A to specification B maps sort α to sort
β, then α and β are in the same equivalence class and
thus is a single sort in the colimit specification of A,
B, and the morphism between them. Therefore, the
colimit operation creates a new specification, the
colimit specification, and a cone morphism from each
specification to the colimit specification. These cone
morphisms satisfy the condition that the translation of
any sort or operation along any of the morphisms in
the diagram leading to the colimit specification is
equivalent. An example of the colimit operation is
shown in Figure 7 and Figure 8. Given the BIN-REL,
REFLEXIVE, and TRANSITIVE specifications in Figure
7, the “colimit specification” would be the PRE-
ORDER specification as shown in the diagram in
Figure 8. Notice that the sorts E, X, and T belong to
the same equivalence class in PRE-ORDER. Likewise,
the operations •, =, and < also form an equivalence
class in PRE-ORDER. Thus PRE-ORDER defines a
specification with one sort, denoted by {E, X, T} and
one operation, denoted by {•, =, <}, which is both

transitive and reflexive. The specification BIN-REL

defines the “shared” parts of the colimit but adds
nothing to the final specification.

spec Bin-Rel is
sorts E
operations

• : E, E → Boolean
end

spec Reflexive is
sorts X
operations

= : X, X → Boolean
axioms

∀ x ∈ X x = x
end

spec Transitive is
sorts T
operations

< : T, T → Boolean
axioms

∀ x, y, z ∈ T (x < y ∧ y < z) ⇒ x < z
end

spec Pre-Order is
sorts {E, X, T}
operations

{•, =, <} : {E, X, T}, {E, X, T} → Boolean
axioms

∀ x, y, z ∈ {E, X, T}
x {•, =, <} x
(x {•, =, <} y ∧ y {•, =, <} z) ⇒ x {•, =, <} z

end

Figure 7. Specification Colimit Example

A category in which the colimit of all possible C-
objects and C-arrows exists is called cocomplete. As
shown by Goguen and Burstall [2], the category Sign
and Spec are both cocomplete; therefore, the colimit
operation may be used freely within the category
Spec to define the construction of complex theories
from a group of simpler theories.

Using morphisms, extensions, and colimits as a basic
tool set, there are a number of ways that
specifications can be constructed [7]:

1. Build a specification from a signature and a
set of axioms;

2. Form the union of a collection of
specifications;

3. Translate a specification via a signature
morphism;

4. Hide some details of a specification while
preserving its models;

5. Constrain the models of a specification to be
minimal;

6. Parameterize a specification; and
7. Implement a specification using features

provided by others.

Many of these methods are useful in specifying and
implementing information fusion systems. For
instance, if we can define the shared part of two types
of data, we can formally combine them using a
colimit.

2.2. Functors

The previous sections defined the basic categories
and construction techniques used to build large-scale
software specifications. In this section, we extend
these concepts further to define models of
specifications and how they are related to the
construction techniques used to create their
specifications. Before describing this relationship, we
define the concept of a functor that maps C-objects
and C-arrows from one category to another in such a
way that the identity and composition properties are
preserved [5].

Bin-Rel

Reflexive Transitive

Pre-Order

c c

c

{E
 →

 X
, •

 →
 =

} {E →
 T, • →

 <}

Figure 8. Example Colimit Diagram

Functor. Given two categories A and B, a functor F: A →
B is a pair of functions, an object function and a mapping
function. The object function assigns to each object X of
category A an object F(X) of B; the mapping function
assigns to each arrow f: X → Y of category A an arrow
F(f) : F(X) → F(Y) of category B. These functions satisfy
the two requirements:

F(1X) = 1F(X)

for each identity 1x of A

F(g � f) = F(g) � F(f)
for each composite g � f defined in A

Basically a functor is a morphism of categories.
Actually, we have already presented two functors: the
reduct functor that maps models of one specification
(in the category Mod[X1]) into models of a second
specification (in the category Mod[X2]) and the
models functor that maps specifications in the
category Spec to their category of models, Mod[X],
in Cat, the category of all sufficiently small
categories.

3. AMFRS

To show applicability of the category theoretic
notions described above to information fusion
systems, we will discuss a case study of Automatic
Multisensor Feature-based Recognition System
(AMFRS) [4], which was originally developed using
a model-based approach. In this case study, we
transform the AMFRS framework into an equivalent
system using a category theoretic approach. First we
will discuss the original system and then show its
equivalent structure using algebraic specifications
and category theory.

3.1. Model-Theory Based Framework

In the original model-based development approach,
wavelet-based models were developed for integration
into the AMFRS to help recognize targets. AMFRS
uses a model-based framework to describe how to
combine information contained in the wavelets for
use in the system. Within this framework, models
were developed to help recognize targets based on
wavelet coefficients that could be interpreted as
meaningful features of the target.

In this framework, models were developed based on a
language and its associated theory that described the
semantics of the language. To combine languages
and theories, three operators are used: reduction,
expansion, and union. In general, the reduction
operator removes symbols from a language along
with all the sentences in which it exists in its
associated theory. Expansion is the opposite.
Expansion allows us to add symbols and new
sentences about those symbols to the language.
Finally, the union operator combines the symbols and
sentences from two different language/theory pairs
into a single language and a single theory.

Using these operators, Korona created a framework
for combining languages and theories about two
different types of sensor data into a single fused
language and theory. This framework is shown in
Figure 9. In Figure 9, we show only the language
composition process. The theory fusion process is
identical. In this example, we assume there are two
sensors whose data is described by two languages Lr

and Li. These languages are extended to the
languages Lr

e and Li
e by adding symbols denoting

operations on a subset of the wavelet coefficients
used to describe the sensor data. These subsets of
coefficients represent those coefficients that will be
part of the final fused language. The coefficients are
selected by the designer based on knowledge of the
wavelet coefficients and their relationship to features
in targets of interest.

Lr Lr
e

Lr
er

Lri

LiLi
e

Li
er

E

R R

E

Lri
e

Lf

E

R
E - expansion
R - reduction
U - union

U

Figure 9. Model-Theory Based Framework

After the necessary symbols have been added to the
languages, Lr

e and Li
e are reduced by removing all the

symbols not related to the coefficients selected for
use in the final fused language. The new reduced
languages, Lr

er and Li
 er, are then combined into a

single language, Lri, by the union operation. This
language contains all the symbols representing the
coefficients and operations on them required to
construct the final fused language.

The last two steps in the process create our final
fused language, Lf. First, Lri is extended to Lri

e by
adding symbols denoting operations that combine the
coefficients from Lr

er and Li
 er. Then, we create Lf by

removing the symbols denoting those operations that
do not work on the fused set of coefficients.

3.2. An Equivalent Categoric Framework

Before we convert the AMFRS model-based
framework into a categoric framework, a few
observations are necessary. First, the language and
theory combination used in AMFRS is basically
equivalent to an algebraic specification. An algebraic
specification defines a set of sorts, operations over
those sorts, and axioms that define the semantics of
the operations. Constants, relations and functions
defined via language symbols are defined as
operations in an algebraic specification. Sentences
of a theory translate to axioms in an algebraic
specification. Algebraic sorts define a collection of
values used in the operations.

The model-based expansion, reduction, and union
operators also have counterparts in category theory.
The basic operator in category theory is the
morphism. In the category of Spec, which includes
all possible algebraic specifications, these morphisms
are specification morphisms that define how one
specification is embedded in a second specification.
That is, it defines a mapping from the sorts and

operations of the first specification into the sorts and
operations of the second specification in such a way
as to ensure the axioms of the first specification are
theorems of the second specification (i.e., the axioms
hold in the second specification under the defined
mapping of sorts and operations). Thus a
specification morphism can be used to define an
expansion as well as a reduction (they are basically
inverses of each other). If we have an expansion of
specification A into specification B, in effect we have
a morphism from A to B. Likewise, a reduction of
specification A to specification B, indicates morphism
from B to A. The language union operator can also
be modeled easily using the category theory colimit
operation. The colimit operation combines two (or
more) specifications, automatically creating a
morphism between the original specifications and the
resulting colimit specification. If two specifications
being combined using a colimit operation share
common parts (e.g., they both use integers), these
parts can be specified as common by defining
morphisms from the common, or shared,
specification to the individual specifications. This
shared specification, along with the associated
morphisms, are included in the colimit operation.
The result of this is that the shared parts of the two
specifications are not duplicated.

The conversion of the model-based framework into a
category theoretic framework is shown in Figure 10.
In this framework, the languages and their associated
theories are converted to algebraic specifications (or
theory presentations) and reductions and extensions
are converted to morphisms. Note that a reduction
from A to B results in a morphism from B to A. The
union operation is converted to a colimit operation.
The S specification denotes any shared part of
specifications Tr

er and Ti
er. In this case it might

include domain information about wavelets, targets,
etc.

Figure 11 represents a simplification of the category
theoretic setting shown in Figure 10. Basically, the
morphisms σ3, σ4, and σ8 from Figure 10 have been
combined into morphism σ15 of Figure 11. This is
possible since all the sorts, operations, and axioms
removed by σ3 and σ4 can be carried along without
changing the semantics. As we see when we get to
the model creation phase, carrying along these extra
sorts, operations, and axioms is an advantage.

Figure 12 is an even further simplification of the
category theoretic setting of Figure 10. In Figure 12,
the morphisms σ1, σ2 and σ7 from Figure 10 have
been combined into morphism σ14. In this
framework, we combine the two basic specifications
together via the colimit operation before we insert

any knowledge about which wavelet coefficients
correspond to which interpretable features.

Tr Tr
e

Tr
er

Tri

TiTi
e

Ti
er

S

σ1

σ5

σ3 σ4

σ2

σ6

Tri
e

Tf

σ7

σ8

Figure 10. Categorical Framework

Tr Tr
e

Tri

TiTi
eσ10 σ11

σ12 σ13

S

Tri
e

Tf

σ14

σ15

Figure 11. Simplified Categorical Setting

Since all the operations used to expand the basic
specifications have a well defined interpretation in
the expanded specifications (cf. [4]), the morphism
σ14 becomes a definitional extension and the
subdiagram contained in the dotted box becomes an
interpretation. An interpretation basically says that
we can build a model of Tf from a model of Tri. This
is a powerful construct in category theoretic software
development tools such as Specware [3].

Finally Figure 13 describes how we create models in
our category theoretic framework. In Figure 13,
MOD represents the model functor, which takes
specifications from the category Spec and maps them
to a valid category of models, denoted MOD[Spec],
in the category Cat (the category of all sufficiently
small categories). The nice part about the category

theoretic framework we have come up with is that
each morphism, σ: Α → Β, induces a reduct functor,
|σ, that automatically maps models of B to models of
A. Therefore if we create a valid model for B, we
automatically get a valid model for A! Following the
flows of reduct functors in Figure 13, we now see
that if we can create a valid model of Tf-as-Tri (Mri

e as
pointed at by the large arrow in Figure 13) we can
automatically create the valid models Mr, Mi, Mri, and
Mf from Tr, Ti, Tri, and Tf respectively. Not only are
these models consistent with their individual theories,
but since all the models are based on a single initital
model, they are consistent with each other as well.

Tr

Tri

Ti

σ12 σ13

S

Tf -as-Tri

Tf

σ14

σ15

d

Interpretation

Figure 12. Theory Interpretation

4. Implications

There are many positive implications of putting the
AMFRS design into a category theoretic setting.
First, there is no information loss in translating
languages and theories into algebraic specifications.
In fact, we gain modeling ability by adding the notion
of a sort. By using sorts, we can precisely define
operation signatures. Also, the notions of
morphisms, definitional extensions, colimits, and
interpretations give us a wide variety of tools with
well-defined meanings. We can prove when
morphisms and definitional extensions exist as well
as construct the resulting colimit specification based
on a set of specifications and morphisms. All in all,
category theory provides us a much greater capability
to prove relationships between specifications.
Finally, the categorical setting allows us to construct,
in a provably correct manner, consistent sets of
models required by the AMFRS system. All we have
to do is construct one specific model and the models
required by AMFRS can be generated automatically.
The bottom line is, you lose nothing and gain a lot by
using category theory in the development of formal
information fusion systems such as AMFRS.

Tr Ti

σ12 σ13

S

Mri
e

MOD

Mi

MOD

Mri
e

MOD

Mr

MOD

|σ4

|σ3

|σ5

MOD

|σ6

Mf

Tri

Tf -as-Tri

Tf

σ14

σ15

d

Figure 13. Model Creation using Theory
Interpretation

5. References

1. DeLoach, Scott A. and Thomas C. Hartrum. “A
Theory-Based Representation for Object-
Oriented Domain Models,” to appear in IEEE
Transactions on Software Engineering.

2. Goguen, J. A. and R. M. Burstall. “Some
Fundamental Algebraic Tools for the Semantics
of Computation Part I: Comma Categories,
Colimits, Signatures and Theories,” Theoretical
Computer Science, 31:175-209 (1984).

3. Jullig, Richard and Yellamraju V. Srinivas.
“Diagrams for Software Synthesis.”
Proceedings of the Knowledge Based Software
Engineering Conference. IEEE 1993.

4. Korona, Z. Model-Theory Based Feature
Selection for Multisensor Recognition. Ph.D.
Thesis, Northeastern University, 1996.

5. MacLane, Saunders and Birkhoff. Algebra.
New York, NY: Chelsea Publishing Company,
1993.

6. Srinivas, Yellamraju V. Category Theory
Definitions and Examples. Technical Report,
Department of Information and Computer
Science, University of California, Irvine,
February 1990. TR 90-14.

7. Srinivas, Yellamraju V. Algebraic Specification:
Syntax, Semantics, Structure. Technical Report,
Department of Information and Computer
Science, University of California, Irvine, June
1990. TR 90-15.

