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Abstract

Modern CASE tools and formal methods systems are more than just repositories
of specification and design information. They can also be used for refinement and code
generation. Refinement is the process of transforming one specification into a more
detailed specification. Specifications and their refinements typically do not use the
same specification language. Code generation is also a transformation, where the tar-
get language is a programming language. Although object-oriented (OO) programming
languages and tools have been available for a long time, all refinement and transforma-
tional systems are still based on grammars and parse trees. The purpose of this paper is
to compare grammar-based transformation with object-oriented transformation and to
introduce a toolkit that automates the generation of parsers and transformers expressed
in object-oriented terms. A more specific objective is to apply these techniques to the
problem of translating a CASE repository into logical theories of a formal methods
system.

Keywords: CASE tool, formal methods, modeling language, transformational reuse, code
generation, context-free grammar.

1 Introduction

In this paper, we discuss the problem of transformation of object-oriented representations
into formal representations in non-object-oriented languages. We encountered such a problem
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while attempting to translate UML diagrams [8, 9] into formal specifications expressed in the
formal specification language Slang [19]; this step was part of the process of formalization
of the UML. In order to simplify this rather complex task, we wanted to take advantage
of existing translation tools, like Refine! [17]. Our goal, in addition to the translation,
was also to establish a formal semantics for the UML and to prove the correctness of the
translation. The theory-based object model that forms the basis for this formalization of
UML is introduced in Section 2.

It is well known that UML diagrams, by themselves, are insufficient for representing the
semantics of a software system. Additional conditions (such as pre- and post-conditions)
are required. Establishing a formal semantics for the UML would clarify the meaning and
limitations of the diagrams as well as eliminate ambiguities and conflicts between different
diagrams.

One possible way of performing such a translation would be to translate data models
of UML directly into expressions in the Slang grammar — a one-big-leap-transformation
approach. Even if we establish a clear representation for the UML data models and use
the Slang grammar, the process of such a direct translation would be quite complex. The
complexity of this step can be reduced by decomposing it into a number of smaller simpler
steps. Another reason for such a multi-step approach is that there is no single tool that could
be used in this process. On the other hand, a number of excellent tools exist that could be
used for smaller steps.

Existing tools can be used to generate a parser for a given context-free grammar. How-
ever, as we discuss in Section 3, context-free grammars by themselves only specify syntax,
not semantics. In our case, using such a tool involves translating an object-oriented represen-
tation, with all its rich semantics, to a context-free grammar which has no semantics at all.
Accordingly, there are then two ways to achieve our goal: either represent UML as a context-
free grammar and then perform the translation(s) in the category of context-free grammars,
or perform translation(s) of UML using only object-oriented representations, transforming
to a context-free grammar only as the last step if necessary.

In this paper, we argue for the latter solution. In Section 3, we show an example of an
object-oriented diagram and discuss the difficulties with representing this kind of diagram us-
ing context-free grammars. Then in Section 4 we describe a system, called nu&, developed at
Northeastern University by K. Baclawski. The nu& toolkit is the basis for our object-oriented
approach to parsing and transformation. We use this approach specifically for translating
UML to Slang. The translation is decomposed into a number of smaller stages, each of
which involves transforming, parsing and symbol table manipulation. The two processing
paths mentioned above — translation of data models and translation of context-free gram-
mars — are discussed in detail. In Section 5, a specific example is used to illustrate the steps
in the transformation pipeline of Section 4. The intent here is to show that the process of
transformation of object diagrams is much simpler if it is carried out directly on the object
level than by continually constructing linear textual representations which must be parsed
before the next stage of the transformation may be performed.

'Refine is a trademark of Reasoning Systems Inc. Palo Alto California



Simplifying the transformation pipeline is one of the main themes of this paper. Certainly
simplification has many obvious benefits. Simplification makes it easier to construct the
transformation and to prove that it is correct. It also makes it easier to comprehend what
the transformation does. This is especially important for a formalization of the UML because
the UML is only a semi-formal modeling language, and any formalization requires making
some arbitrary choices. By making the transformation simpler and easier to comprehend, it
is easier to understand what these choices are.

2 Theory-Based Object Model

In object-oriented systems, the object class defines the structure of an object and its response
to external stimuli based its current state. In our theory-based object model, we capture
the structure of a class as a theory presentation, or algebraic specification, in O-SLANG, an
object-oriented algebraic specification language. In these class specifications, we use sorts
to describe collections of data values. In our theory-based object model, the class sort is a
distinguished sort that represents the set of all possible objects in the class. In an algebraic
sense, this is actually the set of all possible abstract value representations of objects in the
class.

class PERSON is
import Sex, Natural
class sort Person
sorts Person-State
operations
person-attr-equal : Person, Person — Boolean
attributes
age : Person — Integer
gender : Person — Sex
state-attributes
person-state : Person — Person-State
methods
create-person : Sex — Person
increment-age : Person — Person
states
old, young : — Person-State
events
new-person : Sex — Person
birthday : Person — Person
axioms V (p, pl: Person, s : Sex)
old # young;
person-state(a) = young < age(a) < 30;
person-state(a) = old < age(a) > 30;
person-attr-equal(p, pl) < gender(p) = gender(pl) A age(p) = age(pl);
age(create-person(s)) = 0 A gender(create-person(s)) = s;
age(increment-age(p)) = age(p) + 1 A gender(increment-age(p)) = gender(p);
person-attr-equal(birthday(p), increment-age(p));
person-attr-equal(new-person(s), create-person(s))
end-class

Figure 1: Person Class



Attributes, methods, and operations are defined as functions in O-SLANG class spec-
ifications. Attributes are defined implicitly by functions that return specific data values
while methods are functions that modify an object’s attribute values. In Fig. 1, the func-
tions create-person and increment-age are methods. The semantics of functions, as well as
invariants between class attribute values, are defined using first order predicate logic azioms.

Object instances are fundamental to any object-oriented model, and the theory-based
object model captures the main uses of this notion by introducing state sorts and state
attributes to model the (internal) state of an object, statecharts to define the transitions
between object states, events to specify how objects can communicate with each other, and
class sets to capture the notion of a set of objects in a class, such as the extent of a class.

To capture the notion of the internal state of an object, we introduce state attributes
which are functions from the class sort to a state sort that return the current state of an
object. State attributes are distinct from normal attributes. An O-SLANG class specification
has at least one state attribute. Multiple state attributes allow one to model concurrency
and substates. A class specification may also have a set of states which are elements in a
state sort (defined by nullary functions). In Fig. 1, the state sort is Person-State, the state
attribute is person-state, and the states are young and old.

Communication between objects is handled by ewvents, which are functions that may
invoke methods, generate events for other objects, and directly modify state attributes.
Events are distinct from methods to separate control from execution. Each class has a new
event which triggers the create method to create a new object and initialize its attributes.
In Fig. 1, the functions new-person and birthday are events.

Operations are functions that do not modify attribute values and are generally used to
compute derived attributes. In Fig. 1, the function person-attr-equal is an operation. Similar
to methods and events, the semantics of operations are also defined using first order predicate
logic axioms.

In order to manage a set of objects in a class, a class set is also created for each class
defined. A class set is a class whose class sort is a set of objects from a previously defined
object class. A class set includes class event definitions for each event in the original class.
This class event is defined so that the reception of a class event by a class set object sends
the corresponding event to each object in the class set.

2.1 Inheritance

Our theory-based object model uses a strict form of inheritance that allows a subclass object
to be freely substituted for a superclass object in any situation as captured in the “substi-
tution property” [15]:

If for each object o1 of type S there is an object o2 of type T such that for all programs P defined in terms of
T the behavior of P is unchanged when o; is substituted for oz, then S is a subtype of T'.

We can ensure the substitution property holds if we have a specification morphism from
the superclass to the subclass and the subclass class sort is a sub-sort of the superclass
class sort. In O-SLANG, this is usually done using the import operation, which includes the
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superclass specification directly into the subclass specification, and a statement that ensures
the appropriate subsort relationship between the class sorts.

An example of single inheritance using a subclass of the Person class is shown in Fig. 2.
The import statement includes all the sorts, functions, and axioms declared in the Person
class directly into the new class while the class sort declaration Student < Person states
that Student is a sub-sort of Person, and as such, all functions and axioms that apply to an
Person object apply to a Student object as well.

class STUDENT is

import Person, Class

class sort Student < Person

operations
student-attr-equal : Student, Student — Boolean

attributes
class : Student — Class

methods
create-student : — Student
increment-class : Student, Date — Student

events
new-student : — Student
promote : Student — Student

axioms V (s, s1: Student)
student-attr-equal(a, al) < class(s) = class(sl) A person-attr-equal(s, s1);
class(s) = Freshman < class(increment-class(s)) = Sophomore;
class(s) = Sophomore <> class(increment-class(s)) = Junior;
class(s) = Junior < class(increment-class(s)) = Senior;
class(s) = Senior < class(increment-class(s)) = Alumni;
age(increment-class(s)) = age(s);
gender(increment-class(s)) = gender(s);
class(create-student(s)) = Freshman A age(create-student(s) = age(create-person(s))

A gender(create-student(s)) = gender(create-person(s));

student-attr-equal(promote(s), increment-class(s));
student-attr-equal(new-student(), create-student())

end-class

Figure 2: Student Class

Multiple inheritance requires a slight modification to the notion of inheritance stated
above. The set of superclasses must first be combined via a category theory colimit operation
and then used to “inherit from”. Importing the colimit specification and specifying that the
class sort is a sub-sort of each of the superclass sorts ensures that the subclass inherits from
each superclass and satisfies the substitution property.

2.2 Aggregation

Aggregation is a relationship between two classes where one class, the aggregate, represents
an entire assembly and the other class, the component, is “part-of” the assembly. Not only
do aggregate classes allow the modeling of systems from components, but they also provide
a convenient context in which to define constraints and associations between components.
Components of an aggregate class are modeled similarly to attributes of a class through the



concept of object-valued attributes. An object-valued attribute is a class attribute whose sort
type is a set of objects — the class-sort of another class. Formally, object-valued attributes
are functions that take an object and return an external object or set of objects.

An aggregate class combines a number of classes via the colimit operation to specify
a system or subsystem. The colimit operation also unifies sorts and functions defined in
separate classes, associations, and events. To capture the entirety of a domain model within
a single structure, we can create a domain-level aggregate. To create this aggregate, the
colimit of all classes and associations within the domain is taken.

2.3 Associations

Associations model the relationships between aggregate components. We define a link as a
single connection between object instances and an association as a set of such links. A link
defines what object classes may be related along with any link attributes or link functions.
A link is basically a class specification that uses object-valued attributes to reference other
objects while associations are represented as a class set of links.

Association multiplicities are defined as the number of links in which any given object
may participate. These multiplicities are defined as constraints on the links in an association
and can be captured axiomatically in the association specification.

2.4 Object Communication

In our theory-based object model, each object is aware of only a certain set of events that it
generates or receives. From an object’s perspective, these events are generated and broadcast
to the entire system and received from the system. In this scheme, each event is defined in
a separate event theory as shown in Fig. 3.

event EVENT-NAME is
class sort Class-Sort
sorts Param-Sort
events
event-name : Class-Sort, Parm-Sort — Class-Sort
end-class

Figure 3: Event Theory

An event theory consists of a class sort, parameter sorts, and an event signature that are
mapped via morphisms to sorts and events in the generating and receiving classes. If an
event is being sent to a single object then the event theory class sort is mapped to the class
sort of that object class. However, if the event theory class sort is mapped to the class sort
of a class set then communication may occur with a set of objects of that class. The other
sorts in an event theory class are the sorts of event parameters. The final part of an event
theory, the event signature, is mapped to a compatible event signature in the receiving class.
The colimit of the classes, the event theory is used to unify the event and sorts of two or



more classes so that invocation of the event in the generating class corresponds an invocation
of the actual event in the receiving class.

Communicating with objects from multiple classes requires the addition of another level
of specification which “broadcasts” the communication event to all interested object classes.
The class sort of a broadcast theory is called a broadcast sort and represents the object
with which the sending object communicates. The broadcast theory then defines an object-
valued attribute for each receiving class. Multiple receiver classes add a layer of specification;
however, multiple sending classes are handled very simply. The only additional construct
required is a morphism from each sending class to the event theory mapping the appropriate
object-valued attribute in the sending class to the class sort of the event theory and the
event signature in the sending class to the event signature in the event theory.

3 Comparison of Grammars with Object-Oriented Data
Modeling Languages

Context-free grammars (also known as abstract syntax trees or ASTs) are the basic formalism
for expressing modern programming languages. The first step in the compilation of a program
is to parse the program as a sentence in the language defined by the grammar. The results
of the parsing step are passed to the later phases of the compilation process. More generally,
any translation from one language to another begins with parsing, when the source language
is defined by a context-free grammar. The grammar is said to define the syntar of the
language, while the subsequent phases of compilation are said to represent the semantics of
the language. Excellent tools are available that automate the task of generating a parser
from a grammar. Such tools are often called “compiler-compilers” even though they only
automate the generation of the parser. To specify the semantics of the language with a
compiler-compiler, one must specify the action associated with each grammar rule.

The result of parsing is often referred to as the parse tree. A parse tree is a hierarchical
representation of information that conforms to a data model defined by the grammar. That
a grammar defines a data model was first observed by Gonnet and Tompa in [13], whose
p-string data model has powerful query operations for grammatical data models. Since then
there has been much work on elaborate grammatical data modeling languages, such as SGML
and, more recently, HTML/XML. For a detailed discussion of the limitations of grammars
as data models see [4]. The reverse of parsing transforms a parse tree into linear text. This
process is linearization or “pretty printing.”

In the rest of this section we present an example to compare the modeling power of
grammars with object-oriented modeling languages.

Consider the example of a database of state machines as specified in Figure 4. This figure
uses the UML notation to define a data model, but it does not define the state machine
concept used in UML. Each state and each transition is contained in a state machine, and
each transition links exactly two states. State machines, states and transitions have various
attributes as shown in the figure. In addition, we impose a few uniqueness constraints. The
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Figure 4: State Machine Data Model

name of a state machine is unique, and the name of a transition is unique within the state
machine that contains it. Note that there is no requirement that a transition join states in
the same state machine.

One can represent an instance of the state machine data model as a parse tree in a variety
of ways. One could represent it as a list of state machines, each of which contains a list of
states and transitions. The grammar for this kind of parse tree is represented below. For
simplicity, we have omitted some technical details from the grammar. The “syntactic sugar”
was omitted. This includes the various keywords and delimiters that are needed to make a
grammar unambiguous and context-free. In addition, it is not shown how to parse strings,
such as names, ids and text descriptions.

Root <« State_Machine”
State_Machine < string State® Transition®
State < string string

Transition < string string

To complete the representation of the state machine data model, it remains to represent
the relationships between states and transitions. Although each transition links exactly one
outgoing state with exactly one incoming state, one cannot simply include two states in each
Transition, as in the following grammar:

Root <« State_Machine”
State_Machine < string State® Transition®
State < string string

Transition < string string State State

The problem with the grammar above is that the state objects contained in a transition
object are different objects from the ones contained in the state machine objects and also
from those contained in the other transition objects. This is a subtle point that can be
easily missed. The nonterminals of a grammar represent nodes in a tree, and the nodes that
occur below a Transition nonterminal cannot also occur below a State_Machine nonterminal
or below another Transition node. Such an arrangement would violate the requirement that



the parse tree be a tree. One could, in theory, add the constraint that each state linked
by a transition must have the same information as one of the states contained in a state
machine. Aside from the huge amount of redundancy that is caused by this design, it is also
ambiguous because there could be states that have exactly the same attributes, since there
is no uniqueness condition imposed on the states.

Alternatively, one might try to represent the relationships between states and transitions
by including lists of incoming and outgoing transitions in each state, as in the following
grammar:

Root < State_Machine®
State_Machine < string State®™ Transition®
State <

Transition < string string

string string Transition® Transition®

However, this has the same problem as the previous grammar, except that it is now the
transition objects which are being redundantly represented. Yet another possibility is to
represent the two relationships as two independent entities. This design is even worse than
the others, for now one is representing both the state objects and the transition objects
redundantly.

In order to represent the incoming and outgoing relationships of the state machine data
model, it is necessary to introduce some kind of reference mechanism. For example, instead
of having a two state objects within each transition object, one might specify that each tran-
sition object contain two state identifiers. This would work if states had unique identifiers,
but there is no uniqueness condition on the state attributes. In the grammar above transition
objects are uniquely identified within each state machine, so a compound identifier consisting
of a state machine name and a transition id will uniquely identify each transition, because
state machine names are unique. Assuming that most transitions will be contained in the
same state machine as the states being linked, one should also allow transition references to
consist of just a transition id which can be disambiguated by the context. The following is
the grammar in this case:

Root < State_Machine®
State_Machine < string State™ Transition™
State < string string transition_ref* transition_ref*
Transition < string string
transition ref <« string | string string

It appears that one has, at last, fully represented the original data model of Figure 4 as a
grammar. However, a number of important considerations are not included in the grammar
specification. In particular, the strings occurring in each transition reference must occur
as state machine names or as transition ids, such that if just one occurs then it represents
the transition id of a transition in the same state machine as the state, while if two strings



occur, then the first must be a state machine name and the second is the transition id of a
transition in that state machine. These requirements must be enforced by actions triggered
by the grammar rules.

If this example seems a little contrived, exactly the same issues arise in programming
languages for which identifiers are used for variables and methods within classes and the same
identifier may be used in different classes. In programming languages the disambiguation of
identifiers is a very complex problem.

This example shows that a data model need not have any grammatical representation
at all. If the state machines names were not unique or if transitions did not have to have
ids (both of which are true in practice), then even compound identifiers would not uniquely
determine transitions. To represent such a data model it would be necessary to augment
the data model with artificial unique identifiers. In addition to modifying the original data
model, such identifiers can have an adverse impact on the readability of the language defined
by the grammar.

This example also shows that expressing an object-oriented data model in terms of a
grammar typically results in a grammar that is much more complex and awkward than the
data model, if it is possible to express the data model at all. However, tree representations of
data do have some advantages. There are easily available tools for automatically generating
parsers from a grammar, and there are several tools for transforming trees in one grammar
to trees in another grammar.

4 The nu& Approach to Transformations

The purpose of the nu& Project [2, 3, 5] is to provide automated support for transformations
from one language to another with emphasis on object-oriented modeling languages. This
project combined the advantages of automated parser generation with the modeling power
of object-oriented data models. Like grammar-based compiler-compilers, the nu& tools auto-
matically generate parsers. However, the nu& toolkit uses the more powerful object-oriented
data models rather than grammars, and the nu& toolkit transforms linear text directly into an
object-oriented data structure. The toolkit can also be used to linearize an object-oriented
database. Parsing and linearization of object-oriented data structures are similar to the
marshaling and unmarshaling of data structures in remote procedure call mechanisms. The
main distinction between RPC and the nu& toolkit is that nu& allows one to specify details
about the grammar that is produced so that the resulting linear representation is readable.
RPC linear representations, by contrast, are not flexible and are not intended to be read by
people.

While the automated generation of parsers and linearizers is a useful feature, the main
function of the nu& toolkit is to support transformations from one modeling language to
another. In this respect, the nu& toolkit is similar to transformational reuse systems, such as
Refine [17], except that nu& supports a large variety of data modeling languages, including
object-oriented data models while existing transformational reuse systems are grammar-
based.
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One of the problems with traditional approaches to transformations is the insistence on
communicating using linear text. This is fine for simple transformations and has proved
to be very effective in environments, such as the Unix shell, where “pipelines” join to-
gether relatively simple transformations to form more complex transformations. For ex-
ample, sort file | uniq -c | sort -nr | head -20 will compute the 20 most commonly
occurring lines in a file. However, this technique becomes increasingly unwieldy as the com-
plexity of the textual representation increases. For more complex languages, one requires
a parser to produce a parse tree from the text, after which the identifiers in the parse tree
must be disambiguated using a symbol table, and finally an internal (sometimes called an in-
termediate representation) is constructed. The intermediate representation is then processed
to produce linear text to be used in the next stage of the pipeline.

Consider the problem of transforming a CASE tool diagram to a formal methods lan-
guage. The traditional approach requires a series of transformational stages, each consisting
of a series of steps. Each step involves processing output of the previous step. The whole
process forms a pipeline of steps. To simplify the transformation, the diagram is first trans-
formed to an object-oriented formal methods language, which is then transformed to a more
traditional formal methods language. The formal specification can then be used to generate
code in a programming language.

To illustrate the traditional transformational pipeline, we will use the example of the
Slang formal methods language[19], and the O-SLANG object-oriented formal methods lan-
guage [10]. The O-SLANG language was developed in [10] as a target structure that could
be later transformed into Slang. O-SLANG is based on the formalization of object-oriented
concepts defined via a theory-based object model [11], as discussed in Section 2.

The full pipeline looks like that depicted in Figure 5. The middle column in this figure

. d arse
CASE Diagram ——> - Export Format — >~ Parse Tree
symbol table
Intermediate = parse
Structure wonstorm O~ SLANG — Parse Tree

symbol table

= Slang P = Parse Tree

O-SLANG Structure

transform

symbol table
~ Programming  parse

lan r re ———— >
Slang Structu S p—— Language Parse Tree

symbol table

generate,

Intermediate = — Intermediate Code —— Executable Code

Structure  optimize

Figure 5: Transformation Pipeline
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consists of the various linear representations that act as the communication language between
the processing modules in the pipeline. The original diagram is dumped to a standard format
of some kind. This standard format is parsed, and the identifiers placed in a symbol table,
so that when one is encountered, it can be replaced with a reference to the object being
referenced. The result is an intermediate structure which is essentially the same as the
original diagram. This structure is then translated to the O-SLANG object-oriented formal
methods language and given to the O-SLANG compiler. The same kind of parsing and symbol
table manipulation is then performed so that O-SLANG can be translated to the Slang formal
methods language, which is then used to generate code in a Programming Language. Finally,
the Programming Language is compiled. A specific example of the transformation pipeline
in Figure 5 is given in Section 5 below.

While many of the steps in the pipeline of Figure 5 are important, many of them represent
duplication of effort. None of the steps in the traditional transformational pipeline are easy
for nontrivial languages, and any one of the steps is a source of error. Proving the correctness
of the entire pipeline is a difficult task. Reducing the number of steps is certainly desirable
in itself, and this is one of the primary motivations for the nu& approach. More surprisingly,
reducing the number of steps could also reduce the complexity of individual steps. For
example, the two data structures labeled “CASE diagram” and “Intermediate structure”
are, in principle, isomorphic.

Using the nu& toolkit, one can make significant simplifications to the transformational
pipeline of Figure 5. In Figure 6, the CASE diagram is isomorphic to a CASE tool’s interme-
diate object structure. This structure is typically translatable to any kind of new structure

CASE Diagram

Intermediate
Structure

translate ‘

O-SLANG Structure

translate

~ Programming  parse

Slang Structure oode generate  Language = Parse Tree

symbol table
generate

In;gg:}iigte W Intermediate Code —— Executable Code

Figure 6: Simplified Transformation Pipeline
by a vendor-provided scripting language. Rather than translate the CASE diagram to text

in any form (as suggested by Figure 5), the nu& approach is to translate directly to the
O-SLANG structure using object-oriented techniques and to continue to translate entirely at
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the level of data structures (i.e., the left column of Figure 6). Unfortunately, it is difficult
to streamline the entire transformation pipeline because one rarely has access to all of the
internal data structures. For example, it is not currently possible to circumvent the parser
of a compiler and present it with its intermediate representation directly.

Another possibility for simplifying Figure 5 would be to transform at the level of the
parse tree (i.e., the right column in Figure 5). This is the approach taken by traditional
transformational code generation systems such as Refine [17] and GenVoca [7, 6]. While
this approach is certainly simpler than the original pipeline, it has the disadvantage that the
translation code must deal with the table of identifiers, so that identifier lookup and disam-
biguation must be handled at the same time as the transformation. Another disadvantage
is that the parse tree structures (right column in Figure 5) are generally more complex and
unwieldy than the internal data structures (left column in Figure 5).

5 State Machine Example

In this section, we will give an example of the traditional transformational pipeline outlined
in the previous section. We then compare it to the nu& approach. This example is derived
from [10]. In UML, a state diagram is one technique for describing the behavior of a class.
The objective in this example is to convert a state machine diagram to its corresponding
O-SLANG specification. In this example, we will use the class pump whose state diagram is
given in Figure 7.

new-pump(pump-id)/create-pump(pump-id)

enable-pump(xpump-id)[x=pump-id] /send(start-pump-motor);send(reset-display)
pump-disabled pump-enabled

Figure 7: Pump State Diagram

enable-pump(x:pump-id)[x < >pump-id]
disable-pump

The CASE tool used by DeLoach was a commercially available object-oriented drawing
package, ObjectMaker?. The textual output from ObjectMaker is parsed into a Refine parse
tree using a Refine-based parser. Once in Refine, a rule-based conversion program transforms
the ObjectMaker parse tree into a Generic parse tree which is isomorphic to the original
CASE diagram.

Once in the Generic parse tree, a rule-based transformation program implementing the
transformation rules transforms the Generic parse tree into an O-SLANG parse tree within the
Refine environment. Once in a valid O-SLANG parse tree, the Dialect pretty printer is used
to produce a textual representation of the O-SLANG parse tree. The actual transformation

20bjectMaker is a registered trademark of Mark V Systems Limited Encino California
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is performed by creating the root node of the O-SLANG parse tree and then automatically
transforming each class and association, one at a time, from the Generic parse tree to the
O-SLANG parse tree.

The actual Refine transformation code is more complex than even Figure 5 suggests.
The Export Format of ObjectMaker has a structure that is complex enough to require an
additional transformation stage. The actual transformation from CASE Diagram to O-
SLANG consists of the pipeline shown in Figure 8. The Refine tool allows some of the steps

du

CASE Diagram —= Export Format P Parse Tree

symbol table
Export = Intermediate parse

- —— Parse Tree

Structure convert Format
Symbol table
CASE Diagram _ O-SLANG 2 O-SLANG
Structure transform Parse Tree

Figure 8: Actual Transformation Pipeline from CASE Diagram to O-SLANG

in the pipeline to be combined, but it is still necessary to write (and debug) five separate
Refine specifications to achieve the entire transformation from CASE Diagram to O-SLANG.
Several hundred lines of code are needed for specifying the rules for transforming a state
machine diagram. We now show some excerpts from this code.

The grammar for the dynamic model portion of a Generic class is the following:

Generic-Class = <name, {Superclass}, [Connection], {Attribute}, {Statel,
{Transition}, {Axiom}, {Operation}, {Function}>

State = <name, {State}, {Axiom}>

Transition = <name, [Parameter], Axiom, {Action}, FromState, ToState>

FromState = name

ToState = name

Action = <name, [Parameter], {Action}>

Parameter = <name, datatype>

A simplified version of the O-SLANG grammar is shown below. Notice that both StateAttr
and State are defined as functions. StateAttr is a function that takes an object as its domain
and returns a state value as its range. States are defined as nullary functions that return
specific values of the state attribute.

Class = <name, ClassSort, {Operation}, {Import}, {Sort}, {Attribute},
{Method}, {StateAttr}, {Event}, {State}, {Axiom}>

StateAttr = Operationdecl

State = Operationdecl

Operationdecl = <name, [Domain-Ident], [Range-Ident]>

Axiom = complex definition of 1st order predicate logic
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There are three distinct steps to transforming the dynamic model from the Generic parse
tree to the O-SLANG parse tree:

1. Creation of state attributes,
2. Creation of state values, and
3. Creation of axioms that implement the transitions.

For simplicity, we will just consider the axioms for transitions. Translation of the Generic
Transitions into O-SLANG axioms is performed by breaking down each Generic Transition
object and processing it in five parts: the current state, transition guard, new state, method
invocation, and the sending of any new events.

function create-oslang-transition-axiom (x: Transition) : Axiom-Def =

let (s:object=undefined)

s <- Make-OslangAxiom(concat(create-oslang-current-state-string(x),
create-oslang-guard-string(x),
create-oslang-new-state-string(x),
create-oslang-method-invocation-string(x),
create-oslang-send-event-string(x),

ll)ll))

The five parts are concatenated into a string which is parsed into an O-SLANG axiom parse
tree by the Make-OslangAxiom function of the form
old-state A guard-condition = new-state A\ method-invocations N event-sends
The final result of the pipeline is an O-SLANG parse tree which can be linearized into
the following textual form:

class Pump is
class-sort Pump
sort Pump-State
attributes
pump-id : Pump -> integer
pump-state : Pump -> Pump-State
operations
attr-equal : Pump, Pump -> Boolean
states
pump-disabled : -> Pump-State
pump-enabled : -> Pump-State

events
enable-pump : Pump, integer -> Pump
disable-pump : Pump -> Pump
new-pump : integer -> Pump

methods
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create-pump : -> Pump;
enable-pump : Pump -> Pump;
axioms
pump-disabled <> pump-enabled;
attr-equal(P1, P2) <=> (pump-id(P1) = pump-id(P2));
(pump-state(P) = pump-enabled) =>
(pump-state(disable-pump(P)) = pump-disabled);
(pump-state (new-pump (P, A)) = pump-disabled
& attr-equal (new-pump(P, A), create-pump(d)));
(pump-state(P) = pump-disabled & (X = pump-id(P)))
=> (pump-state(enable-pump(P, X)) = pump-enabled);
(pump-state(P) = pump-disabled & (X <> pump-id(P)))
=> (pump-state(enable-pump(P, X)) = pump-disabled);
(pump-state(P) = pump-disabled)
=> (pump-state(disable-pump(P)) = pump-disabled);
(pump-state(P) = pump-enabled)
=> (pump-state(enable-pump(P, X)) = pump-enabled);
end-class

By contrast the transformation code using the nu& toolkit simply constructs each of the
components occurring in the O-SLANG data structure as objects. One can use either rules
or a series of nested loops to express the transformation. The following are some fragments
of the code that illustrate the nu& nested loop approach:

for every ¢ in allClasses {
0SlangClass oclass = new 0SlangClass (c.name);

for every state in oclass.states {
oclass.addProperty (new State (state.name));

for every transition in state.outTransitions {
oclass.addProperty (new Event (transition.name));
oclass.addProperty (new Axiom (transition.currentState()
&& transition.guard(),
transition.newState()
&& transition.methodInvocation()
&% transition.sendEvent()));

In addition to requiring fewer steps, the nu& approach involves much simpler code that
focuses on the fundamental issues rather than myriad syntactic and symbol table issues.
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6 Related Work

Several authors have proposed techniques for transforming informal system requirements and
specifications into formal specifications. Babin, Lustman, and Shoval proposed a method
based on an extension of Structured System Analysis. The method uses a ruled-based trans-
formation system to help transform the semi-formal specification into a formal specifica-
tion [1]. Fraser, Kumar, and Vaishnavi proposed an interactive, rule-based transformation
system to translate Structured Analysis specifications into VDM specifications [12]. In both
cases, the output of the process is a text-based formal specification that would require parsing
for further automated refinement.

Specware [18] is a transformational program derivation system based on Slang [19] which
is the end target for this work. Specware provides the automated tool support for developing
and transforming specifications using the Slang formal specification language. Once defined
in Slang, all transformations — including algorithm design and optimization, data type re-
finement, integration of reactive system components, and code generation — are performed
on an internal AST-based representation of Slang. However, Specware does not provide the
front end as described in our research: an object-oriented, graphically-based semi-formal,
community accepted representation.

Although not specifically concerned with formalization, there have been many research
efforts and commercial products that support transformations from one language to another.
Such tools are called transformational code generators or generative reuse tools. Krueger [14]
has a survey of such tools. Some of the most prominent among these tools are Batory’s
GenVoca [7, 6], Neighbors’ Draco [16], and Reasoning Systems’ Refine [17]. While the output
of these transformational systems can be object-oriented (e.g., by using components from
and generating code in an object-oriented programming language), all of these systems use
a specification language that is grammar-based. The nu& toolkit, by contrast, not only can
generate object-oriented data structures, but also supports object-oriented specifications. As
noted in Section 4, transforming object-oriented data structures is simpler, more powerful
and less error-prone than transforming parse trees.

7 Conclusions

While object-oriented languages have become very popular in both programming and soft-
ware specification, the formalism for representing their structure is still that of a context-free
grammar, even though this formalism was developed mainly for a different kind of language.
In this paper, we argued that for object-oriented representations data models are better
suited than such context-free grammars. We showed with an example the difficulties in-
volved in representing an object-oriented diagram using a context-free grammatical repre-
sentation. We analyzed two possibilities for transforming object-oriented representations
(UML diagrams) into formal non-object-oriented representations (Slang specifications):

1. Transform the data model of UML into a context-free grammar and then perform
consecutive transformations in the realm of context-free grammars using CASE tools

17



available for such translations, and

2. Translate the UML data model into an intermediate object-oriented representation and
perform consecutive translations in the object-oriented domain, while translating into
the context-free target language as the last step.

We argued for the latter approach. We showed that this approach is simpler in the sense
that it consists of fewer transformational steps, and thus is less error-prone. We have been
improving the UML shortcomings mentioned above through research in formalizing UML.
We also described nu&, a system that allows for direct transformation of UML into an
object-oriented representation. We argued that this translation step is much simpler than
the translation to a context-free grammar. Aside from reducing the possibility of error, our
approach requires less effort and specifies the transformation in a manner that is easier to
comprehend and to prove correct, all of which are very important and desirable features.
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