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Abstract. Multiagent systems have been touted as a way to meet the need for 
distributed software systems that must operate in dynamic and complex 
environments.  However, in order for multiagent systems to be effective, they 
must be reliable and robust.  Engineering multiagent systems is a non-trivial 
task, providing ample opportunity for even experts to make mistakes.  Formal 
transformation systems can provide automated support for synthesizing 
multiagent systems, which can greatly improve their correctness and reliability.  
This paper describes a semi-automated transformation system that generates an 
agent’s internal architecture from an analysis specification in the MaSE 
methodology.

1 Introduction 

In the last few years, agent technology has come to the forefront in the software 
industry because of advantages that multiagent systems have in complex, distributed 
environments.  As agent technology has matured and become more accepted, agent-
oriented software engineering (AOSE) has become an important topic for software 
developers who wish to develop reliable and robust agent-based systems [10, 11, 19].  
Methodologies for AOSE attempt to provide a method for engineering practical 
multiagent systems.  However, there are currently only a few AOSE methodologies for 
multiagent systems, and many of those are still under development [1, 12, 13, 18, 20].  
Additionally, most existing methodologies lack specific guidance on how to transform 
the specification of a system into the corresponding design and implementation.  This 
lack of guidance is not unique to engineering multiagent systems and plagues most 
software engineering methodologies.  Unfortunately, it leaves the designer questioning 
if the resulting design correctly fulfills the initial system requirements. 

The Agent Research Group at the Air Force Institute of Technology (AFIT), and 
now Kansas State University, has developed and continues to mature an AOSE 
methodology, called Multiagent Systems Engineering (MaSE) [4, 17], which covers 
the complete life cycle of a multiagent system.  Recent work has focused on applying 
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formal methods to develop a transformation system to support agent system synthesis.  
Formal transformation systems [8, 9] provide automated support to system 
development, giving the designer increased confidence that the resulting system will 
operate correctly, despite its complexity.  While formal transformation systems, and 
formal methods in general, cannot a priori guarantee correctness [2], if each transform 
preserves correctness, then the designer can be sure that the resulting design is at least 
correct with respect to the initial system specification. 

Given a sufficient level of automated support, a transformation approach allows the 
designer to make only high-level design decisions, while the low-level details of the 
transformations are carried out automatically by the system.  Transformation systems 
also provide traceability from the system requirements through the development 
process to the final executable code.  Furthermore, if the system engineer is able to 
adequately decompose the problem and capture the system behavior in the analysis 
phase, then there is hope that the undesirable system behavior, to which multiagent 
systems are prone, can be avoided. 

This level of automation will be required if such a system is to ever be truly useful.  
As we all know, initial system specifications are rarely, if ever, complete and 
consistent.  Therefore, the ability to change the system specification and re-derive the 
design and implementation is a necessity.  In effect, the long-term goal of this research 
to move the maintenance of software from the implementation level to the 
specification level.  While there has been much work on general-purpose software 
specification languages, there has also been considerable work in specifying agent 
systems as well [3, 21]. 

In this paper, we present a semi-automated formal transformation system that 
generates MaSE design models based on the analysis models [16], which is the first 
step in formal agent system synthesis.  Specifically, we explain how our 
transformation system generates an agent’s internal design based on an initial analysis 
specification. 

2 Background – Multiagent Systems Engineering  

The MaSE methodology consists of the seven steps depicted in Fig. 1.  The boxes 
represent the different models used in the steps, and arrows indicate the flow of 
information between the models.  While similar to the waterfall approach, we have 
designed MaSE to be applied iteratively.  The first three steps represent the Analysis 
phase of the methodology, while the last four steps represent the Design phase. 

2.1 Analysis Models 

The Role Model is the end result of the MaSE analysis phase.  Role Models 
graphically depict the roles in the system, the goals they are responsible for, the tasks 
that each role uses to accomplish its goals, and the communication paths between the 
roles necessary to complete their tasks.  Roles are the abstract entities that exist in the 
system, and are defined much like an actor in a play, or a position in an organization 



3 
 
 
 

(President, Vice President, Manager, etc.).  Each role is responsible for accomplishing 
one or more system level goal, and there must be at least one role responsible for each 
goal.  In this way, the analyst is able to ensure that all of the initial system 
requirements have been captured.  
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Fig. 1.  MaSE Methodology 

One example of a Role Model is shown in Fig. 2.  The roles in the system are 
depicted as rectangles, and the goals that a role is responsible for are listed under the 
role.  Each task that a role has is denoted by an oval attached to the role.  The lines 
between the tasks denote communication protocols that occur between the tasks.  The 
arrows indicate the initiator and responder tasks in the protocol, with the arrow 
pointing from the initiator to responder.  Solid lines indicate peer-to-peer 
communication, which is external communication either between two tasks of 
different roles, or between two different instances of the same role.  Conversely, 
dashed lines denote communication between two tasks of the same role instance. 

As part of defining the Role Model, the analyst must define the tasks that each role 
has.  Tasks describe the behavior that a role must exhibit in order to accomplish its 
goals, and are specified graphically using a finite state automaton, as shown in Fig. 3.  
A single role may have multiple concurrent tasks that define the complete behavior of 
the role.  Each task is assumed to operate under its own thread of control, thus each 
task has its own state diagram that executes independently of the other tasks.  An 
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important aspect of multiagent systems is the ability of agents to interact to 
accomplish their goals.  Concurrent tasks capture this interaction and can be used to 
specify complex communication protocols such as Contract Net, Dutch Auction, etc. 
[6].   Concurrent tasks also lay the foundation for conversations between the agent 
classes in the design phase of MaSE. 
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Fig. 2. Role Model 

An important property of concurrent tasks is that they are able to capture 
communication with multiple tasks in order to accomplish their goals.  In other words, 
Concurrent Task Diagrams naturally intertwine events belonging to different 
protocols.  The other tasks being communicated with can belong to the same role, or 
they may belong to a different role.  Tasks that belong to the same role can coordinate 
with each other through internal events.  In Fig. 3, the ^backup(file) event on the 
transition from the Wait_For_File state to the Wait_For_Backup state is an example 
of an internal send event, and the done event on the transition from the 
Wait_For_Backup state to the Process_File state is an example of an internal receive 
event.  In order for a task to communicate with a task of another role, events that 
represent external communication are specified using SendEvents and ReceiveEvents.  
These events are defined to send and retrieve messages from an implied massage-
handling component of the agent.  The ^send(request(filename), server) event on the 
transition from the Get_File_Name state to the Wait_For_File state is an example of 
an external SendEvent, and the receive(inform(file), server) event on the transition 
from the Wait_For_File state to the Wait_For_Backup state is an example of an 
external ReceiveEvent. 
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Fig. 3. Concurrent Task Diagram 

2.2 Design Models 

In the design phase of MaSE, the designer takes the Role Model in the analysis 
phase, and produces an Agent Class Diagram, as shown in Fig. 4.  Each rectangle 
represents an agent class, with the roles played by each agent listed under the agent’s 
name.  The directed lines between the agents represent conversations between the 
agents, with the arrow pointing from the initiator to the responder.  In order to ensure 
that all system goals are being met, each role must be played by at least one agent 
class, providing a traceable link from the goals in the analysis phase to the agents in 
the design phase. 

Conversations define detailed coordination protocols between exactly two agents, 
and consist of a pair of Communication Class Diagrams, one each for the initiator and 
responder.  Conversations are at the heart of any multiagent system as they detail how 
the agents communicate with each other.  Like tasks, conversations are described 
using finite state automata that define each half of the conversation.  Since 
conversations are point-to-point communication between two agents, every event 
within a Communication Class Diagram is represents a message to or from the other 
agent in the conversation.  Conversations do not allow for communication with 
multiple agents simultaneously or for internal events to be exchanged with 
components internal to the agent.  An example of a Communication Class Diagram is 
shown in Fig. 5. 
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Fig. 4. Agent Class Diagram 

 

Fig. 5. Communication Class Diagram 

In addition to the conversations that agents participate in, agents have internal 
components defined using an architectural modeling language combined with the 
Object Constraint Language (see Fig. 6).  Components allow users to logically 
decompose the agents and define attributes and functions that are needed for the agent 
to carry out its tasks.  The dynamic characteristics of the components are defined 
using a state diagram.  The events passed within a component’s state diagram are 
limited to internal events with other components that belong to that agent. 

2.3 agentTool 

In addition to the MaSE methodology, AFIT has developed a CASE tool named 
agentTool that serves as a validation platform and a proof of concept for MaSE.  
agentTool has a graphical user interface that allows a user to develop a multiagent 
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system using the MaSE analysis and design models.  agentTool is also able to 
generate Java code for a system based on the design models.  Currently, the code 
generator is able to generate code for two different frameworks, agentMom [7] and 
Carolina [14], but work is being done to integrate agentTool with the AFIT Wide 
Spectrum Object Modeling Environment that is looking at the more general code 
generation problem [9]. 

 

Fig. 6. Internal Agent Components 

3 Analysis to Design Transformations 

Before defining the specific transformations, this section first describes how the 
analysis models map to the design models.  The MaSE methodology makes it clear 
that an agent class’ roles, in conjunction with the protocols between the tasks, 
determine the conversations each agent class will have.  However, if the external 
events are simply removed from the tasks to create the conversations, the problem we 
are faced with is that there will be nothing left in the design to capture how to 
coordinate the conversations and there will be no guarantee that the agent will behave 
consistently with the initial concurrent tasks.  We must also capture the internal events 
in the design as well. 

To solve this problem, we create a separate component for every task in each role 
that an agent is assigned to play.  We then copy the concurrent task definition to the 
associated component state diagram.  Next, we extract the states and transitions 
belonging to conversations and replace them with actions that represent the execution 
of the conversation.  Using this approach, the component’s state diagram retains the 
coordination and internal events necessary to ensure the behavior of the component 
matches the task from which it was derived. 

Prior to this segment of our research, we had defined conversations as belonging 
directly to agents.  However, based on the approach discussed above, we have 
redefined the generic architecture to have conversations belong to components.  Fig. 7 
illustrates how the models in the analysis phase translate to the models in the design 
phase as well as the relationship between the design models.  Ultimately, the roles that 
the designer chooses for an agent to play determine that agent’s components, as well 
as the set conversations in which the agent participates.  To accurately capture the 
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behavior as defined in concurrent tasks, we assume each component also executes as 
an independent thread.   

 Role 

Task1 Task2 

Agent 

Component1 Component2 

Conv1 - 1 Conv1 - 2 Conv2 - 1 Conv2 - 2 

Analysis 

Design 

 

Fig. 7. Model Influences 

Besides components derived from concurrent tasks, our transformations also create 
a special Agent Component for each agent [15].  This Agent Component captures how 
the agent coordinates its different components.  Fig. 8 shows the basic state diagram 
for the Agent Component, which is designed to handle both transient1 and persistent2 
components.  The Agent Component can also be transformed to account for special 
agent characteristics like mobility, where the agent must halt all of its active 
components, move to a new location, and then resume the components where they 
were interrupted.   

The transformation system created in this research is actually a series of small steps 
that incrementally change the roles and tasks in the analysis phase into agent classes, 
components, and conversations in the design phase.  The process logically 
decomposes into three stages.  Before the transformations can take place, the 
developer must analyze the system and develop a Role Model, which defines the roles 
that are present in the system, and a set of concurrent tasks, which the roles perform to 
accomplish their goals.  The developer must also decide which agent classes will be in 
the system and the roles that each agent class will play.   

                                                           
1 A transient component is started in response to the receipt of a specific event.  There may be 

multiple transient components of the same type executing at any one time. 
2  A persistent component is started when the agent is instantiated and runs until its completion 

or the agent is terminated.  There is only one instance of a persistent component running. 
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Fig. 8. Basic Agent Component State Diagram 

During the first stage of the transformation process, the components for the agent 
classes are created based on the roles assigned by the developer.  The set of protocols 
to which each external event belongs is also determined.  The second stage centers on 
annotating the component state diagrams and matching external events in the different 
components that become the initial messages of a conversation.  During the last stage 
the component state diagrams are prepared for removal of the states and transitions 
belonging to conversations.  They are then removed and added to the state diagrams 
of the corresponding conversation halves.  As they are removed from the components 
they are replaced with a single transition that has an action that starts the conversation. 

Each transformation is defined by a predicate logic equation of the form: 
condition ⇒ result, where the condition is the set of requirements that must 
be true for the transformation to take place, and the result describes what is guaranteed 
to be true after the transformation is performed.  This notation is similar to defining 
functions with pre-conditions and post-conditions.  These transformations describe 
what must take place, not how it must be done.  

3.1 Creating Agent Components 

Once the designer has developed the Role Model, defined the concurrent tasks, and 
assigned roles to agent classes, the transformation process can begin.  The first 
transformations in stage one of the transformation process determine the protocols to 
which each external event belongs.  This is important because the specific protocols 
that events belong to are used to determine where conversations begin and end in the 
component state diagrams.  While the protocols for most events can be automatically 
determined, there are ambiguous cases where the designer must be asked to decide to 
which protocol specific events belongs. 

Next, for every task of every role that an agent plays, a component is created for 
that task.  Once again, the component’s state diagram is initially identical to that of the 
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task it was derived from.  The rest of the transformation process is focused on moving 
the external events from these component state diagrams into conversations.  The 
following predicate logic equation formally defines this transformation: 

∀ a : Agent, r : Role, t : Task • (r  ∈  a.roles ∧ t ∈ r.tasks)  
⇒ (∃ c : Component • c ∈ a’.components ∧ c.stateTable = t.stateTable ∧ c.name = 
t.name)  

As an example of this transformation, consider the example Role Model shown in 
Fig. 9.  If the developer decides in the design phase to create the agent classes with the 
roles shown in Fig. 10, then the transformation system creates the components shown 
for the agents.  Since both agents play Role 2, there is a component created for each 
agent for Role 2’s Task 2.  Fig. 10 is not a MaSE diagram, but is presented to 
illustrate the internal agent components based on the initial Agent Class Diagram. 

Role 1 Role 3Role 2

Task 1 Task 3Task 2
Protocol 1 Protocol 2

 

Fig. 9. Initial Role Model 

Agent 1
Role 1
Role 2

Agent 2
Role 2
Role 3

Component:
Task 1

Component:
Task 2

Component:
Task 3

Component:
Task 2

 

Fig. 10. Agent Components Created from Roles’ Tasks 

Once the agent components are created, for each pair of roles that are combined 
into an agent class, the designer must determine whether each protocol that exists 
between components of that agent is either internal or external.  If a protocol is 
defined as internal, all events belonging to that protocol become internal events 
between components and not messages in a conversation.  

3.2 Annotating Component State Diagrams 

After the agent components are created, the next stage of the transformation 
process involves annotating the component state diagrams to prepare for conversation 
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extraction.  There are many different cases in which tasks are defined in the analysis 
phase that make removing conversations problematic.  One such case occurs when 
multiple events not belonging to the same protocol reside on the same transition.  To 
solve this (and other similar) problem, we defined a transformation that converts the 
component’s state diagrams into a canonical form, which splits transitions having 
events belonging to different protocols.  This canonical form simplifies conversation 
extraction while remaining consistent with the initial task specification. 

Next, each transition is given a set of protocols that is based on the protocols for 
the external events on the transition.  Then the state diagrams are annotated to indicate 
where each conversation begins and ends.  Conversations are defined as point-to-point 
communication between two agent instances.  Therefore, any time a component’s state 
diagram has a transition with external communication to a different agent than one of 
the preceding transitions, a new conversation must begin, and that transition is labeled 
as the start of a conversation.  The following six conditions indicate the start of a 
conversation by a change in who the agent is communicating with, which in most 
cases is due to a change in the protocols. 

1. A transition has a protocol not found in at least one transition into its from state. 
2. A transition has a non-empty set of protocols that is different than another 

transition leaving the same state. 
3. A transition has a non-empty set of protocols, but lacks a protocol of another 

transition into its from state. 
4. A transition has a non-empty set of protocols, and there is another transition into 

or out of its from state with an empty set of protocols. 
5. A transition has an empty set of protocols and at least one SendEvent.  In these 

cases, there is either a multicast event, or there are SendEvents that belong to 
different protocols. 

6. A transition has a SendEvent whose recipient was previously determine by an 
action. 

Similarly, when a component state diagram has a transition with external 
communication not guaranteed to continue on transitions leaving its to state, that 
transition is labeled as the end of a conversation.  The following four conditions 
indicate that a transition is the end of a conversation  

1. A transition has a protocol not found in a transition leaving its to state. 
2. A transition has an empty set of protocols and at least one SendEvent. 
3. A transition has a non-empty set of protocols and there is a start transition 

leaving its to state. 
4. A transition to the end state has a non-empty set of protocols. 

Once the start and end labels have been added to the component state diagrams, the 
initial messages of the conversations must be “matched up” (i.e., both sides of a 
conversation must start and end with the same message types).  In most cases, this can 
be done automatically, but in some ambiguous cases the designer is required to decide 
how to match conversation halves. 
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3.3 Extracting Conversations 

The last stage of the transformation process removes the conversations from the 
component state diagrams and places them in their appropriate conversation halves.  
To extract a conversation from a state diagram, each of its end transitions must exit to 
the same state.  If different transitions of a conversation exit to different states, a 
transformation is applied to create a new “dummy” end state for the conversation.  
Then, the states and transitions that belong to the conversation are replaced with a 
single transition from the state where the transition originates to the state where the 
conversation ends.  An action is added to the transition that represents the execution 
of the conversation. 

Other transformations in this stage prepare variables in the states and transitions 
before they are removed from the components and placed in the conversations.  If a 
variable is not exclusive to a single conversation, that variable must be stored in 
parent component to ensure any other conversations extracted from the component 
references the same variable.  To annotate this, these variables are pre-pended with 
“parent.”. 

As the transitions are moved from the components into the conversations, the 
special “send” and “receive” parts of the events are removed from the events.  They 
are used in the component state diagrams to distinguish between internal and external 
events, but are not needed in the conversations since conversations, by definition, 
define binary communication between exactly two agents. 

4 Example 

This section presents an example to demonstrate the results of the transformation 
system.  The transformations were implemented in agentTool [5], and most of the 
figures are screen shots from the tool.  Fig. 11 shows the initial Role Model for a 
simple multiagent system.  There are three roles, each with a single task.  The 
Manager role uses the ContractNet protocol to solicit bids for search tasks.  The 
Bidder role bids on the tasks, and if awarded the contract requests a search from the 
Searcher role.  The Bid task, shown in Fig. 12, demonstrates how the transformation 
system derives the agent components and conversations in the design phase from the 
roles and tasks in the analysis phase.  

For the purposes of this example, we assume that the designer initially defines a 
SearchManager agent class, which plays the Manager role, and a MobileSearcher 
agent class, which plays both the Bidder and Searcher roles.  During the first stage of 
the transformation process, the designer determines that the SearchRequest protocol is 
internal communication within the MobileSearcher agent.  Therefore, every event in 
the MobileSearcher’s Bid and Search components that belongs to the SearchRequest 
protocol is transformed into an internal event.  The resulting architecture for the 
multiagent system is shown in Figure 13.  Once again, this is not a MaSE model, but 
simply demonstrates the architecture created for the agents based on the roles they 
play.  The external protocol, ContractNet, generates several conversations to carry out 
that communication. 
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Fig. 11. Role Model 

 

Fig. 12. Bid Task 

Fig. 14 shows the Bid Component after being annotated in the second stage of the 
transformation process.  The three events that belong to the SearchRequest protocol 
are now internal events, and three new null states have been added to split transitions 
that had both internal and external events.  The letters “S” and “E” on the transitions 
denote where the conversations begin and end. 
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Fig. 13. Agent Architectures 

 

Fig. 14. Annotated Bid Component 

A total of six different conversations were extracted from the events belonging to 
the ContractNet protocol.  Some were due to the internal events passed with the 
Search component, while others were due to the way the SearchManager’s 
FulfillSearchRequest component (not shown) was annotated.    For example, the 
reason the transition from the Idle state to the prepareBid state is both the start and 
end of a conversation is because the corresponding send event for the 
receive(announce(task), mgr) event in the FulfillSearchRequest component is a 
multicast.  Similarly, the transitions leaving the waitForBidResults state are the start of 
different conversations because the corresponding send event for the 
receive(sorry(task), mgr) event in the FulfillSearchRequest is a multicast to all of the 
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losers, and the corresponding send event for the receive(start(task, cost), mgr) event is 
only sent the winner agent, so they must be different conversations.  

Fig. 15 shows the bid component after the third stage of the transformation process.  
The states and transitions that belong to the conversations were removed, and each 
conversation was replaced with a transition that has an action that instantiates it.  
When the conversation completes, the action is finished and the component enters the 
next state, thus preserving the original semantics of the state diagram.  

 

Fig. 15. Bid Component After Extracting the Conversations 

Fig. 16 shows the initiator half of Conversation13-1, which was one conversation 
extracted from the MobileSearcher’s Bid component.  It is easy to see that the 
waitForAcknowledge state and the transitions to and from that state were taken 
directly from the Bid component.  The task and cost variables were prepended with 
“parent.” because they are both used either in the Bid component or in another 
conversation.   Fig. 17 shows the Agent Class Diagram derived by our transformation 
system.  Note that all external communication defined by the Contract Net protocol is 
captured in six conversations. 
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Fig. 16. Initiator Half of Conversation13-1 

 

Fig. 17. Agent Class Diagram 

4.1 Evaluation 

The above example was analyzed and designed using the agentTool environment.  
The semi-automatic transformation system built into agentTool dramatically improved 
the time required to take the analysis specifications and create complete design 
specifications.  The initial design was created in less than an hour, a task that would 
normally take several hours, or days, just to enter into agentTool.   The CPU time 
actually taken during this transformation was less than 10 minutes with the remainder 
of the time being spent by the designer looking at the “ambiguous cases” described in 
Section 3.2.  These cases required the designer to look at the analysis models to 
determine the correct action for the transformation to perform.  Even more dramatic 
was the time required to re-design the system after analysis specification changes.  As 
we discussed in the introduction, high-level specifications are rarely correct the first 
time.  After making minor changes to the analysis specifications, the time required to 
re-design the system was just a few minutes since the ambiguous cases were already 
known.   
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Although the time saved in the analysis to design transformation was impressive, 
the fact that the design was correct with respect to the analysis specification was the 
key factor.  We did not perform the analysis to design transformations manually and 
thus were not able to measure the number of errors or inconsistencies that might have 
been introduced.  The only place that manual design could improve on the current 
transformation process is in efficiency.  We will discuss this in detail in the next 
section. 

5 Future Work 

This research has opened the door to many areas of future work.  Although 
transformation system produces a design that corresponds to the analysis 
specification, many times the result is not an optimal solution.  One example is the 
way that conversations are created.  After applying the transformations, there may be 
two conversations between two agents that do exactly the same thing.  Although this is 
not necessarily wrong, an additional set of optimizing transformations could remedy 
these problems. 

Another area of future work deals with what we refer to as embedded 
conversations.  In many cases, the current transformations halt one conversation to 
carry out a dialog with another agent only to resume communication with the initial 
agent.  This results in a single protocol being decomposed into several simple 
conversations that, by themselves, have little semantic meaning.  Alternate approaches 
would be to allow one conversation to instantiate another conversation, or allow 
conversations to halt while a component carries out other communication, which 
would result in more robust and semantically intact conversations. 

A final area of future research is in the area of transforming concurrent tasks to run 
in a single threaded execution environment.  As described earlier, we assume that each 
component runs as its own thread; however, any many situations, we would rather 
have a single thread running.  The challenge would be to capture a single threaded 
design that would behave consistently with a concurrent specification.  

6 Conclusions 

The multiagent paradigm provides a framework for developing increasingly 
complex and distributed software systems.  However, better methods are needed to 
develop multiagent systems that can guarantee correctness, reliability, and robustness.  
Using formal transformation systems for multiagent system synthesis is one way to 
meet this growing need. 

This paper presented a transformation system that generates design models from 
the analysis models, including the internal agent architectures and the specific 
conversations for the components.  It is predominantly an automatic process, requiring 
only a few key design decisions from the system developer.  Since each 
transformation preserves correctness from one model to the next, the developer has 
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much more confidence that no inconsistencies or errors occurred during the design 
process.  The transformation process also provides clear traceability between the 
analysis and design, simplifying the verification process.   

Furthermore, when implemented in a development environment, such as agentTool, 
the transformations allow the developer to maintain the system in the more abstract 
analysis models and regenerate the design when any changes are made.  How many 
times during a software development project are the models in the analysis phase 
forgotten once the project enters the design phase?  In many cases, there is simply not 
enough time or manpower to maintain the consistency between the models in the two 
phases.  The transformation system presented here can eliminate that problem for 
system engineers using the MaSE methodology. 
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