

Proceedings of the Second International Workshop On Agent-Oriented
Software Engineering (AOSE-2001), Montreal, Canada, May 29th 2001.

1

Automated Derivation of Complex Agent Architectures
from Analysis Specifications

Clint H. Sparkman1, Scott A. DeLoach2 and Athie L. Self1

1Department of Electrical and Computer Engineering, Air Force Institute of Technology
Wright-Patterson Air Force Base, Ohio 45433-7765

clint.sparkman@lackland.af.mil, athie.self@afpc.randolph.af.mil
2Department of Computing and Information Sciences, Kansas State University

212 Nichols Hall, Manhattan, KS 66506
sdeloach@cis.ksu.edu

Abstract. Multiagent systems have been touted as a way to meet the need for
distributed software systems that must operate in dynamic and complex
environments. However, in order for multiagent systems to be effective, they
must be reliable and robust. Engineering multiagent systems is a non-trivial
task, providing ample opportunity for even experts to make mistakes. Formal
transformation systems can provide automated support for synthesizing
multiagent systems, which can greatly improve their correctness and reliability.
This paper describes a semi-automated transformation system that generates an
agent’s internal architecture from an analysis specification in the MaSE
methodology.

1 Introduction

In the last few years, agent technology has come to the forefront in the software
industry because of advantages that multiagent systems have in complex, distributed
environments. As agent technology has matured and become more accepted, agent-
oriented software engineering (AOSE) has become an important topic for software
developers who wish to develop reliable and robust agent-based systems [10, 11, 19].
Methodologies for AOSE attempt to provide a method for engineering practical
multiagent systems. However, there are currently only a few AOSE methodologies for
multiagent systems, and many of those are still under development [1, 12, 13, 18, 20].
Additionally, most existing methodologies lack specific guidance on how to transform
the specification of a system into the corresponding design and implementation. This
lack of guidance is not unique to engineering multiagent systems and plagues most
software engineering methodologies. Unfortunately, it leaves the designer questioning
if the resulting design correctly fulfills the initial system requirements.

The Agent Research Group at the Air Force Institute of Technology (AFIT), and
now Kansas State University, has developed and continues to mature an AOSE
methodology, called Multiagent Systems Engineering (MaSE) [4, 17], which covers
the complete life cycle of a multiagent system. Recent work has focused on applying

2

formal methods to develop a transformation system to support agent system synthesis.
Formal transformation systems [8, 9] provide automated support to system
development, giving the designer increased confidence that the resulting system will
operate correctly, despite its complexity. While formal transformation systems, and
formal methods in general, cannot a priori guarantee correctness [2], if each transform
preserves correctness, then the designer can be sure that the resulting design is at least
correct with respect to the initial system specification.

Given a sufficient level of automated support, a transformation approach allows the
designer to make only high-level design decisions, while the low-level details of the
transformations are carried out automatically by the system. Transformation systems
also provide traceability from the system requirements through the development
process to the final executable code. Furthermore, if the system engineer is able to
adequately decompose the problem and capture the system behavior in the analysis
phase, then there is hope that the undesirable system behavior, to which multiagent
systems are prone, can be avoided.

This level of automation will be required if such a system is to ever be truly useful.
As we all know, initial system specifications are rarely, if ever, complete and
consistent. Therefore, the ability to change the system specification and re-derive the
design and implementation is a necessity. In effect, the long-term goal of this research
to move the maintenance of software from the implementation level to the
specification level. While there has been much work on general-purpose software
specification languages, there has also been considerable work in specifying agent
systems as well [3, 21].

In this paper, we present a semi-automated formal transformation system that
generates MaSE design models based on the analysis models [16], which is the first
step in formal agent system synthesis. Specifically, we explain how our
transformation system generates an agent’s internal design based on an initial analysis
specification.

2 Background – Multiagent Systems Engineering

The MaSE methodology consists of the seven steps depicted in Fig. 1. The boxes
represent the different models used in the steps, and arrows indicate the flow of
information between the models. While similar to the waterfall approach, we have
designed MaSE to be applied iteratively. The first three steps represent the Analysis
phase of the methodology, while the last four steps represent the Design phase.

2.1 Analysis Models

The Role Model is the end result of the MaSE analysis phase. Role Models
graphically depict the roles in the system, the goals they are responsible for, the tasks
that each role uses to accomplish its goals, and the communication paths between the
roles necessary to complete their tasks. Roles are the abstract entities that exist in the
system, and are defined much like an actor in a play, or a position in an organization

3

(President, Vice President, Manager, etc.). Each role is responsible for accomplishing
one or more system level goal, and there must be at least one role responsible for each
goal. In this way, the analyst is able to ensure that all of the initial system
requirements have been captured.

Creating Agent
Classes

Require-
ments

Use Cases

Sequence
Diagrams

Deployment
Diagrams

Agent
Architectue

Capturing Goals

Refining Roles

Assembling
Agent Classes

System Design

Applying Use
Cases

Goal
Hierarchy

RolesConcurrent
Tasks

Conver-
sations

Agent
Classes

Constructing
Conversations

A
nalysis

D
esign

Fig. 1. MaSE Methodology

One example of a Role Model is shown in Fig. 2. The roles in the system are
depicted as rectangles, and the goals that a role is responsible for are listed under the
role. Each task that a role has is denoted by an oval attached to the role. The lines
between the tasks denote communication protocols that occur between the tasks. The
arrows indicate the initiator and responder tasks in the protocol, with the arrow
pointing from the initiator to responder. Solid lines indicate peer-to-peer
communication, which is external communication either between two tasks of
different roles, or between two different instances of the same role. Conversely,
dashed lines denote communication between two tasks of the same role instance.

As part of defining the Role Model, the analyst must define the tasks that each role
has. Tasks describe the behavior that a role must exhibit in order to accomplish its
goals, and are specified graphically using a finite state automaton, as shown in Fig. 3.
A single role may have multiple concurrent tasks that define the complete behavior of
the role. Each task is assumed to operate under its own thread of control, thus each
task has its own state diagram that executes independently of the other tasks. An

4

important aspect of multiagent systems is the ability of agents to interact to
accomplish their goals. Concurrent tasks capture this interaction and can be used to
specify complex communication protocols such as Contract Net, Dutch Auction, etc.
[6]. Concurrent tasks also lay the foundation for conversations between the agent
classes in the design phase of MaSE.

Client
goal1

Searcher
goal 4

Broker
goal2
goal3

Search Bid

RequestBidsFindSearcherManageSearchRequestSearch
Start Bidding

Contract NetMade BidStart Search

Found Searcher

Request Searcher

Fig. 2. Role Model

An important property of concurrent tasks is that they are able to capture
communication with multiple tasks in order to accomplish their goals. In other words,
Concurrent Task Diagrams naturally intertwine events belonging to different
protocols. The other tasks being communicated with can belong to the same role, or
they may belong to a different role. Tasks that belong to the same role can coordinate
with each other through internal events. In Fig. 3, the ^backup(file) event on the
transition from the Wait_For_File state to the Wait_For_Backup state is an example
of an internal send event, and the done event on the transition from the
Wait_For_Backup state to the Process_File state is an example of an internal receive
event. In order for a task to communicate with a task of another role, events that
represent external communication are specified using SendEvents and ReceiveEvents.
These events are defined to send and retrieve messages from an implied massage-
handling component of the agent. The ^send(request(filename), server) event on the
transition from the Get_File_Name state to the Wait_For_File state is an example of
an external SendEvent, and the receive(inform(file), server) event on the transition
from the Wait_For_File state to the Wait_For_Backup state is an example of an
external ReceiveEvent.

5

Fig. 3. Concurrent Task Diagram

2.2 Design Models

In the design phase of MaSE, the designer takes the Role Model in the analysis
phase, and produces an Agent Class Diagram, as shown in Fig. 4. Each rectangle
represents an agent class, with the roles played by each agent listed under the agent’s
name. The directed lines between the agents represent conversations between the
agents, with the arrow pointing from the initiator to the responder. In order to ensure
that all system goals are being met, each role must be played by at least one agent
class, providing a traceable link from the goals in the analysis phase to the agents in
the design phase.

Conversations define detailed coordination protocols between exactly two agents,
and consist of a pair of Communication Class Diagrams, one each for the initiator and
responder. Conversations are at the heart of any multiagent system as they detail how
the agents communicate with each other. Like tasks, conversations are described
using finite state automata that define each half of the conversation. Since
conversations are point-to-point communication between two agents, every event
within a Communication Class Diagram is represents a message to or from the other
agent in the conversation. Conversations do not allow for communication with
multiple agents simultaneously or for internal events to be exchanged with
components internal to the agent. An example of a Communication Class Diagram is
shown in Fig. 5.

6

Fig. 4. Agent Class Diagram

Fig. 5. Communication Class Diagram

In addition to the conversations that agents participate in, agents have internal
components defined using an architectural modeling language combined with the
Object Constraint Language (see Fig. 6). Components allow users to logically
decompose the agents and define attributes and functions that are needed for the agent
to carry out its tasks. The dynamic characteristics of the components are defined
using a state diagram. The events passed within a component’s state diagram are
limited to internal events with other components that belong to that agent.

2.3 agentTool

In addition to the MaSE methodology, AFIT has developed a CASE tool named
agentTool that serves as a validation platform and a proof of concept for MaSE.
agentTool has a graphical user interface that allows a user to develop a multiagent

7

system using the MaSE analysis and design models. agentTool is also able to
generate Java code for a system based on the design models. Currently, the code
generator is able to generate code for two different frameworks, agentMom [7] and
Carolina [14], but work is being done to integrate agentTool with the AFIT Wide
Spectrum Object Modeling Environment that is looking at the more general code
generation problem [9].

Fig. 6. Internal Agent Components

3 Analysis to Design Transformations

Before defining the specific transformations, this section first describes how the
analysis models map to the design models. The MaSE methodology makes it clear
that an agent class’ roles, in conjunction with the protocols between the tasks,
determine the conversations each agent class will have. However, if the external
events are simply removed from the tasks to create the conversations, the problem we
are faced with is that there will be nothing left in the design to capture how to
coordinate the conversations and there will be no guarantee that the agent will behave
consistently with the initial concurrent tasks. We must also capture the internal events
in the design as well.

To solve this problem, we create a separate component for every task in each role
that an agent is assigned to play. We then copy the concurrent task definition to the
associated component state diagram. Next, we extract the states and transitions
belonging to conversations and replace them with actions that represent the execution
of the conversation. Using this approach, the component’s state diagram retains the
coordination and internal events necessary to ensure the behavior of the component
matches the task from which it was derived.

Prior to this segment of our research, we had defined conversations as belonging
directly to agents. However, based on the approach discussed above, we have
redefined the generic architecture to have conversations belong to components. Fig. 7
illustrates how the models in the analysis phase translate to the models in the design
phase as well as the relationship between the design models. Ultimately, the roles that
the designer chooses for an agent to play determine that agent’s components, as well
as the set conversations in which the agent participates. To accurately capture the

8

behavior as defined in concurrent tasks, we assume each component also executes as
an independent thread.

 Role

Task1 Task2

Agent

Component1 Component2

Conv1 - 1 Conv1 - 2 Conv2 - 1 Conv2 - 2

Analysis

Design

Fig. 7. Model Influences

Besides components derived from concurrent tasks, our transformations also create
a special Agent Component for each agent [15]. This Agent Component captures how
the agent coordinates its different components. Fig. 8 shows the basic state diagram
for the Agent Component, which is designed to handle both transient1 and persistent2
components. The Agent Component can also be transformed to account for special
agent characteristics like mobility, where the agent must halt all of its active
components, move to a new location, and then resume the components where they
were interrupted.

The transformation system created in this research is actually a series of small steps
that incrementally change the roles and tasks in the analysis phase into agent classes,
components, and conversations in the design phase. The process logically
decomposes into three stages. Before the transformations can take place, the
developer must analyze the system and develop a Role Model, which defines the roles
that are present in the system, and a set of concurrent tasks, which the roles perform to
accomplish their goals. The developer must also decide which agent classes will be in
the system and the roles that each agent class will play.

1 A transient component is started in response to the receipt of a specific event. There may be

multiple transient components of the same type executing at any one time.
2 A persistent component is started when the agent is instantiated and runs until its completion

or the agent is terminated. There is only one instance of a persistent component running.

9

startComp
c=createComp(message)

determineRecipient
c=getComponent(message)

[c==null][c==null]/sorry(agent)

[c!=null]

updateComponentList
addCompList(c)

idle

extReceive(message,agent)

extReceive(terminate,agent)

[c!=null]/relay(message,c)

startPersistentComps
started=startComps()

[started]

[NOT started]

Fig. 8. Basic Agent Component State Diagram

During the first stage of the transformation process, the components for the agent
classes are created based on the roles assigned by the developer. The set of protocols
to which each external event belongs is also determined. The second stage centers on
annotating the component state diagrams and matching external events in the different
components that become the initial messages of a conversation. During the last stage
the component state diagrams are prepared for removal of the states and transitions
belonging to conversations. They are then removed and added to the state diagrams
of the corresponding conversation halves. As they are removed from the components
they are replaced with a single transition that has an action that starts the conversation.

Each transformation is defined by a predicate logic equation of the form:
condition ⇒ result, where the condition is the set of requirements that must
be true for the transformation to take place, and the result describes what is guaranteed
to be true after the transformation is performed. This notation is similar to defining
functions with pre-conditions and post-conditions. These transformations describe
what must take place, not how it must be done.

3.1 Creating Agent Components

Once the designer has developed the Role Model, defined the concurrent tasks, and
assigned roles to agent classes, the transformation process can begin. The first
transformations in stage one of the transformation process determine the protocols to
which each external event belongs. This is important because the specific protocols
that events belong to are used to determine where conversations begin and end in the
component state diagrams. While the protocols for most events can be automatically
determined, there are ambiguous cases where the designer must be asked to decide to
which protocol specific events belongs.

Next, for every task of every role that an agent plays, a component is created for
that task. Once again, the component’s state diagram is initially identical to that of the

10

task it was derived from. The rest of the transformation process is focused on moving
the external events from these component state diagrams into conversations. The
following predicate logic equation formally defines this transformation:

∀ a : Agent, r : Role, t : Task • (r ∈ a.roles ∧ t ∈ r.tasks)
⇒ (∃ c : Component • c ∈ a’.components ∧ c.stateTable = t.stateTable ∧ c.name =
t.name)

As an example of this transformation, consider the example Role Model shown in
Fig. 9. If the developer decides in the design phase to create the agent classes with the
roles shown in Fig. 10, then the transformation system creates the components shown
for the agents. Since both agents play Role 2, there is a component created for each
agent for Role 2’s Task 2. Fig. 10 is not a MaSE diagram, but is presented to
illustrate the internal agent components based on the initial Agent Class Diagram.

Role 1 Role 3Role 2

Task 1 Task 3Task 2
Protocol 1 Protocol 2

Fig. 9. Initial Role Model

Agent 1
Role 1
Role 2

Agent 2
Role 2
Role 3

Component:
Task 1

Component:
Task 2

Component:
Task 3

Component:
Task 2

Fig. 10. Agent Components Created from Roles’ Tasks

Once the agent components are created, for each pair of roles that are combined
into an agent class, the designer must determine whether each protocol that exists
between components of that agent is either internal or external. If a protocol is
defined as internal, all events belonging to that protocol become internal events
between components and not messages in a conversation.

3.2 Annotating Component State Diagrams

After the agent components are created, the next stage of the transformation
process involves annotating the component state diagrams to prepare for conversation

11

extraction. There are many different cases in which tasks are defined in the analysis
phase that make removing conversations problematic. One such case occurs when
multiple events not belonging to the same protocol reside on the same transition. To
solve this (and other similar) problem, we defined a transformation that converts the
component’s state diagrams into a canonical form, which splits transitions having
events belonging to different protocols. This canonical form simplifies conversation
extraction while remaining consistent with the initial task specification.

Next, each transition is given a set of protocols that is based on the protocols for
the external events on the transition. Then the state diagrams are annotated to indicate
where each conversation begins and ends. Conversations are defined as point-to-point
communication between two agent instances. Therefore, any time a component’s state
diagram has a transition with external communication to a different agent than one of
the preceding transitions, a new conversation must begin, and that transition is labeled
as the start of a conversation. The following six conditions indicate the start of a
conversation by a change in who the agent is communicating with, which in most
cases is due to a change in the protocols.

1. A transition has a protocol not found in at least one transition into its from state.
2. A transition has a non-empty set of protocols that is different than another

transition leaving the same state.
3. A transition has a non-empty set of protocols, but lacks a protocol of another

transition into its from state.
4. A transition has a non-empty set of protocols, and there is another transition into

or out of its from state with an empty set of protocols.
5. A transition has an empty set of protocols and at least one SendEvent. In these

cases, there is either a multicast event, or there are SendEvents that belong to
different protocols.

6. A transition has a SendEvent whose recipient was previously determine by an
action.

Similarly, when a component state diagram has a transition with external
communication not guaranteed to continue on transitions leaving its to state, that
transition is labeled as the end of a conversation. The following four conditions
indicate that a transition is the end of a conversation

1. A transition has a protocol not found in a transition leaving its to state.
2. A transition has an empty set of protocols and at least one SendEvent.
3. A transition has a non-empty set of protocols and there is a start transition

leaving its to state.
4. A transition to the end state has a non-empty set of protocols.

Once the start and end labels have been added to the component state diagrams, the
initial messages of the conversations must be “matched up” (i.e., both sides of a
conversation must start and end with the same message types). In most cases, this can
be done automatically, but in some ambiguous cases the designer is required to decide
how to match conversation halves.

12

3.3 Extracting Conversations

The last stage of the transformation process removes the conversations from the
component state diagrams and places them in their appropriate conversation halves.
To extract a conversation from a state diagram, each of its end transitions must exit to
the same state. If different transitions of a conversation exit to different states, a
transformation is applied to create a new “dummy” end state for the conversation.
Then, the states and transitions that belong to the conversation are replaced with a
single transition from the state where the transition originates to the state where the
conversation ends. An action is added to the transition that represents the execution
of the conversation.

Other transformations in this stage prepare variables in the states and transitions
before they are removed from the components and placed in the conversations. If a
variable is not exclusive to a single conversation, that variable must be stored in
parent component to ensure any other conversations extracted from the component
references the same variable. To annotate this, these variables are pre-pended with
“parent.”.

As the transitions are moved from the components into the conversations, the
special “send” and “receive” parts of the events are removed from the events. They
are used in the component state diagrams to distinguish between internal and external
events, but are not needed in the conversations since conversations, by definition,
define binary communication between exactly two agents.

4 Example

This section presents an example to demonstrate the results of the transformation
system. The transformations were implemented in agentTool [5], and most of the
figures are screen shots from the tool. Fig. 11 shows the initial Role Model for a
simple multiagent system. There are three roles, each with a single task. The
Manager role uses the ContractNet protocol to solicit bids for search tasks. The
Bidder role bids on the tasks, and if awarded the contract requests a search from the
Searcher role. The Bid task, shown in Fig. 12, demonstrates how the transformation
system derives the agent components and conversations in the design phase from the
roles and tasks in the analysis phase.

For the purposes of this example, we assume that the designer initially defines a
SearchManager agent class, which plays the Manager role, and a MobileSearcher
agent class, which plays both the Bidder and Searcher roles. During the first stage of
the transformation process, the designer determines that the SearchRequest protocol is
internal communication within the MobileSearcher agent. Therefore, every event in
the MobileSearcher’s Bid and Search components that belongs to the SearchRequest
protocol is transformed into an internal event. The resulting architecture for the
multiagent system is shown in Figure 13. Once again, this is not a MaSE model, but
simply demonstrates the architecture created for the agents based on the roles they
play. The external protocol, ContractNet, generates several conversations to carry out
that communication.

13

Fig. 11. Role Model

Fig. 12. Bid Task

Fig. 14 shows the Bid Component after being annotated in the second stage of the
transformation process. The three events that belong to the SearchRequest protocol
are now internal events, and three new null states have been added to split transitions
that had both internal and external events. The letters “S” and “E” on the transitions
denote where the conversations begin and end.

14

SearchManager
Manager
SearchManager
Manager

MobileSearcher
Bidder
Searcher

MobileSearcher
Bidder
Searcher

Component:
FulfillSearchRequests

Component:
Bid

Component:
Search

Search

Contract Net

Fig. 13. Agent Architectures

Fig. 14. Annotated Bid Component

A total of six different conversations were extracted from the events belonging to
the ContractNet protocol. Some were due to the internal events passed with the
Search component, while others were due to the way the SearchManager’s
FulfillSearchRequest component (not shown) was annotated. For example, the
reason the transition from the Idle state to the prepareBid state is both the start and
end of a conversation is because the corresponding send event for the
receive(announce(task), mgr) event in the FulfillSearchRequest component is a
multicast. Similarly, the transitions leaving the waitForBidResults state are the start of
different conversations because the corresponding send event for the
receive(sorry(task), mgr) event in the FulfillSearchRequest is a multicast to all of the

15

losers, and the corresponding send event for the receive(start(task, cost), mgr) event is
only sent the winner agent, so they must be different conversations.

Fig. 15 shows the bid component after the third stage of the transformation process.
The states and transitions that belong to the conversations were removed, and each
conversation was replaced with a transition that has an action that instantiates it.
When the conversation completes, the action is finished and the component enters the
next state, thus preserving the original semantics of the state diagram.

Fig. 15. Bid Component After Extracting the Conversations

Fig. 16 shows the initiator half of Conversation13-1, which was one conversation
extracted from the MobileSearcher’s Bid component. It is easy to see that the
waitForAcknowledge state and the transitions to and from that state were taken
directly from the Bid component. The task and cost variables were prepended with
“parent.” because they are both used either in the Bid component or in another
conversation. Fig. 17 shows the Agent Class Diagram derived by our transformation
system. Note that all external communication defined by the Contract Net protocol is
captured in six conversations.

16

Fig. 16. Initiator Half of Conversation13-1

Fig. 17. Agent Class Diagram

4.1 Evaluation

The above example was analyzed and designed using the agentTool environment.
The semi-automatic transformation system built into agentTool dramatically improved
the time required to take the analysis specifications and create complete design
specifications. The initial design was created in less than an hour, a task that would
normally take several hours, or days, just to enter into agentTool. The CPU time
actually taken during this transformation was less than 10 minutes with the remainder
of the time being spent by the designer looking at the “ambiguous cases” described in
Section 3.2. These cases required the designer to look at the analysis models to
determine the correct action for the transformation to perform. Even more dramatic
was the time required to re-design the system after analysis specification changes. As
we discussed in the introduction, high-level specifications are rarely correct the first
time. After making minor changes to the analysis specifications, the time required to
re-design the system was just a few minutes since the ambiguous cases were already
known.

17

Although the time saved in the analysis to design transformation was impressive,
the fact that the design was correct with respect to the analysis specification was the
key factor. We did not perform the analysis to design transformations manually and
thus were not able to measure the number of errors or inconsistencies that might have
been introduced. The only place that manual design could improve on the current
transformation process is in efficiency. We will discuss this in detail in the next
section.

5 Future Work

This research has opened the door to many areas of future work. Although
transformation system produces a design that corresponds to the analysis
specification, many times the result is not an optimal solution. One example is the
way that conversations are created. After applying the transformations, there may be
two conversations between two agents that do exactly the same thing. Although this is
not necessarily wrong, an additional set of optimizing transformations could remedy
these problems.

Another area of future work deals with what we refer to as embedded
conversations. In many cases, the current transformations halt one conversation to
carry out a dialog with another agent only to resume communication with the initial
agent. This results in a single protocol being decomposed into several simple
conversations that, by themselves, have little semantic meaning. Alternate approaches
would be to allow one conversation to instantiate another conversation, or allow
conversations to halt while a component carries out other communication, which
would result in more robust and semantically intact conversations.

A final area of future research is in the area of transforming concurrent tasks to run
in a single threaded execution environment. As described earlier, we assume that each
component runs as its own thread; however, any many situations, we would rather
have a single thread running. The challenge would be to capture a single threaded
design that would behave consistently with a concurrent specification.

6 Conclusions

The multiagent paradigm provides a framework for developing increasingly
complex and distributed software systems. However, better methods are needed to
develop multiagent systems that can guarantee correctness, reliability, and robustness.
Using formal transformation systems for multiagent system synthesis is one way to
meet this growing need.

This paper presented a transformation system that generates design models from
the analysis models, including the internal agent architectures and the specific
conversations for the components. It is predominantly an automatic process, requiring
only a few key design decisions from the system developer. Since each
transformation preserves correctness from one model to the next, the developer has

18

much more confidence that no inconsistencies or errors occurred during the design
process. The transformation process also provides clear traceability between the
analysis and design, simplifying the verification process.

Furthermore, when implemented in a development environment, such as agentTool,
the transformations allow the developer to maintain the system in the more abstract
analysis models and regenerate the design when any changes are made. How many
times during a software development project are the models in the analysis phase
forgotten once the project enters the design phase? In many cases, there is simply not
enough time or manpower to maintain the consistency between the models in the two
phases. The transformation system presented here can eliminate that problem for
system engineers using the MaSE methodology.

7 Acknowledgements

This work was performed while the authors were at the Air Force Institute of
Technology and was supported by the Air Force Office of Scientific Research. The
views expressed in this article are those of the authors and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the US
Government.

References

[1] Brauer, W., Nickles, M., Robatsos, M., Weiss, G., Lorentzen, K.: Expectation-Oriented
Analysis and Design. In this volume (2001)

[2] Clarke, E. Wing, J.: Formal Methods: State of the Art and Future Directions. ACM
Computing Surveys. 28 (4) (1996)

[3] Dastani, M., Jonker, C., Truer, J.: A Requirement Specification Language for
Configuration Dynamics of Multi-Agent System. In this volume (2001)

[4] DeLoach, S. A., Wood, M., Sparkman, C.: Multiagent Systems Engineering. To appear in
the Intl. J. on Software Engineering and Knowledge Engineering (2001)

[5] DeLoach, S. A., Wood, M.: Developing Multiagent Systems with agentTool. In:
Castelfranchi, C., Lesperance, Y. (eds.): Intelligent Agents VII: Agent Theories
Architectures and Languages, Proceedings of the 7th International Workshop, ATAL
2000. Lecture Notes in Artificial Intelligence, Vol. 1986. Springer-Verlag, Berlin
Heidelberg New York (2001)

[6] DeLoach, S. A.: Specifying Agent Behavior as Concurrent Tasks. Proceedings of the
Fifth International Conference on Autonomous Agents. ACM Press, New York (2001)
102-103

[7] DeLoach, S. A.: Using agentMom. Air Force Institute of Technology, (2000)
[8] Green, C., Luckham, D., Balzer, R., et al.: Report on a Knowledge-Based Software

Assistant. In Rich, C., Waters, R. C. (eds.): Readings in Artificial Intelligence and
Software Engineering. Morgan Kaufmann, San Mateo, California (1986) 377-428

[9] Hartrum, T. C., Graham, R.: The AFIT Wide Spectrum Object Modeling Environment:
An AWESOME Beginning. Proceedings of the National Aerospace and Electronics
Conference. IEEE (2000) 35-42

19

[10] Jennings, N.: On Agent-based Software Engineering, Artificial Intelligence: 117 (2000)
277-296

[11] Lind, J.: Issues in Agent-Oriented Software Engineering. In Ciancarini, P., Wooldridge,
M. (eds.): Agent-Oriented Software Engineering: First International Workshop, AOSE
2000. Lecture Notes in Artificial Intelligence, Vol. 1957. Springer-Verlag, Berlin
Heidelberg (2001) 45-58

[12] Omicini, A.: SODA: Societies and Infrastructures in the Analysis and Design of Agent-
Based Systems. In Ciancarini, P., Wooldridge, M. (eds.): Agent-Oriented Software
Engineering: First International Workshop, AOSE 2000. Lecture Notes in Artificial
Intelligence, Vol. 1957. Springer-Verlag, Berlin Heidelberg (2001) 185-194

[13] Rana, O.: A Modelling Approach for Agent Based Systems Design. In Ciancarini, P.,
Wooldridge, M. (eds.): Agent-Oriented Software Engineering: First International
Workshop, AOSE 2000. Lecture Notes in Artificial Intelligence, Vol. 1957. Springer-
Verlag, Berlin Heidelberg (2001) 195-206

[14] Saba, G. M., Santos, E.: The Multi-Agent Distributed Goal Satisfaction System.
Proceedings of the International ICSC Symposium on Multi-Agents and Mobile Agents
in Virtual Organizations and E-Commerce (MAMA '2000) (2000) 389-394

[15] Self, A.: Design & Specification of Dynamic, Mobile, and Reconfigurable Multiagent
Systems. MS thesis, AFIT/GCS/ENG/01M-11. School of Engineering, Air Force Institute
of Technology (AU), Wright-Patterson AFB, OH, (2001)

[16] Sparkman, C.: Transforming Analysis Models Into Design Models for the Multiagent
Systems Engineering (MaSE) Methodology. MS thesis, AFIT/GCS/ENG/01M-12.
School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB,
OH (2001)

[17] Wood, M.: Multiagent Systems Engineering: A Methodology for Analysis and Design of
Multiagent Systems. MS thesis, AFIT/GCS/ENG/00M-26. School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson AFB, OH, 2000

[18] Wooldridge, M., Jennings, N., Kinny, D.: The Gaia Methodology for Agent-Oriented
Analysis and Design. Intl. J. of Autonomous Agents and Multi-Agent Systems. 3 (3)
(2000) 285-312

[19] Wooldridge, M., Ciancarini, P.: Agent-Oriented Software Engineering: the State of the
Art In Ciancarini, P., Wooldridge, M. (eds.): Agent-Oriented Software Engineering: First
International Workshop, AOSE 2000. Lecture Notes in Artificial Intelligence, Vol. 1957.
Springer-Verlag, Berlin Heidelberg (2001) 1-28

[20] Zambonelli, F.: Abstractions and Infrastructures for the Design and Development of
Mobile Agent Organizations. In this volume (2001)

[21] Zhu, H.: A Formal Specification Language for MAS Engineering. In this volume (2001)

