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ABSTRACT 
This paper presents a reusable framework for developing adaptive 
multi-robotic systems for heterogeneous robot teams using an 
organization-based approach. The framework is based on the 
Organizational Model for Adaptive Computational Systems 
(OMACS) and the Goal Model for Dynamic Systems (GMoDS). 
GMoDS is used to capture system-level goals that drive the 
system. OMACS is an abstract model used to capture the system 
configuration and allows the team to organize and reorganize 
without the need for explicit runtime reorganization rules. While 
OMACS provides an implicit reorganization capability, it also 
supports policies that can either guide or restrict the resulting 
organizations thus limiting unexpected or harmful adaptation. We 
demonstrate our framework by presenting the design and 
implementation of a multi-robot system for detecting improvised 
explosive devices. We then highlight the adaptability of the 
resulting system.  

Categories and Subject Descriptors 

D.2.2 [Software Engineering]: Design Tools and Techniques; 
D.2.11 [Software Engineering]: Software Architectures 

General Terms 
Design 

Keywords 

Self-adaptive systems, runtime models, agent-oriented Software 
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1. INTRODUCTION 
The software being produced today is at least an order of 
magnitude more complex than that being developed a decade ago. 
Businesses today are demanding applications that operate 
autonomously, adapt in response to dynamic environments, and 
interact with other distributed applications in order to provide 
wide-ranging solutions [17]. To respond appropriately in today’s 

complex environments, software needs to be aware of what it is 
doing and why in order to take the appropriate steps to achieve its 
business objectives. There are several instances of these kinds of 
systems including information systems, service-oriented systems, 
wireless sensor networks, and multi-robot systems [24]. In each of 
these types of systems, one key element of adaptivity is the 
allocation of tasks to appropriate system elements, which has 
received much attention [3, 11, 13, 14, 23, 28]. However, an 
equally important aspect of adaptivity is understanding why those 
tasks need to be performed.  

A central feature of these systems is that they are closely tied to 
their environment and adapt in response to changes in that 
environment. Such systems are termed dynamically adaptive 
systems[4]. Recently, it has been suggested that requirements 
reflection, or reasoning over system requirements available as 
runtime objects, is key to developing dynamically adaptive 
systems [1, 26]. Specifically, [26] proposes three key challenges 
to requirements reflection: a runtime representation of the 
requirements, synchronization between the requirements and the 
architecture, and dealing with uncertainty. During the last several 
years, we have developed an approach that deals explicitly with 
the first two of those challenges. We represent requirements as 
goals at both design time and runtime, and we adapt the system 
architecture based on the current set of active goals in the system. 
This paper specifically aims our approach toward cooperative 
robotics where the system is closely tied to its environment, 
distributed, and dynamically adaptive.  

There are three paradigms generally used to develop multi-robot 
systems that must adapt autonomously to their environment: (1) 
bio-inspired, (2) social, and (3) knowledge-based [24]. Each 
tackles adaptivity using different approaches. Bio-inspired 
approaches typically assume homogeneous robots [3, 25], thus 
they are of little interest here. Social approaches are generally 
role-based [9, 28] or market-based [3, 13]. Role-based approaches 
use predefined roles to allocate tasks, whereas market-based 
approaches allow robots to bid on tasks. Knowledge-based 
approaches [11, 21, 23] explicitly model team member 
capabilities that are important to the task allocation process. Our 
approach combines aspects of both social and knowledge-based 
approaches by using runtime models to capture the system 
configuration. 

In this paper, we propose a framework for multi-robot systems 
based on runtime models for understanding (1) what the system 
should be doing in terms of system goals and (2) how the system 
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is organized to achieve those goals. The system objectives are 
captured via the Goal Model for Dynamic Systems (GMoDS), 
which defines the main goals of the system and the relationships 
between those goals. The current configuration of the system is 
captured in the Organizational Model for Adaptive Computational 
Systems (OMACS). Both models are used in the Organization-
Based Agent Architecture (OBAA) to help individual robots 
collaborate as part of a team in response to dynamic system goals 
and physical and computational capabilities. Finally, we 
demonstrate how the robot team uses this knowledge to allocate 
tasks efficiently and effectively. While we demonstrate our 
models and architecture on a team of robots, we claim that this set 
of models can be applied generally to a variety of complex 
distributed systems as shown in [8, 15]. 

The contributions of this paper are a real world demonstration of 
the implementation (via OBAA) of our complete framework of 
models that capture the goals (via GMoDS) of the system and 
uses those goals to drive the self-adaptation of the system in terms 
of the assignment of goals to individual robots (via OMACS). 

1.1 Demonstration Scenario 
In military situations, routes used for convoys must be constantly 
monitored for safety, including improvised explosive devices 
(IEDs), which are easily disguised and hard to spot as shown in 
Figure 1. The United States military currently uses teleoperated 
iRobot PackBots [15] to safely identify and disarm IEDs.  

To demonstrate our framework, we developed a heterogeneous 
robot team to monitor and detect IEDs. A human operator defines 
the overall area to be searched and the team divides the total area 
into subareas and assigns individual robots to monitor those 
subareas. In our scenario, the team is assigned to monitor the 
intersection of two roads on a continuing basis. When suspicious 
objects are found, the team assigns a robot to investigate. If the 
investigating robot cannot identify the suspicious object, the team 
asks the human operator to help identify the object. Once an IED 
is identified, a robot capable of defusing or disposing of IEDs is 
assigned to dispose of it. 

The remainder of the paper is organized as follows. Section 2 
provides an overview of the OMACS and GMoDS models that are 
central to our approach. Section 3 presents the design of the IED 
detection system, while Section 4 discusses its implementation 
using the OBAA architecture. Section 5 evaluates the system’s 
ability to use these models to adapt to changes. Finally, Section 6 

provides a general discussion of our approach including current 
and future work, while Section 7 discussed related work.  

2. MODELS  
To help systems be proactive as well as reactive to changes in 
their system objectives and environment, we developed a set of 
models that allows these systems to design their own organization 
at runtime. In essence, we provide the system with organizational 
knowledge and let the system design its own organization based 
on the system goals and current capabilities. While the designer 
can provide guidance, supplying the system with key 
organizational information allows it to redesign, or reorganize, 
itself to match its current situation. This section presents the two 
key elements of this framework, a model for multiagent 
organizations called the Organization Model for Adaptive 
Computational Systems (OMACS) and the Goal Model for 
Dynamic Systems (GMoDS). OMACS defines the knowledge of a 
system’s organizational structure and capabilities while GMoDS 
captures the system's overall objectives and defines what type of 
new objectives can be created in response to events that occur at 
runtime. 

2.1 Organizational Model for Adaptive 
Computational Systems 

The Organization Model for Adaptive Computational Systems 
(OMACS) [5] is a model that defines the knowledge required to 
allow a team of agents to reorganize in response to agent failure or 
changing team goals. As shown in Figure 2, an OMACS 
organization consists of a set of goals (G), roles (R), agents (A), 
capabilities (C), and policies (P). This information is used to 
compute the current set of assignments (Φ) that tell which agents 
have been assigned to play which roles in the organization in 
order to achieve organizational goals. 

All organizations, even artificial organizations, are formed with 
some specific objective or goal in mind. This high-level 
organizational goal is decomposed into specific goals that are 
assigned to individual departments or persons within the 
organization. In OMACS, the overall goal of an organization is 
represented by a set of goals that the organization is trying to 
achieve. OMACS assumes that each goal in this set can be 
achieved by a single agent. The relationship between the various 
goals is not handled directly by OMACS but is entrusted to a goal 
model, which in our case is GMoDS (see Section 2.2). 

Every OMACS organization has a set of heterogeneous agents, 
which are defined as “computational system instances that inhabit 
a complex dynamic environment, sense and act autonomously in 
this environment, and by doing so realize a set of goals” [5]. The 
purpose of OMACS is to help determine the best assignment of 
agents to goals in order to achieve the overall objectives of the 
organization. 

More specifically, OMACS goals are achieved by agents playing 
specific roles within the organization. In OMACS, roles are used 
to capture a set of responsibilities or the expected behavior of an 
agent playing that role. Generally, a role may be capable of 
achieving more than one type of goal and each type of goal can be 
achieved by more than one role. Thus, part of the assignment 
process includes determining the best role to achieve a specific 
goal. To support the assignment process, OMACS defines the 
achieves function, which takes as input a goal and a role, and 
returns a real value in the range [0..1] that reflects how well the 

 
Figure 1. Improvised Explosive Devices (IEDs) [20] 



given role achieves the given goal type. A value of 0 means the 
given role is not able achieve the goal. 

However, a role cannot be played by any given agent. Before an 
agent is allowed to play a given role, it must first meet the 
requirements of that role. Capabilities are essential in determining 
what roles agents are capable of playing. Capabilities are used to 
represent a wide variety of abilities, both soft and hard. Examples 
of soft abilities include access to resources, communications, and 
computational algorithms. Hard abilities typically model the 
abilities of robots such as sensors and effectors. If an agent α has 
all the required capabilities to play role ρ, the role capability 
function (rcf) is used to compute exactly how well α can play ρ. 
The rcf takes as input a role and an agent and returns a real value 
in [0..1]. Thus, the rcf allows organization designers to indicate 
the importance of specific capabilities to each role. For instance, if 
all the capabilities required to play a role ρ, are equally important, 
the designer can use the default rcf function defined below, which 
ensures the rcf falls in the range [0..1]. If any of the agent’s 
capabilities that are required to play the role are 0, then the result 
is 0; otherwise, it is simply the average of the possesses values for 
all the required capabilities. 
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The possesses function captures an agent’s capabilities along with 
the quality of those capabilities. The possesses function takes as 
input an agent and a capability, and returns a real value in [0..1], 
where 0 indicates that an agent does not possess the capability. 

In OMACS, agents are assigned roles to achieve goals. How well 
an agent can achieve a particular goal is captured by the potential 
function. The potential function takes as input a goal, a role, and 
an agent, and returns a real value in [0..1] indicating how well the 
agent can play the role to achieve the goal. The potential of an 
agent to play a specific role in order to achieve a specific goal is 
defined by multiplying the rcf and achieves functions.  

∀ a:A r:R g:G  potential(a,r,g) = achieves(r,g) ×  rcf(a,r) 

In OMACS, every organization is governed by a set of policies. 
OMACS provides three types of policies: assignment policies 
(PΦ), behavioral policies (Pbeh), and reorganization policies 
(Preorg). Assignment policies provide restrictions on the assignment 

set such as “an agent can only play one role.” Behavioral policies 
specify how the organization should behave when some event 
occurs, while reorganization policies provide heuristics that guide 
the organization when reorganizing. 

To determine the best overall set of assignment for a specific set 
of goals, OMACS defines the organization assignment function 
(oaf), which determines the effectiveness of a given set of 
assignments. An assignment is a tuple of agent, role, and goal that 
is placed in Φ. For example, 〈a,r,g〉 means that agent a has been 
assigned to play role r to achieve goal g. The oaf returns an 
organization score of a real value in [0..∞], where the higher the 
organization score, the better the organization performs. 
Typically, the oaf is application specific; however, a simple oaf is 
simply the sum of the potentials from an assignment set.  
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A complete definition of OMACS can be found in [5]. 

2.2 Goal Model for Dynamic Systems 
The Goal Model for Dynamic Systems (GMoDS) is defined in 
terms of two parts: a specification model and a runtime model. 
The specification model is defined by the designer and captures 
the goal types and their relationships. The runtime model contains 
the goals actually instantiated during execution. A complete 
definition of GMoDS is contained in [7]. 

2.2.1 Specification Model 
The GMoDS specification model has three main entities: goal 
classes, event classes, and parameters. A goal class defines an 
observable desired state of the world. An event class specifies an 
observable phenomenon of interest that may occur during system 
execution. Goal classes and event classes are parameterized to 
provide a given goal or event instance with specific meaning 
within the system. For instance, a goal type may specify that some 
area be searched, where area is a parameter that is given a 
specific value when a goal of that class is instantiated.  

A goal tree is used in GMoDS to conjunctively or disjunctively 
decompose parent goal classes into a set of sub-goals, or children. 
Goal classes without children are leaf goal classes. The GMoDS 
goal specification tree specifies how the goal classes are related to 
one another. A graphical depiction of a GMoDS specification 
model is shown in Figure 3, with decomposition denoted by 
«and» or «or» labels. The goal classes in the goal specification 
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tree are analogous to the specification of classes in an object-
oriented language. Classes are designed before hand, and are 
instantiated at runtime, with each instance having its own set of 
parameter values. The instances of a goal class are independent of 
each other. The goal instances are inserted into a goal instance 
tree at runtime. Each goal instance is achieved independently of 
every other instance of that goal.  

GMoDS uses a set of relations within the tree structure to specify 
how runtime goals may interact. Because goal instances are 
created based on the occurrence of specific events, the effect of 
these events on the goal instance tree must be defined. There are 
three relations of interest: triggers, negative triggers and precedes. 
A triggers relation between g1 and g2 predicated on event e1 
specifies that a new goal instance of class g2 is created when e1 
occurs during the pursuit of a goal instance of class g1. Likewise, 
a negative trigger relation from g1 to g2 on event e1 specifies that 
instances of goal g2 matching the parameter values of e1 should 
be removed from the goal instance tree when e1 occurs. To 
bootstrap the goal instance tree, we define an initial event (or 
initial trigger), e0, which implicitly occurs and adds the initial set 
of goals (including the root goal) to the goal instance tree. When 
the system starts, the initial event occurs and the root goal is 
added to the goal instance tree. Then all children not triggered by 
some other event are systematically and recursively added to the 
goal instance tree. 

To allow a full or partial ordered execution of goal instances in 
the system, the designer may specify goal precedence between 
two goal classes via the precedes relation. Goal precedence 
ensures that no agents may work on a specific goal instance until 
all goal instances that precede that goal have been achieved. There 
are several restrictions on goal precedence in the goal 
specification tree, including restrictions on precedence cycles, 
mixed trigger/precedence cycles, and a goal preceding its 
ancestors. 

2.2.2 Runtime Model 
At runtime, goals are instantiated based on the occurrence of 
specific events as defined by the GMoDS runtime model. Once 
instantiated, each instance goal is put in exactly one of six sets: 
Triggered, Active, Achieved, Removed, Failed or Obviated as 
shown in Figure 4, where the arrows indicate allowable transitions 
of goals between sets. Each goal instance is initially placed in the 
Triggered set and stays in that set until it becomes active, failed, 
obviated, or is removed. The Active set includes those goals that 

have been triggered and are not preceded. Goals in the Active set 
remain there until they are achieved, failed, obviated, or removed. 
When an agent achieves a goal, that goal is moved from the 
Active set into the Achieved set. The Failed set contains goals that 
the system can never achieve. The Obviated set contains goals 
that are no longer needed by the system; these goals are not 
achieved and should not be assigned to any agent. The Removed 
set contains goals that have been removed as the result of a 
negative trigger. Once in the Removed set, a goal is treated as if it 
never existed, which means that any precedence/triggers relations 
related to that goal cease to exist. 

The system interacts with the runtime model via two operations: 
occurred, and initialTrigger. The initialTrigger operation creates 
the initial set of goal instances as defined by the specification tree. 
The occurred operation updates the runtime model based on the 
occurrence of specific events. There are two types of events of 
interest: application specific events as defined in the goal 
specification tree, and general events such as goal achievement or 
goal failure. The goal sets are modified appropriately based on the 
event that occurred. Both the initialTrigger and occurred 
operations return the changes to the Active goal set (which are 
passed to the OMACS model as changes to the organizational 
goals). When goals are achieved, the runtime model is updated by 
moving the appropriate goals into the Achieved set and possibly 
moving (1) parent goals into the Achieved set, (2) obviated goals 
to the Obviated set, or (3) goals from the Triggered set into the 
Active set (if their precedence restrictions have been removed). 

3. SYSTEM DESIGN 
To design systems for use with OMACS and GMoDS, we 
developed the Organization-based Multiagent System 
Engineering (O-MaSE) methodology [6], which provides the 
necessary processes, models, tools, and techniques for designing 
and implementing OMACS/GMoDS based systems. For our 
demonstration scenario, the O-MaSE design process yielded four 
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key entities: system goals, roles, capabilities, and agent types. The 
GMoDS model captures the goals of our system. The roles specify 
the behavior and capabilities required to achieve the system goals, 
while the agent types define the types of robots in the system 
based on the capabilities they possess. 

3.1 Goals 
Figure 3 shows the GMoDS model for the IED detection system. 
The top-level goal is Monitor  IEDs, which has four subgoals: 
Interact With  User, Monitor  Area, Identify  Object, and Defuse 
IED. Initially, the subgoal Interact With User is the only goal that 
exists; the rest of the subgoals are triggered by events.  

The Interact  with  User goal is automatically assigned to an 
appropriate agent. The Monitor Area goal (and its subgoal Divide 
Area) is triggered by the monitor event generated by the agent 
pursuing the Interact With  User goal. A monitor event occurs 
when the human operator specifies an area to monitor for IEDs. 
Once the Divide Area goal is triggered, it is assigned to an 
appropriate agent. The agent pursing the Divide Area goal raises 
the patrol event when it creates a new area to be patrolled. The 
patrol event causes an instance of the Patrol Area goal to be 
instantiated and assigned to an agent. When the agent pursuing the 
Patrol Area goal detects a suspicious object, the identify event is 
raised causing an Identify Object goal and its subgoal Machine 
Identification to be instantiated; the Machine Identification goal is 
then assigned to an agent. If the agent pursuing the Machine 
Identification goal cannot identify a suspicious object, it raises the 
uncertain event. The uncertain event causes an instance of the 
Human Identification goal to be created and ultimately assigned to 
the human operator for identification. The defuse event can be 
raised by either the human operator or the agent pursuing the 
Machine Identification goal when an IED has been identified. The 
defuse event causes a Defuse IED goal to be instantiated and then 
assigned to a capable agent. 

3.2 Roles  
Table 1 shows the system roles, the leaf goals that they can 
achieve, and the capabilities required to play them. One role has 
been defined for each of the six leaf goals in Figure 3.  

The User Interaction role allows the human operator to input the 
area to be monitored as well as displaying information about the 
state of the system such as search areas, agent locations, and the 
current assignments.  

The Area Divider role partitions the overall search area into 
smaller subareas to be assigned to individual robots. When a 
subarea is defined, a patrol event is raised causing the creation of 
a new Patrol Area goal instance. 

The Patroller role defines the behavior required to patrol a search 
area. If a suspicious object is found, the robot raises the identify 
event and information about the suspicious object is passed to the 
User Interaction role. 

The Machine Identifier role defines how to analyze a suspicious 
object. If the robot cannot classify an object as inert or an IED, it 
raises the uncertain event. However, if the object is classified as 
an IED, the robot raises the defuse event. In any case, the User 
Interaction role is informed of the result. 

The Human Identifier role presents information to the human 
operator so that the operator can determine if a suspicious object 
is an IED. If the human operator decides that the object is an IED, 
the agent raises the defuse event. Otherwise, the suspicious object 
is classified as inert.  

The Defuser role defines how to dispose of an IED, which 
includes disarming the IED on the spot or moving the IED to a 
safer location for disarming or detonation. The Defuser role 
informs the User Interaction role of its status. 

3.3 Capabilities  
Capabilities are critical to OMACS-based systems as agents are 
assigned to roles based on the capabilities they possess. 
Capabilities are defined as a set of actions, which can be used to 
represent logical/physical interactions with the environment or 
computational processes. Environmental interactions include 
getting sonar readings, moving a robotic arm, and closing or 
releasing a gripper [6]. The capabilities used in our IED detection 
system are described in Table 2. 

3.4 Agents 
OMACS-based systems define agent types by the capabilities they 
possess. Table 3 shows the types of agents in the IED system. 
Note that in Table 3 the Playable Roles are derived from the 
Capabilities Possessed and are not hard coded. The Patroller, 
Identifier, and Defuser agents are all played by robots based on 
their capabilities, which are defined at an abstract level and are 
actually based on physical configurations of the robots. For 
instance, a camera is part of the configuration required for the 
Suspicious  Object  Detection and Explosive  Device  Detection 
capabilities, while a robotic arm or gripper is required by the 
Explosive Device Disposal capability. The Laptop Agent  requires 

Table 1. IED Roles 

Role Goals Achieved Capabilities Required 
User 
Interaction 

Interact With User User Interface 

Area Divider Divide Area Communication 
Area Division 
Algorithm 

Patroller Patrol Area Communication 
Movement 
Suspicious Object 
Detection 

Machine 
Identifier 

Machine 
Identification 

Communication 
Movement 
Explosive Device 
Detection 

Human 
Identifier 

Human 
Identification 

Communication 
Human Identification 
Display 

Defuser Defuse IED Communication 
Movement 
Explosive Device 
Detection 
Explosive Device 
Disposal 



the ability to interact with humans using a hand held or laptop 
computer. 

4. IMPLEMENTATION ARCHITECTURE 
The robot software was implemented using the Organization-
Based Agent Architecture (OBAA) [5] shown in Figure 5. Each 
OBAA agent (robot) has two main components: the Execution 
Component (EC) and the Control Component (CC). The EC 
contains application specific behavior of the robot while the CC is 
the “brain” of an agent where the organizational knowledge and 
decisions are made. The CC code is generally domain 
independent. 

The EC consists of the Role Control Component (RCC), the role 
behavior code, and the software for interfacing to capabilities. The 
RCC interfaces between the EC and the CC. Assignments from 
the CC are given to the RCC, which determines how the 
assignments are carried out. In addition, runtime events are sent to 
the CC via the RCC. The RCC controls multi-role execution via a 
modified rate-monotonic scheduling algorithm [18].  

The CC contains the adaptive behavior logic for an OMACS-
based system, which consists of the Goal Reasoning (GR), 
Organization Model (OM), Reorganization Algorithm (RA), and 
Organizational Reasoning (OR) components. The GR implements 
the GMoDS goal reasoning including goal sequencing, goal 
instantiation, and goal achievement. The OM maintains the 
knowledge about the organization such as the current agents, 
goals, and assignments. The RA computes new assignments when 
the need arises. The RA can be application-independent but can 
also incorporate application specific policies when required for 
optimal or efficient reorganization. For example, the IED system 
uses a policy to select the agent with the least workload (i.e., the 
least number of assignments) for new goals. Finally, the OR 

integrates the functions of the GR, OM, and RA and acts as an 
interface to the EC. Assignments are transmitted to the EC and 
events from the EC are transmitted to the OR. The OR is 
responsible for supplying the OM with updated information about 
the agents, assignments, and goals. The OR also decides when to 
reorganize and whether the reorganization should be full or 
partial. 

The agent OR components work together to keep the system 
coherent. We are currently using a centralized approach due to the 
complexities associated with distributed reasoning (see Section 6 
for a discussion of current work in the area). In our centralized 

Table 2. Capability Definitions 

Capability  Description 

User Interface 
displays monitored area, robot location, 
location and classification of suspicious 
objects to operator 

Area Division 
Algorithm 

algorithm partitions the monitoring area 
into smaller search areas is provided by 
the capability 

Communication used to communicate assignments, events, 
and application specific information 

Movement enables robots to move and includes 
collision avoidance 

Suspicious Object 
Detection 

algorithm detects objects with certain 
profile (e.g., IED); uses sensors such as 
sonars, cameras, explosive detectors 

Explosive Device 
Detection 

similar to suspicious object detection but 
with more accurate classification ability 

Human 
Identification 
Display 

interacts directly with operator; presents 
information and returns responses to 
object identification requests 

Explosive Device 
Disposal 

allows robots to dispose of IEDs; uses 
robot gripper to pick up and move an IED 
to a safe location 

 

 
Figure 5. Agent Architecture 

Table 3. Agent Types 

Agent 
Types Capabilities Possessed Playable Roles 

Laptop 
Agent 

Communication 
User Interface 
Area Division Algorithm 
Human Identification Display 

User Interface 
Area Divider 
Human 

Identification 

Patroller 
Agent 

Communication 
Movement 
Suspicious Object Detection 

Patroller 

Identifier 
Agent 

Communication 
Movement 
Explosive Device Detection 

Machine 
Identifier 

Defuser 
Agent 

Communication 
Movement 
Explosive Device Detection 
Explosive Device Disposal 

Defuser 

 



approach, a team OR ‘master’ handles all the logic processing 
such as reorganization, maintaining the OM, and processing 
events. The OR ‘slaves’ simply relay information to/from the 
master to its EC. We are currently working on distributed 
approaches for the ORs. The beauty of the OBAA architecture is 
that the CC code can be completely rewritten without affecting the 
application specific EC. 

5. EVALUATION 
In this section, we evaluate our system on its ability to adapt to 
failures, which includes total robot failure or the degradation of a 
robot’s capability. We implemented the system using a 
heterogeneous team of three Pioneer 3-AT robots and a single 
laptop agent. The robots are of the Patroller Agent type while the 
laptop is of the Laptop Agent type.  

To test system adaptability, random robots were disabled in one of 
two ways after the system had assigned their search areas and had 
started patrolling. First, we simply turned a robot off. The OR 
constantly polled the Communication capability to detect if a 
robot was no longer active, in which case the OR removed that 
robot from the OM knowledge. The OR then called the RA to 
compute a new set of assignments in which the two remaining 
robots took on the assignments of the disabled robot. Second, we 
simulated capability degradation by modifying the possesses score 
for a robot’s capability. This caused either (1) the robot to detect 
that it was unable to proceed and report a failure, or (2) the OR to 
detect that the robot was unable to continue. In both cases, 
reorganization occurred and the affected assignments were 
reassigned to capable robots. 

We ran eight experiments. Figure 6 shows a picture of our 
experimental setup with five search areas (A, B, C, D, and E). We 
disabled up to two robots in each experiment. Each time the OR 
successfully reassigned the goals from disabled robots to the 
remaining robots. In one experiment, robot  1 was initially 
assigned to patrol area A and B, robot 2 was assigned to patrol 
area E, and robot 3 was assigned to patrol area C and D. When 

robot 1 was disabled, robot 2 was assigned area A while robot 3 
was assigned area B. Upon disabling robot  2,  robot  3 was 
assigned all five areas (A, B, C, D, and E).  

To validate our results for scalability, we also simulated the same 
scenario. The simulated configuration consisted of 11 robots, 9 of 
the Patroller  Agent (Patroller  1..9) type, 1 of Identifier  Agent 
(Identifier 1) type, and 1 capable of both the Defuser Agent and 
Laptop Agent types (Defuser 1). With a larger number of agents, 
we were able to test several permutations. Figure 7 illustrates one 
example of how the system adapted. Figure 7(a) shows the 
assignments before any failures. There are 13 assignments; 11 are 
for patrolling and all 11 Patroller robots are assigned since they 
all are capable of playing the Patroller role. In Figure 7, an 
assignment such as <A:Defuser  1,  R:Area  Divider,  G:Divide 
Area(…)> means that the Defuser 1 robot has been assigned to play 
the Area Divider role to achieve the Divide Area(…) goal. Figure 
7(b) illustrates the reassignment that occurred when Patroller  3 
failed. The OR detected the failure and reassigned the most 
suitable agent Patroller 5. Figure 7(c) illustrates the reassignment 
that occurred when three additional robots (Patroller 2, Patroller 
4, and Patroller 6) failed. Again, the OR detected the failures and 
new assignments were made. In this case, area 11 was assigned to 
Patroller 8 while areas 6 and 7 were reassigned to Patroller 7. 

Hundreds of combinations were tested and in all cases, the OR 
adapted appropriately to the failures. The only exception occurred 
when Defuser  1 failed, since Defuser  1  was the master in our 
centralized OR implementation.  

The adaptive behavior demonstrated is a result of reorganization 
made possible by the organizational knowledge in OMACs. This 
knowledge is obtained directly from the O-MaSE models 
developed and thus the results presented are repeatable. 

6. DISCUSSION AND FUTURE WORK 
The OMACS and GMoDS models have been successfully used in 
several types of complex distributed systems including 
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information systems [8], wireless sensor networks [15], 
cooperative robotics [5, 6], and a variety of multiagent systems [5, 
8]. The key to this generality is that we do not try to model the 
system elements directly as components, but use an abstract 
representation based on human organizations. Using this 
abstraction, we have demonstrated the ability to organize and 
reorganize a system around a set of system level goals. These 
goals, therefore, are the key to a system that responds 
appropriately. Thus, GMoDS provides the driving force behind 
OMACS. By being able to specify system objectives as high-level 
goals that are decomposed into individual goals, there is a direct 
tie from the low-level goals or tasks being accomplished to the 
overall objectives of the system. By including the notion of event 
triggers, GMoDS provides a model of system objectives that can 
react to events that occur in the environment or in the system 
configuration. 

While the implementation presented in this paper uses a 
centralized algorithm, we are currently working on a fully 
distributed algorithm for the OR. Our approach focuses on 
keeping information about the OMACS and GMoDS models 
synchronized, which allows all assignment computation to be 
done without requiring interaction between the robots. Our 
distributed implementation will eliminate failure due to a 
centralized OR and will work in with imperfect communications. 

We are also currently using OMACS and GMoDS to develop new 
forms of supervisory control for robot teams, which we term 
organizational control. The main concept in organizational 
control is that the operator interacts directly with a team instead of 
individual robots. They key to interacting with a team is the Team 
Intelligence layer as shown in Figure 8, which abstracts individual 
robots into a team allowing the operator to directly task the team 
without worrying about how the team decomposes and distributes 
those commands to individual robots. The Team Intelligence layer 
is implemented by the collective control components of each 
robot on the team. The IED system demonstrates organizational 
control in the form of control by design. Control by design occurs 
when the operator is explicitly taken into account during the 
design of the system. We are also investigating a second form of 
organizational control called control by model manipulation in 
which the operator is not considered during the system design. 

Instead, the operator controls the team by manipulating the 
runtime model data directly. 

7. RELATED WORK 
Using runtime models of systems has become popular in recent 
years as an approach to developing self-adaptive systems [2]. In 
general, various aspects of the system (e.g., architecture) are 
modeled explicitly and populated and monitored at runtime to 
help with automatic reconfiguration of the system when required. 

While there has been some application of runtime models to 
single robot systems, we are unaware of the explicit use of 
runtime models to configure or organize multiple robot systems. 
In [12], explicit runtime architectural models are applied to 
manage runtime adaptation within simulated robots. The system 
uses the model to modify the runtime architecture configuration 
thus allowing the robots to change their behavior based on 
specific situations. Other use of runtime models to configure 
single robots includes [21], where a preliminary version of 
OMACS was used to overcome sensor/effector loss. In the 
system, the robot was controlled internally by a multiagent system 
whose agents were various sensors and effectors; when a sensor or 
effector failed, the system reorganized to provide the best 
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alternative configuration. 

The use of goal-based models to capture requirements has been 
proposed for several years and most current methods find their 
roots in KAOS or i* [31, 34]. More recent entries such as Techne 
[16] and RELAX [33] extend existing approaches to deal with 
uncertainty and inconsistency. However, to our knowledge there 
are no models that are used directly for capturing requirements as 
well as at runtime to drive system behavior and adaptation. There 
has been several organization models developed to support 
multiagent systems including OMNI [10], OperA [9] and 
HarmonIA [32]. However, these models were developed to 
support open multiagent systems and have not been applied to 
robotic systems.  
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