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Abstract

Formal software speci�cation has long been touted as a way to increase the quality and

reliability of software; however, it remains an intricate, manually intensive activity. An alter-

native to using formal speci�cations is to use graphically-based, semi-formal speci�cations such

as those used in many object-oriented speci�cation methodologies. While semi-formal speci�ca-

tions are generally easier to develop and understand, they lack the rigor and precision of formal

speci�cation techniques. The basic premise of this investigation is that formal software speci�-

cations can be constructed using correctness preserving transformations from graphically-based

object-oriented representations. In this investigation, object-oriented speci�cations de�ned using

Rumbaugh's Object Modeling Technique (OMT) were translated into algebraic speci�cations. To

ensure the correct translation of graphically-based OMT speci�cations into their algebraic counter-

parts, a formal semantics for interpreting OMT speci�cations was derived and an algebraic model of

object-orientation was developed. This model de�nes how object-oriented concepts are represented

algebraically using an object-oriented algebraic speci�cation language O-Slang. O-Slang com-

bines basic algebraic speci�cation constructs with category theory operations to capture internal

object class structure as well as relationships between classes. Next, formal transformations from

OMT speci�cations to O-Slang speci�cations were de�ned and the feasibility of automating these

transformations was demonstrated by the development of a proof-of-concept system.

xxi



Formal Transformations from Graphically-Based Object-Oriented Representations

to Theory-Based Speci�cations

I. Introduction

1.1 Purpose

The insertion of traditional engineering methods has been suggested as the only way to trans-

form software development from an art into an engineering discipline (26, 8). One approach to

inserting this engineering discipline is the transformational programming paradigm where software

is developed and maintained at the formal speci�cation level and provably correct code is auto-

matically derived from the speci�cation (42). This paradigm is inherently knowledge-based and

requires two types of software engineering knowledge: design knowledge and domain knowledge.

Design knowledge incorporates the domain independent knowledge required to produce software

including knowledge of architectures, algorithms, and data structures. Domain knowledge, on the

other hand, captures knowledge about objects in the problem domain. In the transformational

programming paradigm, software engineers use domain knowledge to derive system speci�cations

from domain models and then use design knowledge to produce the code. Thus, software engi-

neering evolves from the art of programming to the development of the domain models and design

knowledge necessary to derive provably correct software (68:634).

Use of algebraic theories to represent software engineering knowledge has gained momentum

during the last decade. Some of the most promising work is using theory-based speci�cations

to drive software synthesis systems. A notable example of such a synthesis system, the Kestrel

Interactive Development System (KIDS) (86), has yielded some exciting results. KIDS has been

used to derive dozens of algorithms including a transportation scheduling algorithm for over 15,000

movements that was 78 percent faster and had 75 percent fewer delays than the best previously
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known algorithms (87). A follow-on e�ort to KIDS, Specware (55), supports a systematic approach

to the composition of theory-based speci�cations followed by their stepwise re�nement into code.

The basic synthesis steps are to 1) develop a domain theory for the problem to be solved, 2) create

a speci�cation describing the problem in the language of its domain theory, 3) apply speci�cation

re�nements to construct a program-based model of the problem speci�cation, 4) apply program

optimizations, and 5) compile the program (86).

While systems such as KIDS and Specware have been making progress in software synthesis

research (steps 3 and 4 above), research in the acquisition of formal speci�cations (steps 1 and

2) has not been keeping pace. Formal software speci�cation has long been touted as a way to

increase the quality and reliability of software; however, it remains an intricate, manually intensive

activity. Besides driving software synthesis systems as described above, justi�cations for using

formal software speci�cations also include clarifying customer requirements, avoiding ambiguities

and contradictions, and the ability to rigorously verify certain properties (29:74). In fact, experience

in the use of formal methods suggests that the cost of using formal methods is no greater, and

possibly even less, than using traditional software development methods (44:17). Yet, to date,

formal methods are not widely accepted. Fraser suggests several reasons for this lack of acceptance

and use (29:75,76):

1. Lack of research directed at developing practical methods and tools for incorporating for-

mal methods into the software life-cycle. Most formal methods research is based on formal

languages and inference rules.

2. Little expertise among practicing software developers in the mathematical and logical concepts

and notations used in most formal speci�cation languages.

3. Unsuitability of formal notation for communicating with end users since they are even less

likely than the developer to be trained in formal mathematical and logical concepts.

4. Tendency of formal notations to inhibit creativity in a poorly de�ned problem areas.
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5. Unwillingness of management to make a sizeable investment in what they consider to be an

unproven technology.

So, what is the solution? Fraser suggests that a Computer-Assisted Parallel Successive Re�ne-

ment methodology is the answer. In a computer-assisted parallel successive re�nement method, the

designers use both semi-formal (graphical) and formal representations to produce the speci�cation

by successively performing re�nements to both representations in parallel (29:83). This method-

ology directly addresses items 1, 3, and 4 above and aids in resolving problems associated with 2

and 5. Both users and software personnel unaccustomed to formal speci�cations have access to the

semi-formal, graphical representation while the formal representation, and its associated bene�ts,

is maintained. The formal representation is used by knowledgeable software personnel and auto-

mated tools to check for ambiguities and contradictions and aid in transforming the speci�cation

into code. Unfortunately, Fraser reports that there has been no work in this area (29:83).

1.2 Overview

The basic premise of this investigation is that formal software speci�cations can be constructed

using a computer-assistedparallel successive re�nement approach incorporating correctness preserv-

ing transformations to automatically translate between graphically-based object-oriented represen-

tations and their corresponding formal representation. There are two obvious starting points for

this investigation: object-oriented representations and formal representations.

Because a standard set of de�nitions does not yet exist for many terms and concepts in object-

orientation, a speci�c object-oriented model was selected before continuing the investigation. There

are several proposed object-oriented methodologies in use today (1, 4, 11, 13, 15, 19, 20, 21, 72,

73, 84, 98, 103). Rumbaugh's Object Modeling Technique (OMT) (83) was chosen for its breadth

of coverage, availability of tools, and usefulness in domain analysis and modeling. Rumbaugh uses

three distinct views to describe a domain: (1) the object model describes structural relationships
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between domain objects, (2) the dynamic model describes interactions between domain objects,

and (3) the functional model describes how processes in the domain transform data. To enable

automated translation of these models into a formal representation, a formal semantics for each

model was developed. Then, an abstract syntax tree (AST) representation of a generic OMT

speci�cation was developed that captures the three OMT models in a single unifying structure.

Theory-based algebraic speci�cation is concerned with (1) modeling system behavior using

algebras (a collection of values and operations on those values) and axioms that characterize algebra

behavior, and (2) composition of larger speci�cations from smaller speci�cations. Composition

of speci�cations is accomplished via speci�cation building operations de�ned by category theory

constructs (88). In algebraic speci�cations, the structure of a speci�cation is de�ned in terms of

sorts, abstract collections of values, and operations over those sorts. This structure is called a

signature. A signature describes the structure of a solution; however, a signature does not specify

semantics. To specify semantics, the de�nition of a signature is extended with axioms de�ning

the intended semantics of signature operations. A signature with associated axioms is called a

speci�cation.

Algebraic speci�cations are used in this investigation to de�ne a theory-basedmodel of object-

orientation. Formal de�nitions for classes and objects were de�ned within this model. General class

relationships were investigated resulting in the de�nition of formal techniques for the construction of

valid inheritance, aggregation, and association relationships. An object-oriented algebraic speci�ca-

tion language,O-Slang, was developed that incorporates the category theory operations necessary

to de�ne relationships between object classes. Finally, formal translations were de�ned that map

generic OMT speci�cations into O-Slang algebraic speci�cations.

The feasibility of translating graphically-based OMT models into algebraic speci�cations was

demonstrated by the development of an automated transformation system. The prototype system
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uses a commercial OMT modeling tool as the front end to a rule-based transformation system that

generates O-Slang based on the formal translations.

Related work is described in the next section while Section 1.4 de�nes the basic assumptions

upon which this investigation is based, Section 1.5 describes the contributions of the investigation,

and Section 1.6 outlines the sequence of presentation for the rest of this document.

1.3 Related Work

This section describes research related to my investigation. Section 1.3.1 describes proposed

methods for incorporating formal speci�cations into current software development practices, Sec-

tion 1.3.2 presents some formal speci�cation languages used to describe object-oriented systems,

and Section 1.3.3 describes existing transformation systems.

1.3.1 Formal Speci�cation Incorporation Methodologies. Several authors have proposed

techniques for incorporating formal methods into existing software development practices. Fraser

et. al. created a framework for analyzing these methods (29). They categorize the methods by

the formalization process and the formalization support of each of the methods. The formalization

process can be de�ned as either being direct, where software developers move directly from informal

(natural language) speci�cations to formal speci�cations without going through any semi-formal

activity, and transitional, where the transformation from informal to formal speci�cations uses an

intermediate semi-formal speci�cation. Within the transitional process, Fraser de�nes two subtypes:

sequential and parallel successive re�nement. In a sequential transitional approach, the semi-

formal speci�cations are fully de�ned and then transformed into a formal speci�cation. In the

parallel successive re�nement approach, the semi-formal and formal speci�cations are produced

simultaneously, going through equivalent successive re�nements. Formalization support is also

divided into two categories: unassisted, where all work is done manually, and computer assisted
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where computer-based heuristics or knowledge-based transformation tools assist the developer. I

brie
y discuss a number of methodologies and then show how they �t into Fraser's framework.

Andrews and Gibbons describe a methodology where Structured Analysis is used to build a

hierarchical system structure chart. This structure chart is then translated manually into VDM.

Once in VDM, the structure chart is used to guide the decomposition of operations and data

re�nements (29).

Babin, Lustman, and Shoval propose a computer assisted method based on the ADISSA

method, which is an extension of Structured System Analysis. In ADISSA, the system architecture

is described via a set of transactions that model system events and user requests. Flow of control is

modeled by a �nite state machine. The method uses a ruled-based transformation system to help

transform the semi-formal speci�cation into a formal speci�cation (10).

Conger et. al. developed a manual procedure for taking Structured Analysis data 
ow

diagrams and transforming them into VDM. First, hierarchical data 
ow diagrams are developed

using Structured Analysis heuristics. The data 
ow diagrams are then used to guide the developer

in partitioning and stepwise re�ning of the VDM speci�cations. A VDM speci�cation is produced

for each data transformation process in the data 
ow diagram set (22).

Fraser, Kumar, and Vaishnavi propose an interactive, rule-based transformation system to

translate Structured Analysis speci�cations into VDM speci�cations. The method is based on

data 
ow diagrams and decision tables produced via Structured Analysis. The bottom level data


ow transformation processes are de�ned by decision tables which are then transformed by the

rule-based system (28).

Kemmerer describes a process which integrates traditional software development with de-

velopment using formal methods. In this process, the formal methods are annotations to the

semi-formal design and are developed directly from lower-level natural language descriptions (52).
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Kung has developed Process Interface Modules which are formal descriptions of the commu-

nication and synchronization among processes. Basically, the system is initially developed using

entity relationship diagrams to describe the static parts of the system and data 
ow diagrams to

model the dynamic parts of the system. This set of diagrams is then manually transformed into

Process Interface Modules to provide formal proof-based checking of the semi-formal design (57).

Miriyala and Harandi have developed an automated tool to help interactively create formal

speci�cations directly from informal requirements speci�ed in a natural language subset. The

tool develops a problem structure tree directly from the informal speci�cation and uses domain

independent knowledge and analogy with past developments to guide the re�nement of the tree

(74).

Wing proposes a very vague method where informal requirements are transformed into a

formal speci�cation through a series of iterative interviews with the user. She proposes neither a

semi-formal method to communicate with the user nor a speci�c formal speci�cation language to

work toward (102).

Table 1.1 classi�es the methodologies discussed above according to Fraser's framework. As

shown, and as reiterated by Fraser, the lower right hand corner, computer assisted, parallel suc-

cessive re�nement methodologies, has seen no research to date. According to Fraser, work in

developing techniques and methodologies for this area is needed because of the promise of the

approach (29:84).

1.3.2 Formal Speci�cation Languages.

1.3.2.1 Z Extensions. There have been a number of Z extensions designed to make

Z speci�cations easier to understand. Many of these extensions are object-oriented. Although most

of the object-oriented Z extensions provide techniques for structuring the Z speci�cation using the

common object-oriented concepts, they do not attempt to provide an improvement in speci�cation
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  and Vaishnavi

Table 1.1 Formal Methods Incorporation Strategies

development methodology. A number of Z extensions are discussed below. However, to avoid

repetition, only the unique features of each language are discussed.

MooZ. MooZ is an object-oriented extension of Z. A MooZ speci�cation is

de�ned as a set of MooZ class speci�cations which are semantically described as records. These

classes are then used to de�ne data types or generic templates from which to instantiate objects.

MooZ classes support parameterization and multiple inheritance. Attributes determine the state

of an object and these attributes may be visible or hidden. Operations that manipulate these state

attributes are handled at the individual object level; however, operations such as create or destroy,

which do not reference state variables, are handled by the class. Operations and attributes are

implemented via functions that are de�ned in the Z axiomatic style (62).

Object-Z. Object-Z is another object-oriented extension to Z. Like MooZ de-

scribed above, Object-Z uses a class de�nition which includes attributes and operations which are

de�ned using Z axiomatic de�nitions. One unique aspect of Object-Z is its use of a history in-

variant. The history invariant uses linear temporal logic to further restrict valid object behavior
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by de�ning legal sequences of operation calls (17). Object-Z also includes referential semantics

which allows the declaration of references (pointers) to objects. These semantics are particularly

useful in creating aggregates where one might de�ne an object as a variable, or even de�ne a set of

objects. Object-Z also provides a promotion operation which allows the operation of an aggregate

component to be promoted to an operation of the aggregate class (82:114).

Z++. Z++ is another object-oriented extension based on Z. However, Z++

is unique in that its semantics is based on algebra and category theory. In Z++, classes form a

category with Z++ class re�nements de�ned as the arrows. The formal algebraic and categorical

basis makes it possible to prove speci�c properties about Z++ speci�cations (60:28). To keep Z++

consistent with the Z community, a model-based theory has been developed to enable reasoning

using either algebraic or model-based semantics (58). While Z++ semantics are based on algebra

and category theory operations, Z++ does not use category theory operations to build new speci�-

cations or compose new speci�cations from existing speci�cations. Z++ must be written manually.

Category theory is only used to prove correctness of speci�cation structure.

1.3.2.2 OBJ3, OOZE, and FOOPS. Despite its name and its use of the term

\objects", OBJ3 is not an object-oriented language; however, it has been extended to include

object-oriented concepts and does have many interesting aspects. Actually, OBJ3 is not simply

a language, but a system which includes a functional programming language, environment, and

interpreter for algebraic speci�cations (40). OBJ3 includes three types of components: objects,

theories, and, views. Objects are not objects in the object-oriented sense, but are actually purely

functional executable code modules. Theories, on the other hand, are similar to the concept of

theories as de�ned in Section 3.2 in relation to algebraic speci�cations. Views are used in OBJ3

to relate how objects (modules) satisfy axioms of a particular theory and are de�ned as theory

morphisms (38:436). Although OBJ3 uses theories, it was developed to perform code-level reuse

by composing existing code and not for transformational derivation of code from speci�cations.
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OBJ3 is based on order-sorted algebras which is an extension of many-sorted algebras (39).

Basically, an order-sorted algebra is a many-sorted algebra with a partial order de�ned on the sorts.

According to Goguen, order-sorted algebras are used to allow sorts to be of two di�erent types (40:4).

For example, a natural number is an integer, an integer is a rational number, and a rational number

is a real number. This gives a subsort partial ordering of natural � integer � rational � real.

This allows the de�nition of total functions on subsorts that otherwise would be de�ned as partial

functions.

As a �nal note, and to make a clear distinction between OBJ3 and object-oriented languages,

Goguen states that OBJ3 objects do not have states (40:37) which is a critical aspect of object-

orientation. Although it provides many of the same operations necessary for class inheritance and

parameterization, without providing state it can only produce functional speci�cations.

OOZE (Object-Oriented Z Extension) (6, 7) and FOOPS (Functional Object-Oriented Pro-

gramming System) (37) are object-oriented speci�cation languages based on OBJ3. Because OOZE

is a syntactic variant of FOOPS and has the same semantics (5:181), I only discuss FOOPS here.

FOOPS is an algebraic, object-oriented speci�cation language based on OBJ3. It provides classes

(possibly parameterized), objects, inheritance, attributes, and methods. Objects are the instances

of a class, and each class may have a number of objects. Each object has a unique identi�er, a set

of observable attributes, and a set of methods which change the state of an object (38:441).

1.3.2.3 Larch. Larch is a two-tiered algebraic speci�cation language based on

multi-sorted �rst-order logic with equality (43:8). Each speci�cation has two parts, a language

speci�c speci�cation written in one of a number of Larch interface languages (LIL), and a language

independent part written in the Larch Shared Language (LSL). Larch is not intended to be object-

oriented although object-oriented designs have been mapped into Larch (65). LSL speci�cation

entities, called traits, de�ne a set of operations over a set of sorts.
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LSL traits can be parameterized on sorts and sorts are de�ned by their use in de�ning opera-

tions. Larch is designed to be used to prove semantic properties about speci�cations and not to be

transformable into code or to be executable; therefore, Larch provides an implies section of a trait

to make explicit claims about theory containment (i.e., what theorems are logical consequences of

the trait assertions). These claims must be proved by the author and are useful in error detection

and reader understanding.

The Larch interface languages are used to de�ne the mapping between an actual programming

language and an LSL trait. Whereas the traits are used to de�ne the functional aspects of the

operations, an interface speci�cation provides the programming language interface to the trait and

models state as represented in the programming language. Usually this state modeling involves

specifying the state before and after each operation.

1.3.2.4 Slang. Slang is an algebraic speci�cation language where speci�cations are

theory presentations using higher order logic extended with category operations such as products,

coproducts, quotients, and subsorts (54). System-level speci�cations are developed by building

diagrams which can be used to express parameterization, instantiation, importation, and re�nement

(50). Speci�cation building operations include translation, colimit, and importation, each of which

de�nes a morphism (or in the case of a colimit, morphisms) between a source speci�cation and a

target speci�cation. Translation copies a speci�cation while renaming some or all of the sorts or

operations. The colimit operation takes the colimit of a number of speci�cations and morphisms

between them, combining them over any \shared" sorts and operations, into a single speci�cation.

Importation involves including another speci�cation { sorts, operations, and axioms { into a new

speci�cation where additional sorts, operations, and axioms can be de�ned.

Diagrams are critical to speci�cation development in Slang. In Slang, diagrams are \a multi-

directed graph whose nodes are labeled with speci�cations and whose arcs are labeled with mor-

phisms" (54:18). In a diagram de�nition, the arcs de�ne the morphisms between the speci�cations.
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Cocone-morphisms are created by a colimit operation while import-morphisms and translation-

morphisms are created via the import and translate operations respectively.

The colimit, import, and translate operations available in Slang are similar to the constructs

used in OBJ3 to construct speci�cations while the ability to re�ne speci�cations, using interpre-

tations built into Slang provides an even more powerful framework for deriving correct programs

directly from the speci�cations. An interpretation from speci�cation B to speci�cation A provides

a mechanism for constructing a model of A from models of B. Thus if we have a model for spec-

i�cation B and can construct an interpretation from B to a A, we can create a model for A as

well.

1.3.3 Transformation Systems.

1.3.3.1 Bourdeau and Cheng. Bourdeau and Cheng (14) have developed formal

semantics for an extended version of the OMT object model notation using the Larch speci�cation

language (43) to describe modular algebraic speci�cations. The object model itself is a speci�cation

which simply \includes" the object classes and associations derived from the object diagram.

Classes and associations are de�ned using a set of semi-formal rules. According to these rules,

each class de�nes a Larch speci�cation called a trait. Within a class trait, sorts are introduced to

represent objects in the class as well as the state of an object in the class. A special state evaluation

function is added to map a given object to a value in the state sort. For each attribute in the class,

a function is de�ned which takes an object value and returns the value associated with the object.

Relational aspects of the object model such as association, aggregation, and inheritance are

de�ned as predicates. Each component in an aggregate relation de�nes a has-part predicate that,

given two objects, determines if the two objects are in the relation. Likewise, each association

de�nes a predicate R in an association trait that determines if two objects are related via the
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association. Aggregate and association multiplicities are de�ned as axioms over the appropriate

predicates.

Inheritance is modeled by de�ning a simulates operation that takes an object of the subtype

and produces an object of the supertype, thus implementing Bourdeau and Cheng's interpretation

of the substitution property. For their de�nition of inheritance, Bourdeau and Cheng assume that

a subclass object D must be substitutable for its superclass object C at any point in the object's

lifetime. To satisfy this notion of inheritance, Bourdeau and Cheng de�ne constraints on the

simulates operation that requires all states in the subclass to map some state in the superclass and

that for all attributes de�ned in the superclass, the values of those attributes in the subclass are

allowable values in the superclass.

Once a speci�cation for an object model is derived, Bourdeau and Cheng use OMT instance

models (diagrams which show how a particular set of objects relate to each other) to de�ne a set of

algebras. They de�ne the semantics of the object model as the complete set of instance diagrams

that are consistent with the object model speci�cation.

1.3.3.2 Rafsanjani and Colwill. Rafsanjani and Colwill have de�ned a mapping

from Object-Z to C++ in the context of an abstract object model (81). They de�ne their mapping

informally without thought toward automation and their approach is based on empirical cases and

is not theoretically well founded (i.e., there is no proof that the C++ implementation does in fact

correctly represent the speci�cation). Their mapping is purely structural. There is no attempt to

transform the semantics of the speci�cation into code. This is left as a \creative" exercise for the

programmer.

Although the goals of their research di�er from this investigation, their work has some inter-

esting aspects. First is the use of an object model to capture features common to both languages.

The object model allows them to relate concepts between the two languages and de�ne a mapping.

Although Object-Z operations are mapped to virtual C++ functions which allow the inheriting
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class to modify the functions de�ned in the parent class, Rafsanjani and Colwill view inheritance

strictly, allowing only for extension or restriction. Unfortunately, this view of inheritance is only

enforced by the good will of the programmer. Object-Z predicates are used to represent restrictions

on attributes and state spaces as well to de�ne operation pre- and post-conditions. Rafsanjani and

Colwill map these predicates to C++ functions which are invoked before and after each operation

to ensure the predicates remain true.

1.3.3.3 KIDS. The Kestrel Interactive Development System (KIDS) is a proto-

type system that provides semi-automatic derivation of programs from algebraic speci�cations.

KIDS maps program speci�cations to algorithm theories to instantiate a functional program and

then uses high-level optimization operations to produce an e�cient and correct-by-construction

program (with respect to the initial speci�cation) (53). Operations provided by KIDS include

algorithm design, deductive inference, context independent and context dependent simpli�cation,

partial evaluation, �nite di�erencing, and compilation. KIDS is based on the use of algebraic

theories and category theory operations. Theories are used in KIDS to encapsulate knowledge

about problems in general, knowledge about the problem being solved, general knowledge about

the application domain, and general programming knowledge. Category theory concepts and op-

erations such as pushouts, colimits, and morphisms are used to combine and re�ne these theories

into e�cient programs.

The basic steps in deriving a program in KIDS are 1) to develop (or reuse) a domain theory

for the problem to be solved, 2) create a speci�cation that describes the problem to be solved in the

language of its domain theory, 3) apply a design tactic which forms an interpretation of the problem

speci�cation in general algorithm theory and instantiates a program, 4) apply optimizations to the

program, and 5) compile the program (86:1025). Application of this approach has yielded some

impressive results. KIDS has been used to derive dozens of algorithms including real-world systems.

KIDS has produced a transportation scheduling algorithm for over 15,000 individual movements
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that was 78 percent faster and produced 75 percent fewer delays than the best algorithms previously

known (87:66). KIDS has shown that not only is transformational program derivation possible, but

it can produce more e�cient and more reliable software.

1.3.3.4 Specware. Specware (55) is a transformational program derivation system

based on Slang (54) and KIDS. Specware extends the concepts used in KIDS by allowing the

developer to build diagrams of speci�cations to build up a domain theory and eventually a system

speci�cation. Basically, Specware provides the automated tool support for developing speci�cations

in the Slang speci�cation language described above. When completed, Specware will incorporate

facilities to provide algorithm design and optimization, data type re�nement, integration of reactive

system components, and code generation.

1.4 Assumptions

Because this research involves the use of speci�cations entered by an unknown user, two

assumptions are made concerning the speci�cations entered.

Assumption I.1 Initial Speci�cation Consistency. All speci�cations, as entered by the user, are

correct and consistent.

If a speci�cation is not internally consistent, then valid models of those speci�cations do

not exist (32:3-13); therefore, internal consistency is a requirement for formal software synthesis.

Unfortunately, Church and Turing independently showed that in general, proving that a set of �rst

order axioms are inconsistent is not possible (18:45). Therefore, in this research, I assume that

user provided speci�cations are consistent and only show that further speci�cation composition

operations (inheritance, aggregation, etc.) maintain that consistency.

Assumption I.2 Restricted Use. All OMT models developed by the user are developed in accor-

dance with the restricted models as de�ned in Chapter V.
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As de�ned by Rumbaugh, OMT has numerous ways to specify the same features using formal

and informal techniques. In this investigation, speci�cation using informal techniques are inade-

quate for automatic translation while the ability to specify the same functionality using multiple

techniques ultimately leads to consistency questions. Therefore, Chapter V de�nes a restricted

version of OMT's three models and limits how they are used.

1.5 Contributions

Based on these assumptions, the contributions of this research include:

1. Development of an algebraic, category theory based speci�cation language with built-in con-

structs for object-oriented concepts such as classes, inheritance, aggregation, association, and

global event communication.

2. Formalization of basic object-oriented concepts using algebraic and category theory con-

structs.

3. Formalization of a generally accepted notion of class inheritance and a su�ciency criteria for

proving adherence to that formalization.

4. Formalization of the semantics of the object, dynamic, and functional OMT models.

5. Formalization of event-based communications paths within an OMT domain speci�cation.

6. Formalization of translations from graphically-based object-oriented representations to alge-

braic speci�cations.

7. Elevation of the level of abstraction at which formal speci�cations are developed.

8. Development of techniques to ensure consistency of object-oriented speci�cation composition.

9. Elevation of the acceptance of formal speci�cations and methods.
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1.6 Summary

This chapter is an introduction to the goals and objectives of my investigation and a brief

overview of related research. The remainder of this dissertation is organized as follows:

� Chapter II presents a framework for the parallel acquisition of theory-based speci�cations

using graphically-based object-oriented concepts.

� Chapter III discusses basic algebraic speci�cation construction techniques within a category

theory setting.

� Chapter IV establishes the foundations for a theory-based model of object-orientation.

� Chapter V de�nes the formal semantics for the OMT object, dynamic, and functional models.

� Chapter VI introduces a theory-based model of object-orientation based on the OMT object,

dynamic, and functional models.

� Chapter VII describes the formal translations from a generic OMT speci�cation to a theory-

based speci�cation.

� Chapter VIII demonstrates the feasibility of automated speci�cation translation by producing

two theory-based domain speci�cations using an automated proof-of-concept system.

� Chapter IX contains the conclusions from this investigation and provides recommendations

for future research.
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II. Software Development and Speci�cation Acquisition Framework

2.1 Overview

This chapter de�nes a theory-based Speci�cation Acquisition Mechanism based on an object-

oriented user interface and theory-based speci�cations. The basic concept is to allow system de-

velopers to graphically specify domain, architecture, and system-level details in an object-oriented

fashion and automatically convert them into theory-based algebraic speci�cations. Section 2.1.1

describes the basic software development framework into which the theory-based Speci�cation Ac-

quisition Mechanism �ts while Section 2.1.2 presents an overview of the Speci�cation Acquisition

Mechanism itself. Sections 2.2, 2.3, and 2.4 further de�ne speci�c subsystems of the Speci�cation

Acquisition Mechanism.

2.1.1 Software Development Framework. A framework for the development of software

using semi-automated software synthesis from theory-based system speci�cations is shown in Fig-

ure 2.1.
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Figure 2.1 Software Development Framework

The central theme behind the proposed software development framework is the synthesis of soft-

ware from theory-based speci�cations. Functional speci�cations are developed and combined with

architecture theories in the Speci�cation Acquisition Mechanism to create theory-based system
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speci�cations. These speci�cations are then fed into the Design Re�nement Mechanism where the

sorts, operations, and architectures are re�ned and mapped to an intermediate abstract target lan-

guage (ATL) representation. This ATL is then converted into compilable source code and optimized

in the Generation & Optimization Mechanism. This research focuses mainly on the Speci�cation

Acquisition Mechanism and the Library of Class Theories. The Design Re�nement and Genera-

tion & Optimization mechanisms are only discussed informally in this chapter and left for future

research. This research focuses on one approach to the Speci�cation Acquisition Mechanism.

2.1.2 Speci�cation Acquisition Mechanism. The basic functions and data 
ows of the

proposed Speci�cation Acquisition Mechanism are shown in Figure 2.2. There are three phases to

acquiring a theory-based system speci�cation using this mechanism: Domain Engineering, Speci-

�cation Generation, and Speci�cation Structuring. Each phase of speci�cation acquisition has an

associated theory-based subsystem that accesses the Theory Library. However, to simplify speci�-

cation acquisition, the domain engineer or system analyst uses a graphically-based object-oriented

interface. For the purposes of researching and prototyping, I have chosen to base my object-

oriented approach on the Rumbaugh's OMT. OMT was chosen due to its popularity, breadth of

coverage, and availability of tools. I do not claim that OMT is the best, or even better than other

object-oriented methods or techniques.

The Speci�cation Acquisition Mechanism is designed to help produce consistent theory-based

domain models which are then re�ned into functional system speci�cations. (I use the term \func-

tional speci�cation" here to describe the de�nition of the system functions. It does not imply a

shift from an object-oriented to a functional view of the system.) A domain model is the \spe-

ci�c representation of appropriate aspects of an application domain" (48) and may take on various

forms including domain taxonomies, generic architectures, and domain speci�c languages (80). In

this mechanism, a domain model is captured via de�nition of the basic objects, operations, and

communication paths in the domain. Object-oriented constructs such as inheritance and aggre-
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gation are used to model generalization and specialization of domain objects as well as how they

are composed into other domain objects. The domain model thus de�nes a language from which

systems are speci�ed. A functional speci�cation is developed by re�ning a domain model through

selection of applicable domain objects, instantiation of domain object parameters, and de�nition of

speci�c communications paths between system objects. Once the system function is fully speci�ed,

the system speci�cation is completed by determining how to decompose the system into separate

processes and how those processes communicate.

Domain models are created by domain engineers using knowledge from domain experts and

stored in the Theory Library. Domain models consist of a set of class theories, which describe

the objects, operations, and communications paths of a domain. Individual class theories may

describe the attributes, methods, states, and events of a group of similar objects in a domain or

the relationships and communication paths between objects.
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Class theories from a given domain are re�ned by users and system analysts to create func-

tional speci�cations which are also stored in the Theory Library. Functional speci�cations have the

same syntactic form as class theories but are tailored toward the requirements of a speci�c problem.

Intuitively, functional speci�cations are models of a domain class theory.

Architecture theories describe the structure of systems in terms of processes and inter-process

communications and are also stored in the Theory Library. Generally, while class theories are

domain speci�c, architecture theories are domain independent{they are de�ned solely in terms of

processes and inter-process communication.

Once a functional speci�cation has been completed, the system analyst selects (or develops)

a corresponding architecture theory from the theory library. The architecture theory's process pa-

rameters are then instantiated with class theories from the functional speci�cation to form a system

speci�cation. For example, the system analyst may instantiate an architecture theory with three

processes running in parallel with re�ned versions of a propulsion device class theory, airframe class

theory, and a fuel-tank class theory from a rocket system domain to create a rocket system speci-

�cation. In essence, a system speci�cation is a model of a generic architecture theory instantiated

with domain speci�c class theories.

Although the domain engineer or system analyst is producing theory-based models and spec-

i�cations, interaction with the system is through a conceptually simpler object-oriented interface.

Ideally, this interface consists of a graphical user interface with which the engineer or analyst

speci�es domain object classes, associations, and architectures to de�ne the domain or architecture

structure. Object attributes and operation semantics are then speci�ed algebraically or graphically.

Structures representing behavior, such as state charts and data 
ow diagrams, are automatically

translated into equivalent algebraic de�nitions.

As the engineer or analyst interacts with the object-oriented user interface, commands and

data are translated to the theory-based subsystems where the actual composition occurs and proofs
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of consistency and correctness are performed. For example, a domain engineer may create a new

class that inherits from an existing class. As the domain engineer creates the new class, attributes,

and methods, the Speci�cation Acquisition Mechanism carries out proof obligations to show that

the composition speci�ed by the domain engineer satis�es appropriate composition rules de�ned

by the theory-based object model in Chapter VI.

After the domain engineer creates a domain model and proves the correctness of its composi-

tion, a system analyst uses it to produce a functional speci�cation. Again, the system analyst works

with an object-oriented representation of the system while the operations and proofs are carried out

on the theory-based speci�cation. When complete, the functional speci�cation is combined with

an architecture theory to de�ne a theory-based system speci�cation which is fed into a correctness

preserving Design Re�nement Mechanism which derives code satisfying the speci�cation. Since the

domain and architecture models are stored in the Theory Library, maintenance is performed by

modifying the class and architecture theories and re-deriving the system speci�cation and software.

2.2 Domain Engineering

Domain engineering is the process of developing domain models for use in constructing ap-

plications within the domain. This section presents a basic overview of domain engineering in

Section 2.2.1 followed by how the Speci�cation Acquisition Mechanism proposed in this research

implements domain engineering in Section 2.2.2.

2.2.1 Overview. The term domain analysis was �rst used by Neighbors to describe \the

activity of identifying the objects and operations of a class of similar systems in a particular problem

domain" (78); however, since that time the de�nition of domain analysis has been expanded and

applied to more than just identifying objects and operations in a given domain. The size of a

domain may vary from very large and complex to very simple. The domain \avionics" is fairly

large and complex while the domain \basic logic operators" is straight forward and comparatively
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small. Most domain analysis approaches are based on application area domains. An application

area domain is a domain where the applications de�ne the domain (e.g., stack packages, basic logic

operators, etc.) (97). This is the de�nition used in this research. While many de�nitions abound

((51, 9, 77, 79, 97)), perhaps the simplest and most straight-forward de�nition is the process where

\domain knowledge is studied and formalized" (96).

The goal of domain analysis is to capture knowledge in order to reuse it in developing new

systems. After the domain knowledge is gathered, it is stored in a domain model for use in new

software development e�orts to increase the productivity and quality of new systems. As such, do-

main analysis is just part of an overall process called domain engineering which \includes domain

analysis and subsequent construction of components, methods, and tools that address the prob-

lems of system/subsystem development through the application of domain analysis products" (51).

Domain engineering has three steps: (1) domain analysis, (2) infrastructure speci�cation, and (3)

infrastructure implementation (9). (An infrastructure is domain knowledge along with information

on how to �nd and use that knowledge).

A domain model is used to represent domain knowledge and is de�ned as the \speci�c rep-

resentation of appropriate aspects of an application domain" (48). A domain model may take

on various forms including domain taxonomies, generic architectures, and domain speci�c lan-

guages (80). Domain models are the end product of domain analysis and contain all the knowledge

gathered during domain analysis including software architectures. Software architectures consist of

\the components, connections, constraints, and con�gurations of components and constraints that

specify the high-level design for a system" (93). Basically, the architecture is a blueprint for com-

posing applications given well-de�ned domain-speci�c components. Speci�cation of generic domain

software architectures is critical to the automatic generation of domain-speci�c applications.

2.2.2 Implementation. As shown in Figure 2.2, domain engineering is the �rst phase

in system speci�cation acquisition and is the main focus of this research. Domain knowledge
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is input through an object-oriented user interface, translated to theory-based speci�cations, and

stored in the Theory Library by the Domain Theory Composition Subsystem. This component

translates graphically oriented OMT speci�cations, augmented with �rst-order logic axioms, into

theory-based class theories. A particular domain analysis methodology is not speci�ed for use with

the subsystem; however, the chosen methodology should be compatible with capturing domain

knowledge in an object-oriented setting.

The heart of the translation process from OMT to class theories is a Theory-Based Object

Model as de�ned in Chapter VI. This model de�nes object-oriented concepts in a formal framework

based on algebraic speci�cations and category theory, thus providing a powerful ability to reason

about the resulting speci�cations. Due to the undecidability of �rst-order axiom consistency, axioms

entered into the subsystem are assumed consistent; however, composition rules are used to ensure

inconsistencies are not introduced during the composition process. It is also in this subsystem that

completeness proofs are performed. These proofs show that the e�ect of each operation on a given

object is completely de�ned by the domain engineer.

The output of the Domain Theory Composition Subsystem is a theory-based domain model.

An example of the object-oriented view of a domain model for a simulated rocket is shown in

Figure 2.3. The simulated rocket domain consists of three types of components: airframes, fuel

tanks, and propulsion devices. Characteristics of all airframes and propulsion devices are de�ned in

the Airframe and Propulsion Device classes. Characteristics of particular airframes and propulsion

devices are de�ned in specializations of those object classes. The relationship between a fuel tank

and a propulsion device is de�ned in the Feeds association. The basic structure of a simulated

rocket object is described by the aggregation of, and multiplicities de�ned by the airframe, fuel

tank, and propulsion device components; however, this structure does not de�ne the process-based

architecture. This domain model is re�ned and implemented in a number of ways. The system

analyst may de�ne the system as a single process, as multiple processes (one for each object class),
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or any combination in between. These decisions are made during the speci�cation generation

and structuring phases described below. Only the functionality of basic domain objects and their

specializations are de�ned during the domain engineering phase.

Airframe Propulsion
Device

Fuel Tank Jet Engine Rocket Engine

Jet Engine
Type J-1

Rocket Engine
Type R-1

1+

Feeds

Rocket

Parameterized on 
capacity & weight

Airframe
Type A-1

Figure 2.3 Rocket Object Domain Model

2.3 Speci�cation Generation

Speci�cation generation transforms domain models into speci�cations de�ning the functional-

ity of a particular system in the domain. Functional speci�cations developed through the Speci�ca-

tion Generation/Re�nement Subsystem have the same theory-based syntax as the domain model's

class theories. The basic result of speci�cation generation is to create a system speci�cation based

on the domain model and then to restrict the number of models satisfying the speci�cation. Speci�c

generation/re�nement operations include:

1. parameter instantiation

2-8



2. specialization selection

3. multiplicity restriction

4. initialization de�nition

5. communication path de�nition

6. constraint restriction

Parameter instantiation is the selection of values for prede�ned class parameters. These pa-

rameters can be single values or ranges of values. In either case, parameter instantiation results

in the addition of axioms to the class de�nition that restrict object behavior. Specialization Selec-

tion allows the system analyst to select a particular class specialization. Because a domain theory

models the entire application domain, it includes various class specializations in order to capture

important variations in structure and behavior. Specialization selection simpli�es and restricts

the system speci�cation by removing unwanted specializations. Multiplicity Restriction allows the

system analyst to explicitly decide how many objects are allowed in aggregates and associations.

Often, domain engineers de�ne few restrictions on object class relationships (i.e., they allow \zero

or more" objects in any given relationship). While this generalizes the domain model, actual sys-

tems within the domain are more restrictive. Multiplicity restriction simpli�es the speci�cation by

placing additional constraints on aggregate and association multiplicities. Initialization De�nition

allows the system analyst to state speci�cally how objects are initialized. For instance, while a

domain model may state that a one-to-one association exists between two classes, initialization

de�ntion allows the system analyst to specify which objects from the two classes are associated. A

similar situation exists for aggregates. Often, the question of whether an aggregate creates its com-

ponents upon initialization or they are created separately is left unspeci�ed in the domain model.

Initialization de�ntion allows the system speci�er to specify these requirements. Communication

Path De�nition allows the system developer to specify exactly which objects require communica-

tion. In the domain model, the domain engineer is concerned with specifying the classes of objects

that may communicate, not which speci�c objects actually do communicate. In many cases, even

though an object can communicate with all objects in a given class, it may only need to commu-
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nicate with one speci�c object from that class. These constraints are added via communication

path de�nition. The last generation operation, constraint restriction is a generic re�nement opera-

tion. Constraint restriction allows the system analyst to place further constraints on class behavior

through the introduction of axioms. These axioms are used to place restrictions on attributes or

de�ne restrictions across aggregate components or associations.

The specialization of the Rocket Domain Model, shown in Figure 2.3, to the Rocket Object

Model, shown in Figure 2.4 is a simple example of the �rst four generation/re�nement operations.

First, the system analyst selects one Jet Engine class from the Jet Engines available in the do-

main model. After selecting a Jet Engine, the system analyst removes all other Propulsion Devices

(jet and rocket engines) and restricts the 1+ multiplicity constraint between the Rocket and the

Propulsion Device to be exactly two. Because the system being designed has exactly one Fuel

Tank for each Jet Engine, the system analyst must also restrict the multiplicity constraint between

the rocket and Fuel Tanks from zero-or-more (�) to exactly two and restricts the Feed association

between the Fuel Tank and Jet Engine to one-to-one instead of many-to-many. The system ana-

lyst might then select the � aggregation symbol (an extension to Rumbaugh's OMT notation) to

specify that the rocket object creates its component objects upon creation. To complete the Fuel

Tank specialization, the system analyst also provides Fuel Tank parameters. Finally, the system

analyst selects a specialization from the Airframe class and completes any remaining Rocket-level

constraints by providing bindings for any Rocket class parameters.

Further system-level functional constraints are captured in the system speci�cation through

constraint restriction. Communication path de�nition is not included in this example due to the

complexity of inter-object communication (Section 6.6); however, if a Fuel Tank is required to

communicate with its Jet Engine, the system analyst may specify that the Fuel Tank communicate

only with the Jet Engine to which it is associated via the Feeds association.
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Airframe Jet EngineFuel Tank

2

Feeds

Rocket
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Figure 2.4 Speci�c Rocket Object Model

2.4 Speci�cation Structuring

Speci�cation structuring allows the system analyst to de�ne the structure of the application

in terms of process and inter-process communications. This phase is used to decompose speci�-

cations into simpler, less complex speci�cations, or, to build up larger speci�cations from smaller

speci�cations.

An Architecture is a collection of objects (in this case, class theories) along with a relation over

the objects de�ning object composition (e.g., parallel, sequential, etc.). Formally, an Architecture

Theory de�nes a collection of objects, a set of relations over those objects that de�ne the syntax

of object composition, and a collection of axioms over the objects and relations that de�ne the

semantics of the architecture. An architecture theory consists of a structuring speci�cation, which

describes how the processes are composed (e.g., sequential, parallel, etc.) and a diagram that

speci�es how to construct the �nal system speci�cation. Thus an architecture de�nes the objects

of interest and the composition rules for these objects(32).

In the Speci�cation Acquisition Mechanism, an architecture theory is a parameterized spec-

i�cation that de�nes the structure of an application in terms of processes and communication

channels between the processes. The parameters of the architecture theory are class theories, each
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of which becomes a process in the system. The architecture theory also includes a diagram de�ning

exactly how the architecture theory is to be parameterized and how the �nal system speci�cation

is composed. For example, a parallel architecture theory is de�ned as a set of class theories, the

parallel process composition operator,

k : process; process ! process

and a satisfaction relation, j=, which de�nes the relationship between class speci�cations and their

models (32:6-3).

The ArchitectureMatching Subsystem is used to bind architecture theories to functional spec-

i�cations. The system analyst selects class theories from the functional speci�cation and matches

them to processes in a prede�ned architecture theory. Each class theory (or group of class theo-

ries) in the functional speci�cation must correspond to a process while all communication between

class theories or class theory groups must correspond to a communication channel in the selected

architecture theory. This is an example of an imposed architecture (32:2-8). In this research, I as-

sume the existence of architecture theories and the ability to create them using graphically oriented

techniques, and instead focus on the acquisition of class theories in the form of domain models.

2.5 Summary

This chapter has presented an overview of a theory-based speci�cation acquisition system set

in a software development framework. The software development framework uses three components

to synthesize software: (1) a Speci�cation Acquisition Mechanism to help develop theory-based

system speci�cations, (2) a Design Re�nement Mechanism which uses algorithmic, architectural,

and data structure re�nements to the system speci�cation to produce an implementation in an

abstract target language, and (3) a Generation & Optimization Mechanism which converts the

abstract program into an optimized program in a compilable target language.
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The Speci�cation Acquisition Mechanism is used to develop large-scale theory-based system

speci�cations. First, a domain engineer develops a domain model using an object-oriented inter-

face to the Domain Theory Composition Subsystem. Then, a system analyst re�nes the domain

model into a functional speci�cation by removing unneeded domain model components and adding

problem speci�c constraints. Finally, the functional speci�cation is combined with an architecture

theory to produce the complete theory-based system speci�cation.

The presentation of the proposed Speci�cation Acquisition System in this chapter has been

informal. Subsequent chapters present a formal de�nition of the Domain Theory Composition

Subsystem. More speci�cally, the remaining chapters de�ne a mathematically sound foundation

for a theory-based model of object-orientation and the translation from a graphically based object-

oriented domain model to a theory-based domain model.
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III. Theories and Speci�cations

3.1 Introduction

The software development framework presented in Chapter II is predicated on the use of for-

mal, mathematically-based software speci�cations. There are two types of speci�cations commonly

used to describe behavior in a formal speci�cation: operational and de�nitional. An operational

speci�cation is basically a \recipe" for an implementation that satis�es the speci�cation require-

ments while a de�nitional speci�cation describes behavior by listing the properties that an imple-

mentation must have (43:5). De�nitional speci�cations have several advantages over operational

speci�cations: they are (1) generally shorter and clearer, (2) easier to modularize and combine

together, and (3) easier to reason about. This last advantage, the ability to reason about them, is

the key reason they are used in automated systems.

It is generally recognized that creating correct, understandable formal speci�cations is dif-

�cult, if not impossible, without the use of some structuring technique or methodology (33, 16).

Algebraic theories provide the advantages of de�nitional speci�cations and the desired structuring

techniques. Algebraic theories are de�ned in terms of a collection of values called sorts, a set of

operations de�ned over the sorts, and a set of axioms de�ning the semantics of the sorts and opera-

tions. The structuring of algebraic theories is provided by category theory operations and provides

an elegant way in which to combine smaller algebraic theories into larger, more complex theories.

Categories are an abstract mathematical construct consisting of category objects and category

arrows. In general, category objects are the objects in the category of interest while category arrows

de�ne a mapping from the internal structure of one category object to another. In this research, the

category objects of interest are algebraic speci�cations and the category arrows are speci�cation

morphisms. In this category, Spec, speci�cation morphisms map the sorts and operations of one

algebraic speci�cation into the sorts and operations of a second algebraic speci�cation such that

the axioms in the �rst speci�cation are theorems in the second speci�cation. Thus, in essence, a
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speci�cation morphism de�nes an embedding of functionality from the �rst algebraic speci�cation

in the second speci�cation.

Use of algebraic speci�cation for speci�cation of data types was pioneered in the mid 1970s

by Goguen et al., Liskov, and Zilles (16, 66). Extension of these concepts to objects and object-

orientation was initially presented by Goguen and Meseguer (38) and is an increasingly common

representation technique in the formalization of object-orientation (7, 14, 65, 27, 69).

3.2 Algebraic Speci�cation

In this section, I de�ne the important aspects of algebraic speci�cations and how to combine

them using category theory operations to create new, more complex speci�cations. As described

above, category theory is an abstract mathematical theory used to describe the external structure

of various mathematical systems. Before showing its use in relation to algebraic speci�cations, I

give a formal de�ntion (89).

De�nition 3.2.1 Category. A category C is comprised of

1. a collection of things called C-objects;

2. a collection of things called C-arrows;

3. operations assigning to each C-arrow f a C-object dom f (the domain of f) and a C-object

cod f (the \codomain" of f). If a = dom f and b = cod f this is displayed as

f : a! b or a

f
! b

4. an operation, \�", called composition, assigning to each pair hg; fi of C-arrows with dom g

= cod f , a C-arrow g � f :domf ! cod g, the composite of f and g such that the Associative
Law holds: Given the con�guration

a

f
! b

g
! c

h
! d

of C-objects and C-arrows, then

h � (g � f) = (h � g) � f:

5. an assignment to each C-object, b, a C-arrow, idb : b ! b, called the identity arrow on b,
such that the Identity Law holds: For any C-arrows f : a! b and g : b! c
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idb � f = f and g � idb = g:

3.2.1 The Category of Signatures. In algebraic speci�cations, the structure of a spec-

i�cation is de�ned in terms of an abstract collection of values, called sorts, and operations over

those sorts. This structure is called a signature (88). A signature describes the structure that

an implementation must have to satisfy the associated speci�cation; however, a signature does not

specify the semantics of the speci�cation. The semantics are added later via axiomatic de�nitions.

De�nition 3.2.2 Signature. A signature � = hS;
i, consists of a set S of sorts and a set 


of operation symbols de�ned over S. Associated with each operation symbol is a sequence of sorts

called its rank. For example, f : s1; s2; : : : ; sn ! s indicates that f is the name of an n-ary function,

taking arguments of sorts s1; s2; : : : ; sn and producing a result of sort s. A nullary operation symbol,

c : ! s, is called a constant of sort s.

An example of a signature is shown in Figure 3.1. In the signature Ring there is one sort,

ANY, and �ve operations de�ned on the sort.

signature Ring is
sorts ANY
operations

plus : ANY � ANY ! ANY
times : ANY � ANY ! ANY
inv : ANY ! ANY
zero : ! ANY
one : ! ANY

end

Figure 3.1 Ring Signature

In my research, a signature de�nes the structure needed to describe object classes (attributes

and operations) in a formal way. Signatures provide the ability to de�ne the internal structure

of a speci�cation; however, they do not provide a method to reason about relationships between

speci�cations. To create theory-based algebraic speci�cations that parallel object-oriented speci-
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�cations, speci�cation re�nements on theories similar to those used in object-oriented approaches

(inheritance, aggregation, etc.), must be available. There must be a well-de�ned theory about how

to reason about the external structure of these speci�cations (i.e., how they relate to one another).

As might be expected, signatures (as the \C-objects") with the correct \C-arrows" form a

category which is of great interest in this research. For signatures, the C-arrows are called signature

morphisms (88). Signatures and their associated signature morphism form the category, Sign.

De�nition 3.2.3 Signature Morphism. Given two signatures � = hS;
i and �0 = hS
0
;
0i,

a signature morphism � : � ! �0 is a pair of functions h�S : S ! S
0
; �
 : 
 ! 
0i, mapping

sorts to sorts and operations to operations such that the sort map is compatible with the ranks

of the operations, i.e., for all operation symbols f : s1; s2; : : : ; sn ! s in 
, the operation symbol

�
(f) : �S(s1); �S(s2); : : : ; �S(sn)! �S(s) is in 
0. The composition of two signature morphisms,

obtained by composing the functions comprising the signature morphisms, is also a signature mor-

phism. The identity signature morphism on a signature maps each sort and each operation onto

itself. Signatures and signature morphisms form a category, Sign, where the signatures are the

C-objects and the signature morphisms are the C-arrows.

Given the signature Ring (Figure 3.1) and RingInt (Figure 3.2), a signature morphism

� :Ring!RingInt, is shown in Figure 3.3. As required by De�nition 3.2.3, � consists of two

functions, �S and �
 as shown. �S maps the sort ANY to Integer while �
 maps each operation

to an operation with a compatible rank.

Signature morphisms map sorts and operations from one signature into another and allow

the restriction of sorts as well as the restriction of the domain and range of operations. However,

to build up more complex signatures, introduction of new sorts and operations into a signature is

required. This is accomplished via a signature extension (32).
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spec RingInt is
sorts Integer
operations

+ : Integer � Integer ! Integer
� : Integer � Integer ! Integer
- : Integer ! Integer
0 : ! Integer
1 : ! Integer

end

Figure 3.2 Integer Ring Signature

�S = fANY 7! Integerg
�
 = fplus 7! +, times 7! �, inv 7! -, zero 7! 0, one 7! 1g

Figure 3.3 Signature Morphisms: Ring ! RingInt

De�nition 3.2.4 Extension. A signature �2 = hS2;
2i extends a signature �1 = hS1;
1i if

S1 � S2 and 
1 � 
2.

Signature morphisms are used to rename and re�ne sorts and to restrict the domain and

range of operations, while extensions are used to add new sorts and operations to signatures. These

operations allow the de�nition of entirely new signatures and the growth of complex signatures from

existing signatures.

3.2.2 The Category of Speci�cations. The basic de�nitions required to develop the cate-

gory of signatures and signature morphisms were presented in Section 3.2.1; however, the semantics

required for software speci�cations have yet to be introduced. To model these semantics, the de�-

nition of a signature is extended with axioms which de�ne the intended semantics of the signature

operations. A signature with associated axioms is called a speci�cation (88).

De�nition 3.2.5 Speci�cation. A speci�cation SP is a pair h�;�i consisting of a signature

� = hS;
i and a collection � of �-sentences (axioms).
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Although a speci�cation includes semantics, it does not implement a program nor does it

de�ne a particular implementation. A speci�cation only de�nes the semantics required of a valid

implementation. In fact, for most speci�cations, there are a number of implementations that satisfy

the speci�cation. Implementations that satisfy all axioms of a speci�cation are called models of the

speci�cation (88). To formally de�ne a model, I �rst de�ne a �-algebra (88).

De�nition 3.2.6 �-algebra or �-model. Given a signature � = hS;
i, a �-algebra A =
hAS; FAi consists of two families:

1. a collection of sets, called the carriers of the algebra, AS = fAs j s 2 Sg; and

2. a collection of total functions, FA = ffA j f 2 
g such that if the rank of f is s1; s2; : : : ; sn !

s, then fA is a function from As1�As2�� � ��Asn to As. The symbol � indicates the Cartesian

product of sets here.

De�nition 3.2.7 Model. A model of a speci�cation SP = h�;�i is a �-algebra, M , such that M

satis�es each �-sentence (axiom) in �. The collection of all such models M is denoted by Mod[SP].

The sub-category of Mod(�) induced by Mod[SP] is also denoted by Mod[SP].

spec Ring is
sorts ANY
operations

plus : ANY � ANY ! ANY
times : ANY � ANY ! ANY
inv : ANY ! ANY
zero : ! ANY
one : ! ANY

axioms

8a; b; c 2 ANY

a plus (b plus c) = (a plus b) plus c
a plus b = b plus a

a plus zero = a

a plus (inv a) = zero

a times (b times c) = (a times b) times c
a times one = a

one times a = a

a times (b plus c) = (a times b) plus (a times c)
(a plus b) times c = (a times c) plus (b times c)

end

Figure 3.4 Ring Speci�cation
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An example of a speci�cation is shown in Figure 3.4. This speci�cation is the original Ring

signature of Figure 3.1 enhanced with the axioms that de�ne the semantics of the operations. Valid

models of this speci�cation include the set of all integers, Z, with addition and multiplication as

well as the set of integers modulo 2, Z2 = f0; 1g, with the inverse operation (-) de�ned to be the

identity operation.

As signatures have signature morphisms, speci�cations have speci�cation morphisms. Speci-

�cation morphisms are signature morphisms that ensure that the axioms in the source speci�cation

are theorems (are provable from the axioms) in the target speci�cation. Showing that the axioms

of the source speci�cation are theorems in the target speci�cation is a proof obligation that must

be shown for each speci�cation morphism. Speci�cations and speci�cation morphisms enable the

creation and modi�cation of speci�cations that correspond to valid signatures within the category

Sign. Before formally de�ning speci�cation morphism, I must �rst de�ne a reduct (88).

De�nition 3.2.8 Reduct. Given a signature morphism � : � ! �0 and a �0-algebra A
0, the

�-reduct of A0, denoted A0 j�, is the �-algebra A = hAS ; FAi de�ned as follows (with � = hS;
i):

AS = A
0
�(s) for s 2 S, and for fA = (�(f))A0, for f 2 


A reduct de�nes a new �-algebra (or �-model) from an existing �0-algebra. It accomplishes

this by selecting a set or function for each sort or operation in � based on the signature morphism

from � to �0. Thus if we have a signature, �0, and a �0-model, we can create a �-model for a

second signature, �, by de�ning a signature morphism between them and taking the reduct based

on that signature morphism. A reduct is now used to extend the concept of a signature morphism

to form a speci�cation morphism (88).

De�nition 3.2.9 Speci�cation Morphism. A speci�cation morphism from a speci�cation

SP = h�;�i to a speci�cation SP0 = h�0;�0i is a signature morphism � : �! �0 such that for

every model M 2 Mod[SP0], Mj�2 Mod[SP]. The speci�cation morphism is also denoted by the

same symbol, � : �! �0.
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I now turn to the de�nition of theories and theory presentations. Basically a theory is the

set of all theorems that logically follow from a given set of axioms (89). A theory presentation is a

speci�cation whose axioms are su�cient to prove all the theorems in a desired theory but nothing

more. Put succinctly, a theory presentation is a �nite representation of a possibly in�nite theory.

To formally de�ne a theory and theory presentation I must �rst de�ne logical consequence and

closure (89).

De�nition 3.2.10 Logical Consequence. Given a signature �, a �-sentence ' is said to be a

logical consequence of the �-sentences '1; : : : ; 'n, written '1; : : : ; 'n j= ', if each �-algebra that

satis�es the sentences '1; : : : ; 'n also satis�es '.

De�nition 3.2.11 Closure, Closed. Given a signature �, the closure � of a set of �-sentences

� is the set of all �-sentences which are the logical consequence of �, i.e., � = f' j � j= 'g. A set

of �-sentences � is said to be closed if and only if � = �.

De�nition 3.2.12 Theory, presentation. A theory T is a pair h�;�i consisting of a signature

� and a closed set of �-sentences, �. A speci�cation h�;�i is said to be a presentation for a theory

h�;�i. A model of a theory is de�ned just as for speci�cations; the collection of all models of a

theory T is denoted Mod[T]. Theory morphisms are de�ned analogous to speci�cation morphisms.

Speci�cation morphisms complete the basic toolset required for de�ning and re�ning speci-

�cations. This toolset can now be extended to allow the combination, or composition, of existing

speci�cations to create new speci�cations. Often two speci�cations that were originally extensions

from the same ancestor need to be combined. Therefore, the desired combined speci�cation consists

of the unique parts of two speci�cations and some \shared part" that is common to both speci�ca-

tions (the part de�ned in the shared ancestor speci�cation). This combining operation is called a

colimit (89). The colimit operation creates a new speci�cation from a set of existing speci�cations.

This new speci�cation has all the sorts and operations of the original set of speci�cations without
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duplicating the \shared" sorts and operators. To formally de�ne a colimit, I must �rst de�ne a

cone (89).

De�nition 3.2.13 Cone. Given a diagram D in a category C and a C-object c, a cone from the

vertex c to the base D is a collection of C-arrows ffi : c! di j di 2 Dg, one for each object di in

the diagram D, such that for any arrow g : di!dj in D, the diagram shown in Figure 3.5 commutes

i.e., g � fi = fj.

c

d
g

f
i fj

i d j

Figure 3.5 Cone Diagram

De�nition 3.2.14 Colimit. A colimit for a diagram D in a category C is a C-object c along with

a cone ffi : di ! c j di 2 Dg from D to c such that for any other cone ff 0i : di ! c
0
j di 2 Dg

from D to a vertex c0, there is a unique C-arrow f : c! c
0 such that for every object di in D, the

diagram shown in Figure 3.6 commutes; i.e., f � fi = f
0
i .

c
f

f
i f ’i

d i

c’

Figure 3.6 Colimit Diagram

Conceptually, the colimit of a set of speci�cations is the \shared union" of those speci�cations

based on the morphisms between the speci�cations. These morphisms de�ne equivalence classes of

sorts and operations. For example, if a morphism for speci�cation A to speci�cation B maps sort

� to sort �, then � and � are in the same equivalence class and thus is a single sort in the colimit
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speci�cation of A, B, and the morphism between them. Therefore, the colimit operation creates

a new speci�cation, the colimit speci�cation, and a cocone morphism from each speci�cation to

the colimit speci�cation. These cocone morphisms satisfy the condition that the translation of any

sort or operation along any set of morphisms in the diagram leading to the colimit speci�cation

are equivalent (54:23). An example of the colimit operation is shown in Figures 3.7 and 3.8. Given

the Bin-Rel, Reflexive, and Transitive speci�cations in Figure 3.7, the \colimit speci�cation"

would be the Pre-Order speci�cation as shown in the diagram in Figure 3.8. Notice that the

sorts E, X, and T belong to the same equivalence class in Pre-Order. Likewise, the operations �,

=, and < also form an equivalence class in Pre-Order. Thus Pre-Order de�nes a speci�cation

with one sort, fE, X, Tg and one operation, f�, =, <g, which is both transitive and re
exive.

The speci�cation Bin-Rel de�nes the \shared" parts of the colimit but adds nothing to the �nal

speci�cation.

A category in which the colimit of all possible C-objects and C-arrows exists is called co-

complete. As shown by Goguen and Burstall (33, 34), the category Sign and Spec are both

cocomplete; therefore, the colimit operation may be used freely within the category Spec to de�ne

the construction of complex theories from a group of simpler theories.

Using morphisms, extensions, and colimits as a basic toolset, there are a number of ways that

speci�cations can be constructed: (88, 37)

� Build a speci�cation from a signature and a set of axioms;

� Form the union of a collection of speci�cations;

� Translate a speci�cation via a signature morphism;

� Hide some details of a speci�cation while preserving its models;

� Constrain the models of a speci�cation to be minimal;

� Parameterize a speci�cation; and

� Implement a speci�cation using features provided by others.

Many of these methods are useful in translating object-oriented speci�cation development into

theory-based speci�cation development. For instance, object-oriented inheritance looks very similar
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spec Bin-Rel is
sorts E
operations

� : E, E ! Boolean
end

spec Reflexive is
sorts X
operations

= : X, X ! Boolean
axioms

8x 2 X

x = x

end

spec Transitive is
sorts T
operations

< : T, T ! Boolean
axioms

8x; y; z 2 T

(x < y ^ y < z)) x < z

end

spec Pre-Order is
sorts fE, X, Tg
operations

f�;=; <g : fE, X, Tg, fE, X, Tg ! Boolean
axioms

8x; y; z 2 fE;X; Tg

x f�;=; <g x
(x f�;=; <g y ^ y f�;=; <gz)) x f�;=; <g z

end

Figure 3.7 Speci�cation Colimit Example

Reflexive Transitive

Bin-Rel

Pre-Order

c

c

c

{E →
 T, • →

 <}{E
 →

 X
, • 

→ =}

Figure 3.8 Example Colimit Diagram
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to an extension to a colimit speci�cation where the diagram of the colimit speci�cation consists

of the superclasses of the target speci�cation. Detailed formal semantics of these object-oriented

speci�cation re�nement concepts is discussed in Chapter IV.

3.3 Functors

Sections 3.2.1 and 3.2.2 de�ned the basic categories and construction techniques used to

build large-scale software speci�cations. In this section, I extend these concepts further to de�ne

models of speci�cations and how they are related to the construction techniques used to create

their speci�cations. Before describing this relationship, I de�ne the concept of a functor which

maps c-Objects and c-Arrows from one category to another in such a way that the identity and

composition properties are preserved (71).

De�nition 3.3.1 Given two categories A and B, a functor F : A ! B is a pair of functions, an

object function and a mapping function. The object function assigns to each object X of category

A an object F(X) of B; the mapping function assigns to each arrow f : X ! Y of category A an

arrow F(f) : F(X)! F(Y ) of category B. These functions satisfy the two requirements:

F(1X) = 1F(X) for each identity 1x of A

F(g � f) = F(g) � F(f) for each composite g � f de�ned in A

(3.1)

Basically a functor is a morphism of categories. Actually, I have already presented two

functors in Section 3.2.2: the reduct functor that maps models of one speci�cation (in the category

Mod[X1]) into models of a second speci�cation (in the categoryMod[X2]) and the models functor

that maps speci�cations in the category Spec to their category of models, Mod[X], in Cat, the

category of all su�ciently small categories. An example of the use of the reduct and models functors

is given in Chapter IV.
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3.4 Summary

This chapter presented the basic mathematical structure upon which the theoretical foun-

dations of a theory-based object model is based. The chapter started by presenting the abstract

mathematical concept of a category, which is a set of c-Objects and a set of c-Arrows with speci�c

properties. Then a signature was introduced and de�ned to be comprised of a set of sorts and a

set of operations over those sorts. When combined with signature morphisms, signatures form the

category of Sign. The signatures and the category Sign were then extended to speci�cations and

the category Spec by including axioms to de�ne the signature semantics. �-algebras, or models,

were then introduced and de�ned as a set of functions and sets that implement the semantics of

a given speci�cation. Finally, functors were formally de�ned and two examples given: the models

functor that creates models of a speci�cation and the reduct functor that creates models of one

speci�cation from models of another speci�cation.

The mathematical foundations laid in this chapter are used in the remaining chapters to

formally de�ne object-oriented concepts. Speci�cally, the next two chapters use the elements in-

troduced in this chapter to de�ne some basic properties of formally composed theory-based object-

oriented systems as well as domain model composition techniques.
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IV. Theoretical Foundations

4.1 Introduction

This chapter discusses the theoretical foundations for a theory-based model of object-

orientation. To date, the informal de�nitions of objects, classes, and inheritance have not been

agreed on much less their formal de�nitions. This chapter formally de�nes basic object-oriented

concepts such as objects, classes, and inheritance using algebraic speci�cations in a category the-

ory setting. Algebraic speci�cations capture the internal structure and semantics of the individual

classes while category theory operations de�ne the relationships between class speci�cations. This

chapter presents a general theoretical setting in order to remain applicable to many views of object

orientation.

Section 4.2 formally de�nes object classes as theory presentations and discusses the de�nition

and implications of internal class consistency. Section 4.3 de�nes the category theory setting for

class theories, models of class theories, and object instances. Finally, Section 4.4 formally de�nes

inheritance based on a generally accepted notion of object-oriented inheritance and extends that

de�nition to multiple inheritance.

4.2 Classes

The building block of object-orientation is the concept of an object class. A class is the

blueprint from which instances of the class, called objects, are created. There are two notions of a

class: a class type and a class set. A class type de�nes the structure of a group of similar objects

as well as their response to external stimuli. A class type is generally de�ned by two components:

attributes and operations. Attributes are observable characteristics of objects and may vary over

the life of the object. Although an object's attribute values are generally visible to other objects,

modi�cation of those attribute values may only be performed by the object itself. Attribute value

modi�cation is usually performed in response to some external stimulus, usually in the form of a
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message or event being received by the object. Receipt of a message or event causes an operation to

occur which in turn may modify the object's attribute values or cause additional messages or events

to be generated. Thus a class type de�nes a set of operations which are used to view attribute

values as well as respond to messages or events. These operations de�ne the external interface of

all objects in the class. All objects that conform to the class type de�nition are in the class set.

Given the fact that class types de�ne a set of operations over a similar collection of objects,

class type de�nitions may be modelled naturally as speci�cations, or theory presentations. Sorts

are used to describe collections of data values used in the speci�cation and include a distinguished

sort, the class sort. The class sort is the set of all possible object names in the class and provides

a reference to speci�c objects within a system. However, individual objects are not explicitly

represented in speci�cations | speci�cations only de�ne the structure and behavior of objects in

the class. Objects themselves are implementation artifacts and are discussed in detail in Section

4.3.1. Attributes are de�ned implicitly by operations which return speci�c data values associated

with a given object. The semantics of operations, as well as invariants between class attribute

values, are de�ned using �rst order predicate logic axioms. In general, axioms de�ne operations by

describing their e�ects on attribute values or by composing other operations. I now formally de�ne

a class type.

De�nition 4.2.1 Object Class Type - A class type, C, is a signature, � = hS;
i and a set of

axioms, �, over � (i.e., a theory presentation, or speci�cation) where

S denotes a set of sorts including the class sort


 denotes a set of operations over S

� denotes a set of axioms over �

A basic assumption for a class C, is that the e�ect of each operation in 
 is completely

de�ned over its domain by �. That is, each function, f : A ! B in 
, is required to have a

provably functional relation between A and B. This requirement is not as restrictive as it initially

appears. If the result of an operation does not make sense in a given object state (i.e., divide by

zero, etc.), the e�ect of the operation can still be de�ned. In most cases, if an object is in an
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inappropriate state prior to operation invocation or the operation parameters are invalid, there is

no change in the object. This behavior is axiomatized via appropriate preconditions. For example,

given an integer object with a divide operation that divides the integer by a supplied parameter,

the divide operation only makes sense when the parameter is non-zero. Thus axioms describing the

desired behavior are:

parameter 6= 0 ) value(divide(integer,parameter)) = integer / parameter
parameter = 0 ) value(divide(integer,parameter)) = integer

The assumption that all operations are completely de�ned over their domain is critical in de�ning

the e�ects of inheritance in Section 4.4.

4.2.1 Internal Class Consistency. It is impossible to show that a given class type is

correctly de�ned without the existence of formal requirements documents. Since class type de�nition

is based on operations and axioms de�ned by imperfect humans, the best that can be achieved is to

show the class type de�nition is internally consistent; however, Church and Turing independently

showed that, in general, proving that a set of �rst order equations is inconsistent is not possible

(18:45). Therefore, in this research, I assume that user provided speci�cations are consistent and

only attempt to show that further speci�cation composition operations (inheritance, aggregation,

etc.) maintain that consistency.

Lano and Haughton present three conditions for internal class consistency.

1: 9 (c 2 C) j INVC (c)

2: 8 (c 2 C; o 2 operations(C)) PreC(o) ^ INVC(c)) 9 (c
0 2 C) j o(c) = c

0 ^ InvC(c
0

)

3: 8 (c; c
0 2 C; o 2 operations(C)) PreC(o) ^ INVC(c) ^ c

0

= o(c)) InvC(c
0

) (4.1)

where INVC (x) are the invariant constraints of a class C applied to an object x, operations(C) are

the operations declared in the class C, and PreC(o) are the explicit preconditions of the operation

o as de�ned in the class C.

The �rst condition states that a model of the class type must exist. Speci�cations are not

necessarily implementable. I can easily declare inconsistent axioms as shown below.
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x < 0 ) x = x + 1
x = x - 1

Assuming the normal semantics of + and � over a total order, no model exists where x = x � 1

and x = x + 1 are both true simultaneously. Therefore, by assuming internal class consistency, I

also assume that models exist for all user provided speci�cations. This assumption is important in

the discussion of Section 4.3.

The second condition requires that the preconditions de�ned for each operation are stronger

than the preconditions necessary for the operation to work correctly while the last condition ensures

that all operations preserve the class invariant (i.e., applying an operation to an object in a valid

state results in an object in a valid state). Actually, this last condition is redundant since the second

condition requires that given a valid object, an operation must result in a valid object. Therefore,

conditions one and two provide a complete de�nition of internal class consistency.

For example, if the divide operation is de�ned by

divide(x;y) = x=y

internal consistency is violated. The axiom de�nes no precondition; however, the operation in-

vocation divide(1; 0), results in an invalid state since 1=0 is unde�ned. The correct de�nition of

divide requires an appropriately strong precondition. Internal consistency does allow the explicit

precondition to be stronger than the actual condition. Again, if the divide de�nition was rewritten

as

y > 0 ) divide(x,y) = x = y

y � 0 ) divide(x,y) = x

internal consistency is maintained even though the explicit precondition, y > 0, is stronger than

the required precondition, y 6= 0.

4.3 Categorical Setting

Figure 4.1 shows the category theory setting for the de�nition of classes and objects. C and D

represent class types de�ned within the category Spec with a speci�cation morphism, � : C ! D.
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The model functor Mod: Spec ! Cat maps each speci�cation in Spec to a category of models

in Cat (where Cat is the category of all su�ciently small categories). Thus given the class type

D, Mod[D], represents the category of all models of the class type speci�cation D. As discussed

in Section 4.2.1, because I assume that speci�cations are internally consistent, valid models of each

speci�cation exist. An implementation of a class type D is de�ned as some model m 2 Mod[D].

➤

C

➤

D

Mod[C] Mod[D]

σ

|σCat

Spec

Mod:Spec ➝ CatMod:Spec ➝ Cat

➤

Figure 4.1 Object Reduct Framework

The speci�cation morphism � : C ! D induces a reduct functor, denoted D j� , fromMod[D]

to Mod[C] de�ned as

8s 2 S, Cs = D�(s) and

8f 2 
, fC = �(f)D

where

C = hS;
i with �,

Cs is a set from of model in Mod[C], and

fC is a function from that same model in Mod[C].

Therefore, if class type compatibility is required between C and D, as implied by �, compatible

models of C and D may be obtained by constructing a model of C from a model of D using the

reduct functor. (Here, class type compatibility means that if C and D have common sorts and

operations as de�ned by �, their models must have common sets and functions.) Example 4.3.1

illustrates the e�ects of the reduct functor on models of C and D.
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Example 4.3.1 Let C and D be class types as de�ned in Figure 4.2 where the notation Dcs < Ccs

denotes that the class sort of D is a subsort of the class sort of C (i.e., Dcs � Ccs). Then, let

Cmod and Dmod represent particular models of C and D in the categories Mod[C] and Mod[D].

As shown in Figure 4.3, Dmod consists of four sets (S1 for Ccs, S2 for Dcs, S3 for sort A, and S4

for sort B) and four functions (f1 for �, f2 for �, f3 for m1, and f4 for m2).

The reduct functor Dmod j� de�nes the model Cmod from the model Dmod by selecting those

sets and functions from Dmod that correspond to sorts and operations that exist in both C and D

as de�ned by the morphism �. Therefore, if Dmod consists of the four sets and four functions

described above, Cmod consists of two sets (S1 for Ccs and S3 for sort A, and two functions (f1

for � and f3 for m1) as shown in Figure 4.4.

class C is
class sort Ccs
sorts A
attributes

� : Ccs ! A
operations

m1 : Ccs, A ! Ccs

axioms

axioms omitted
end-class

class D is
class sort Dcs < Ccs

sorts A, B
attributes

� : Ccs ! A
� : Dcs ! B

operations

m1 : Ccs, A ! Ccs

m2 : Dcs, B ! Dcs

axioms

axioms omitted
end-class

� = fCcs 7! Ccs;A 7! A; � 7! �;m1 7! m1g

Figure 4.2 Example 1 Class Type De�nitions
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S1 S2 S3 S4

f : S → S 1 1 3

f : S → S 2 2 4

f : S , S → S 3 1 13

f : S , S → S 4 2 24

CCS DCS A B

Figure 4.3 Dmod

S1 S3

f : S → S 1 1 3 f : S , S → S 3 1 13

CCS A

Figure 4.4 Cmod
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4.3.1 Object Instances. As discussed earlier, objects are not explicitly part of the class

type speci�cation but are actually implementation artifacts. Thus objects are entities that behave

according to a given implementation of a class type. In the categorical setting described above, a

formal de�nition of an object instance can be given.

De�nition 4.3.1 Object Instance - An object, o, is a tuple, o = h�; CT ; �i where � is a unique

name from the set in the class type model representing the class sort, CT is the class type model,

and � is a set of variables indexed on attributes de�ned in the class type, fa1; a2; :::ang. An object

is a member of a class, C if � is in the class type model set representing Ccs.

The unique name of the object, �, is assigned at object creation and does not change over the life of

the object, while � represents the current state of the object and may be modi�ed. The class type

model, CT , de�nes how a given object is interpreted and generally does not change. However, as

discussed in Section 4.4, because an object of a subclass is a member of the superclass as well, an

object may be reduced to its superclass representation in which case the class type model becomes

the superclass type model. When an object name is passed as a parameter to a class operation,

the values upon which operations act are the values of the variables in �.

Attributes are implicitly de�ned in the class type through the de�nition of attribute viewer

operations. These attribute viewers are actually projection functions and return a single attribute

value from �. An attribute viewer, �, de�ned in a class type, C, is an operation from the class

sort of C, Ccs, to a second sort, S�, which includes all valid attribute values (i.e., � : Ccs!S�).

Therefore, in an object instance of class C, a variable in � indexed on attribute � must take on

values in S�. Formally, � is de�ned as

� = fa� : S� j � 2 attributes(C)g

where attributes(C) is the set of all attributes implicitly de�ned by attribute viewer operations

from the class type C.
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Because the reduct functor creates models of one class from another, an object-reduct function

may be de�ned to create objects in one class from objects in another. The e�ect of the object-

reduction function mirrors the e�ect of the reduct functor and is de�ned similarly.

De�nition 4.3.2 Object-Reduct Function - Given a speci�cation morphism, � : C ! D,

between two class types and Dcs � Ccs, the object-reduct function, denoted j� reduces object

instances of class D to instances of class C as follows:

obC :� = obD:�

obC :CT = obD j�
obC :� = fa� j a� 2 obD:� ^ � 2 attributes(C)g

(4.2)

Therefore, when a speci�cation morphism exists between two class types, objects of one type

can be created from objects of the other as shown in Theorem IV.1.

Theorem IV.1 Given a speci�cation morphism, � : C ! D, between two internally consistent

class types such that Dcs � Ccs, the object-reduct function, as de�ned in De�nition 4.3.2, exists.

Proof: Because C and D are de�ned consistently the category of models for each speci�cation

(Mod[C] and Mod[D]) exists and � induces the reduct functor j�:Mod[D]!Mod[C].

1. Since Dcs � Ccs, the object name of each object in D exists in C and thus obC :� = obD:�.

2. obC :CT is de�ned by the reduct functor j�.

3. Since all attributes de�ned in C are mapped to attributes in D by �, there exists a corre-

sponding variable in obD:� for each attribute variable in obC :�.

�

Example 4.3.2 illustrates the desired e�ect of the object-reduct function on object instances.

Example 4.3.2 Given the class type de�nitions of C and D and models Cmod and Dmod as

de�ned in Example 4.3.1, the objects obC and obD can be de�ned over Cmod and Dmod. If obD

is the tuple h�;Dmod; fa1; a2gi, where a1 is a value in set S3 and a2 is a value in set S4, then

obC = h�;Cmod; fa1gi where a1 is a value in set S3 and Cmod = Dmod j�.
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Because functions and sets are copied frommodels of one class to create models of another, the

functions must provide the same behavior on objects of both classes. This behavioral equivalence

is shown by the commutative diagram in Figure 4.5. Theorem IV.2 states that this diagram does

in fact commute.

σ(f)  (d)
D

d

fσ(f)
D

f(d   )σ

d σ

_ σ

_ σ

Figure 4.5 Behavioral Equivalence of Objects

Theorem IV.2 If � : C ! D is a speci�cation morphism between two internally consistent spec-

i�cations and fC is a function in the model of C created from the function �(f)D in the model

of D via the reduct functor induced by � such that fC = �(f)D, then for all objects, d 2 D,

fC(d j�) = �(f)D(d) j�.

Proof: Assume without loss of generality that the attributes a1 ::: an 2 attributes(D j�) and that

a1 ::: aq 2 attributes(D) such that attributes(D j�) � attributes(D). Also, assume that if d j� =

h�; D; a1 ::: aqi then �(f)D(d) = h�; D, b1 ::: bqi. Note: If d = h�, D, a1 ::: aqi then d = h�, D j�,

a1 ::: ani.

Then, if d = h�;D; a1 ::: aqi,

�(f)D(d) j� = �(f)D(h�;D; a1:::aqi) j�

= h�;D; b1:::bq)i) j�

= h�;D j�; b1:::bn)i)

= fc(h�;D j�; a1:::ani)

= fc(d j�)

�
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4.4 Inheritance

Class inheritance plays an important role in object-orientation; however, the correct use of

inheritance is not uniformly agreed upon. Many languages provide \ad-hoc" inheritance that allows

a subclass to rede�ne or even remove attributes or operations inherited from its superclass. However,

most authors see the necessity to restrict the amount of modi�cation freedom in a subclass. In

this research, I require a generalization-specialization inheritance relationship. There are two types

of inheritance that satisfy the generalization-specialization relationship: extension and restriction.

In an extension, a subclass simply adds new attributes or operations, whereas in a restriction a

subclass constrains attribute values from a superclass. To allow a subclass to be freely substituted

for its superclass in any situation and to make reasoning about the class's properties easier, I require

that a subclass only extend the features of its superclass. Liskov de�nes these desired e�ects as the

\substitution property" (67):

If for each object o1 of type S there is an object o2 of type T such that for all programs P

de�ned in terms of T the behavior of P is unchanged when o1 is substituted for o2, then S is

a subtype of T .

Bourdeau and Cheng (14) interpret the substitution property to mean that an object of class S may

be substituted for an object of class T at any point in time. This e�ectively means that the object

of class S may be in any valid state prior to its substitution for a class T object. This interpretation

requires that a subclass object must always be in a state that directly maps to a state de�ned in

its superclass and only allows the addition of substates and concurrent states within the subclass.

I �nd Bourdeau and Cheng's interpretation too restrictive and interpret the substitution property

to mean that a subclass object, when created and stimulated only within an environment created

for its superclass, behaves as a superclass object. My interpretation allows a subclass object to

respond to new messages or events that take it into new states that do not exist in its superclass;

however, when starting in the initial states as de�ned in the superclass and only responding to

messages or events inherited from the superclass, the subclass object must behave exactly as an

object from its superclass and may not enter a state de�ned only in the subclass.
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To hold to this notion of generalization{specialization there are two requirements: (1) the

substitution property holds and (2) class consistency is maintained. The only way to ensure the

substitution property holds in all cases is to ensure that the e�ects of all superclass operations

performed on an object are equivalent in the subclass and the superclass. Before showing how the

substitution property and class consistency are preserved, object-equivalence must be de�ned.

De�nition 4.4.1 Object-Equivalence - Two objects, c1 and c2, of a class type C are equivalent

over C if and only if the value of all attributes de�ned in C are equal in c1 and c2, or,

c1 �C c2, 8 (a) (a 2 attributes(C)) a(c1) = a(c2))

Now I can present a formal de�nition of the substitution property. In this de�nition, o0 is the

operation in class D inherited from class C.

8 (d) d 2 D ^ o 2 operations(C)) 9 (c) c 2 C ^ (c �C d) o(c) �C o
0(d)) (4.3)

An acceptable de�nition of inheritance would then provide a mapping from the sorts, op-

erations, and attributes in the superclass to those in the subclass that preserve the semantics of

the superclass. This is the basic de�nition of a speci�cation morphism and provides us a formal

de�nition of inheritance.

De�nition 4.4.2 Inheritance - A class D is said to inherit from a class C, denoted D < C, if

there exists a speci�cation morphism from C to D and the class sort of D is a subsort of the class

sort of C (i.e., Dcs � Ccs).

This de�nition states that all sorts and operations from class C are embedded in class D, that

a new sort, the class sort of D, is de�ned as a subsort of the class sort of C, and that the axioms in

C are theorems in D. While De�nition 4.4.2 provides a concise, mathematically precise de�nition of

inheritance, its ability to ensure the preservation of class consistency and the substitution property

as stated in Equations 4.1 and 4.3 must be shown.
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Before proving that De�nition 4.4.2 preserves the substitution property, two lemmas must be

proved. The �rst lemma shows that an object and its reduct are object-equivalent and the second

states that given a speci�cation morphism between two classes, an object in the subclass is also an

object in the superclass.

Lemma 4.4.1 Given a speci�cation morphism, � : C ! D, 8 (d) d 2 D ^ c = d j� ) c �C d.

Proof: By De�nition 4.3.2, d j� :� = fa� j a� 2 d:� ^ � 2 attributes(C)g thus it is obvious that

8a 2 attributes(C) if c = d j� then a(c) = a(d j�) and by De�nition 4.4.1, c �C d. �

Lemma 4.4.2 If there exists a speci�cation morphism between two classes � : C ! D and Dcs �

Ccs then for every object d 2 D there exists some c 2 C such that d �C c.

Proof: By the de�nition of a speci�cation morphism, � : C ! D, a reduct functor, j�, creates

models of C from models of D. The object-reduct function as de�ned in De�nition 4.3.2 takes

objects de�ned over D and creates objects de�ned over C with identical attribute values for all

attributes in C. Therefore, 8 (d) d 2 D ) 9 (c) c 2 C ^ c = d j� and by Lemma 4.4.1, c �C d. �

Now it is possible to show that inheritance, as de�ned in De�nition 4.4.2, does in fact preserve

the substitution property and thus is a valid de�nition for this model.

Theorem IV.3 Given a speci�cation morphism, � : C ! D, between two internally consistent

classes C and D, Dcs � Ccs, and that the model of C, Cmod is created via the reduct functor

induced by � from the model of D, Dmod, then substitution property holds.

Proof:

1. By Lemma 4.4.2, for all objects in D there exists an object in C such that c = d j�.

2. If Cmod is constructed from Dmod using the reduct functor, then for all objects o 2

operations(C) there exists some fC 2 Cmod such that �(f)D 2 Dmod and fC = �(f)D.
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3. Then, by Theorem IV.2 8 (d) 9 (c) such that d 2 D ^ c 2 C then c = d j� ) f(c) = f(d j�

) = f(d) j�, or f(c) �C �(f)D(d).

�

4.4.1 Multiple Inheritance. Multiple inheritance requires a slight modi�cation to the

notion of inheritance as de�ned in De�nition 4.4.2. The set of superclasses must �rst be combined

and then used to \inherit from".

De�nition 4.4.3 Multiple Inheritance - A class D multiply inherits from a collection of classes

fC1 .. Cng if there exists a speci�cation morphism from the colimit of fC1 .. Cng to D such that

the class sort of D is a subsort of each of the class sorts of fC1 .. Cng.

The colimit operation allows the combination of any number of classes, along shared parts, to

create a single speci�cation with all the sorts, operations, and axioms of the original classes. This

colimit speci�cation can then be extend with the de�nition of the new class sort, attributes, and

operations.

This de�nition ensures that the subclass D inherits (in the sense of De�nition 4.4.2) from

each superclass in fC1 .. Cng. The proof is shown in Theorem IV.4 below.

Theorem IV.4 Given a speci�cation morphism from the colimit of fC1 .. Cng to D such that the

class sort of D is a subsort of each of the class sorts of fC1 .. Cng, the substitution property holds

between D and each of its superclasses fC1 .. Cng.

Proof: In the category Spec, all cocone morphisms from any Cj 2 fC1 .. Cng to the colimit

speci�cation composed with the extension from the colimit speci�cation to D is a speci�cation

morphism from Cj to D as shown in Figure 4.6. Thus multiple inheritance implies a speci�cation

morphism between each Cj and D and thus by Theorem IV.3, the substitution property holds. �
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Figure 4.6 Multiple Inheritance Colimit

It is important to note that De�nition 4.4.3 only ensures valid inheritance when all operations

are fully de�ned in each speci�cation fC1 .. Cng. Failure to ensure fully de�ned operations may

result in an inconsistent colimit speci�cation.

Consider the example shown in Figure 4.7. A class E is created by multiply inheriting from

D
0 and D00 which both are subclasses of an superclass C where the operationm is not fully de�ned.

While everything works syntactically, the resulting class is inconsistent due to the axioms de�ned

in D0 and D00.

x(e) � 0) x(m(e)) = x(e) + 1

x(e) � 0) x(m(e)) = x(e) + 2

Both D0 and D00 are valid subclasses of C yet they modi�ed the behavior of a m in such a way

that the resulting multiply inherited operation de�nition is inconsistent. Thus class consistency

conditions do not hold.

4.5 Summary

This section establishes the mathematical foundation for a formal theory-based model of

object-oriented concepts for the system de�ned in Chapter II and shown in Figure 2.2. These
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class C is
import Integer
class sort C
attributes

x : C ! Integer
operations

m : C ! C
axioms

8 (c: C) x(c) < 0 ) x(m(c)) = x(c) - 1
end-class

class D0 is
class sort D0 < C
axioms

8 (d: D) x(d) � 0 ) x(m(d)) = x(d) + 1
end-class

class D00 is
class sort D00 < C
axioms

8 (d: D) x(d) � 0 ) x(m(d)) = x(d) + 2
end-class

class E is
import Integer
class sort E < D0, D00

attributes

x : E ! Integer
operations

m : E ! E
axioms

8 (e: E) x(e) < 0 ) x(m(e)) = x(e) - 1;
8 (e: E) x(e) � 0 ) x(m(e)) = x(e) + 1;
8 (e: E) x(e) � 0 ) x(m(e)) = x(e) + 2

end-class

Figure 4.7 Inconsistent Multiple Inheritance
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foundations are general in nature and are applicable to a number methodologies within the object-

oriented paradigm.

First, classes were de�ned as theory presentations or speci�cations within the category Spec

while the models of each class, de�ned by the Mod functor, form a category within the category

Cat. Models of a class were associated with an implementation of the class and a mathematically

sound method for creating compatible models of a class was de�ned. This method is based on the

existence of a speci�cation morphism between classes and thus the existence of a reduct functor

that creates models of one speci�cation from models of another. The theoretical concept of an

object instance was then introduced along with an object \reduct" function based on the reduct

functor. These concepts were used to show the desired e�ect of inheritance.

Finally, a formal de�nition of inheritance was presented based on the \substitution property".

This formal de�nition of inheritance was then shown to preserve the substitution property in

Theorem IV.3. These results were then extended to multiple inheritance. The next two chapters

build on the mathematical foundations presented in this chapter by de�ning a theory-based object

model and its semantics that incorporates the concepts of classes, objects, and inheritance de�ned

in this chapter.
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V. Formal Object Modeling Technique Semantics

5.1 Introduction

This chapter present a formal semantics for a restricted version of Rumbaugh's OMT. These

restrictions are imposed on each of the three OMT models{object, dynamic, and functional{ to

ensure automatic translation from graphical notation to algebraic speci�cations. The semantics of

the restricted OMT models are arrived at by de�ning a formal semantics for each of Rumbaugh's

models. Section 5.2 describes the basic requirements placed on a graphically based diagram in

order to ensure automated translation. Section 5.3 describes the restrictions and formal semantics

for the object model while Sections 5.4 and 5.5 describe the restrictions and formal semantics for

the dynamic and functional models.

5.2 Translation Requirements

Translation of graphically based models into algebraic speci�cations in the category Spec

requires that the two criteria be met. First, all entities in the model must correspond to components

of an algebraic speci�cation or be de�ned using category theory constructs. This means that all

important features of the model must be representable as speci�cations, functions, sorts, �rst-order

axioms de�ned over those sorts and functions, or category theory operations between speci�cations.

For instance, in a data 
ow diagram, a process translates to a function while data 
ows between

processes are de�ned by sorts.

The second requirement is that all models be deterministic, that is, there must be a single

valid interpretation of the model. Again, in a data 
ow diagram, the usual interpretation is that

the processes and data 
ows within the diagram only de�ne possible data 
ow paths, and does

not imply any speci�c sequence of control. While the 
ow of data through the system may be

obvious to a user based on the types of data involved and certain naming conventions, the normal

interpretation of data 
ow diagrams does not provide the degree of determinism necessary to use
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them in an automated system without modifying the semantics or adding additional information.

Therefore, the translation requirements for any graphically based model are given below.

I: All model entities must be represented by pure functions, sorts,

�rst-order axioms, or category theory constructs.

II: Model semantics must be deterministic.

5.3 Object Model

This section discusses the semantics de�ned for the OMT object model and the problems

encountered in translating it into algebraic speci�cations. Section 5.3.1 presents a brief overview

of the OMT object model, Section 5.3.2 describes proposed restrictions to the OMT object model,

and Section 5.3.3 derives the semantics of the restricted object model from the formal OMT object

model semantics de�ned by Bourdeau and Cheng (14).

5.3.1 Overview of Rumbaugh's Object Model. The OMT object model de�nes the struc-

ture of a domain based on classes of objects and the relationships between them. A class de�nes

the structure of a similar set of objects. This structure is de�ned by attributes, which are data that

describe various aspects of an object, and operations that describe how an object behaves. Relation-

ships between objects fall into one of three categories: associations, aggregation, and inheritance.

Associations are general relationships between two or more classes. Aggregation describes a \part-

of" relationship between an object and a subobject which is used to make up the aggregate object.

Inheritance describes a \generalization-specialization" relationship between two classes of objects

where if A is a subclass of B then objects of class A are objects of class B as well.

Figure 5.1 shows an example of a typical OMT object model domain, a rocket. The OMT

diagram shows six object classes: Rocket, Airframe, FuelTank, PropulsionDevice, JetEngine, and

RocketEngine. The lines drawn between object classes represent relationships between them. The

� on the line from the Rocket to the Airframe, FuelTank, and PropulsionDevice denotes an aggre-
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Airframe

Propulsion
Device

Fuel Tank Jet Engine Rocket Engine

1+

Feeds

Rocket

weight : real

weight : real
capacity : real

thrust : real
flow-rate : real

Figure 5.1 Typical Object Model

gation relationship. That is, a Rocket consists of an Airframe, FuelTank, and a PropulsionDevice.

The 4 symbol between the PropulsionDevice class and the JetEngine and RocketEngine classes

denotes inheritance. Thus an object that is a member of the JetEngine or RocketEngine class is also

a member of the PropulsionDevice class. Finally, the line between the FuelTank and the JetEngine

denotes an association that relates members of the FuelTank class to members of the JetEngine

class. The text below the class name in object class rectangles de�nes attributes. Thus a FuelTank

object has two attributes, weight and capacity, each of which is a real datatype. The endpoints of

an association/aggregation line denotes a particular multiplicity in the association and aggregation

relationships as show in Figure 5.2. These multiplicities de�ne the number of relationships in which

a particular object may participate. In Figure 5.2, each object at the other end of the relationship

may be in a relationship with exactly one, zero or more, zero or one, one or more, or a numerically

speci�ed number of objects of the type Class.

5.3.2 The Restricted OMT Object Model. The only problem inherent in Rumbaugh's

de�nition of the object model, as described in Section 5.3.1, is the ability of the user to de�ne

operations. This capability allows users to de�ne operations that have no relation to the dynamic
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Figure 5.2 Relationship Multiplicities

or functional model and, therefore, has the potential to introduce inconsistencies. In this research,

I take the approach that all operations are de�ned as either a process in the functional model or

an action in the dynamic model. Therefore, the only restriction to the OMT object model is to

disallow the introduction of operations.

Assumption V.1 All class methods and operations are introduced in the OMT dynamic or func-

tional model.

5.3.3 Object Model Semantics. Relatively little exists describing the formal semantics of

object models. Some generic data base work (31) describes structural aspects of object-oriented

systems but they fail to provide a complete semantics for an OMT-type object diagram. Bourdeau

and Cheng (14) have developed a formal semantics for an extended version of the OMT object

model notation. They use the Larch speci�cation language (43) to describe modular algebraic

speci�cations based on the OMT object model. In this section I formally de�ne the semantics of

the OMT object model based on the semantics proposed by Bourdeau and Cheng. (Note: the

following rules are a subset of those de�ned by Bourdeau and Cheng in (14). Many of their rules

deal with OMT object model extensions, such as state, which are part of the basic OMT dynamic

or functional models and are omitted here.)
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The object model itself is a speci�cation which simply includes the object classes and associ-

ations derived from the object diagram. Classes and associations are de�ned as follows.

De�nition 5.3.1 A Restricted OMT Object Model, OM , is a set of speci�cations determined

by De�nitions 5.3.2 through 5.3.5.

De�nition 5.3.2 An Object Class C in an object model O de�nes a speci�cation where

(OM-1) The class C is denoted by a sort of the same name.

(OM-2) For each attribute, �, in class C of type D, there is a function signature

� : C ! D

(OM-3) If D in rule (OM-2) references a separate class speci�cation, then the speci�cation for D

is included (imported) into the speci�cation of class C.

The rules above de�ne the structural aspect of object classes only. Relational aspects such

as association, aggregation, and inheritance are de�ned below. The next three de�nitions de�ne

additional rules which, when used on aggregate classes, associations, and subclasses fully de�nes

the object model.

De�nition 5.3.3 An Aggregate, with components D1:::Dk de�nes a speci�cation D using rules

OM-1 { OM-3 where

(OM-4) For each component D1:::Dk, the aggregate relation is denoted by a predicate has-part
which relates class D to Dn. If the component has a role name in the aggregation, the role

name is used in place of has-part.

has-part : D;Dn ! Boolean

(OM-5) Axioms de�ning the multiplicity constraints of the aggregation are added to D.

Thus rules OM-4 and OM-5 de�ne predicates in the aggregate class de�nition that relate a

given aggregate object to its components. Bourdeau and Cheng also provide a detailed method-

ology for de�ning multiplicity axioms; however, in this research I use equivalent axioms de�ned

in Section 6.4.1. The next relation de�ned by Bourdeau and Cheng is the subtype relation which

implements inheritance.
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De�nition 5.3.4 Let D be a subtype of class C. Then a speci�cation is de�ned for both C and

D using rules OM-1 { OM-5 and where

(OM-6) The subtype relation is de�ned by an operation named simulates in D relating class D to

C.

simulates : D ! C

In essence, the simulates operation takes an object of the subtype and produces an object of

the supertype, thus implementing Bourdeau and Cheng's interpretation of the substitution property.

As discussed in Section 4.3, I use a slightly di�erent interpretation of the substitution property

than do Bourdeau and Cheng. Basically, they assume that a subtype object D must always be

substitutable for its supertype object C, while I interpret the property to mean that if, from object

creation, an object from class D is restricted only to operations de�ned on class C then the object

is indistinguishable from an object of class C. Bourdeau and Cheng de�ne the following constraint

that the simulates operation must satisfy:

8 (d : D) a 2 attributes(d) ) a(d) = a(simulates(d)) (5.1)

Bourdeau and Cheng's constraint restricts subtype objects further than my interpretation,

which formalized is:

8 (d : D) a 2 attributes(D) ^ o 2 operations(D) ^ a(d) = a(simulates(d))

) a(o
0
(simulates(d))) = a(simulates(o(d)))

(5.2)

where o0 is the inherited operation in D derived from operation o in C. Equation 5.2 incorporates

the intent of Equation 5.1 given my interpretation of the substitution property.

De�nition 5.3.5 An Association, R, relating objects from classes D1:::Dk de�nes a speci�cation

A using rules OM-1 { OM-3 and where

(OM-7) The association R is denoted by a predicate of the same name in speci�cation A:

R : D1:::Dk ! Boolean

(OM-8) Axioms de�ning the multiplicity constraints of R are added to A.
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In e�ect, rules (OM-7) and (OM-8) state that for an association, a new speci�cation is created

with a boolean predicate of the same name which de�nes which objects of the two associated classes

are related.

5.4 Dynamic Model

This section discusses the semantics of the OMT dynamic model and the problems encoun-

tered in translating it into algebraic speci�cations. Section 5.4.1 presents a brief overview of the

dynamic model, Section 5.4.2 discusses the problems in translating the dynamic model into al-

gebraic speci�cations, Section 5.4.3 de�nes restrictions to the dynamic model to counter those

problems, and Section 5.4.4 derives the semantics of the restricted dynamic model from the formal

semantics of Harel's statecharts (45).

5.4.1 Overview of Rumbaugh's Dynamic Model. The concept of state is vital to object-

orientation. State, as de�ned by Rumbaugh, is an abstraction of an object's attribute values and is

represented in his model via a statechart. A typical statechart is shown in Figure 5.3. Statecharts

have �ve parts: states, transitions, events, guards, and actions. The state of a system \summarizes

the information concerning past input and that is needed to determine the behavior of the system

on subsequent inputs" (47:13). Therefore, a system typically resides in a state between inputs and

may change state based on additional input. Transitions are the changes of state based on given

input and the current state. Transition labels de�ne the input event, guard, and actions associated

with a transition as shown below.

event [ guard-condition ] / action1:::actionn

Events are the instantaneous transmittal of information from one object to another. In statecharts,

communication is assumed to occur as global broadcasts. If an object generates an event, it is

received by all other objects who have a transition labeled with the same event name. Besides the

receipt of the event itself, additional information may be transmitted via event parameterization.
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It is assumed that if there is no explicit transition from a state S upon receipt of an event, E, then

if event E is received while in state S, no actions occur. Guard Conditions allow a system to check

that, upon receipt of an event, certain conditions hold before a transition takes place. Actions

are the behavior initiated by some transition. Actions include computation of data, modi�cation

of object attributes, or broadcasting of additional events. Although Harel and Rumbaugh allow

statecharts to place actions inside states (the equivalent of a Moore machine from �nite automata)

as well as on transitions, for convenience, in this research I limit all actions to transitions (a Mealy

machine). This does not represent a semantic restriction as the equivalence of Mealy and Moore

machines is well known (47:43). A special type of action is a send action. A send action speci�es

that an event is to be broadcast to the system. A typical send action might be:

send(event-name(parameter list))

In this case the event-name is broadcast to all receiving objects along with all data passed via the

parameter list. Other actions become operations on the current object.

withdrawal(a,x) [bal(a) < x]
        /debit(a,x)

deposit(a,x) [x + bal(a) >= 0]/credit(a,x)

OK overdrawn

deposit(a,x) [x + bal(a) < 0]
        /credit(a,x)

withdrawal(a,x) [bal(a) >= x]/debit(a,x)

deposit(a,x)/credit(a,x)

new-acct(d)

Figure 5.3 Account Dynamic Model

Statecharts often allow for concurrent states or substates. Concurrent state diagrams are

used when the attributes of a class type may be partitioned into subsets. The state of an object

becomes a tuple consisting of the object state in each concurrent state diagram. An example of

a concurrent state diagram is shown in Figure 5.4. In this example, events e1, e2, and e3 cause

the �rst component of the object state to change while events e4, e5, and e6 cause the second
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component of the object state to change. The events in the concurrent diagrams do not have to be

distinct while the e�ects of those events on object attributes are. For example, assume the object

state of an object whose dynamic model is represented by Figure 5.4 is h1; 4i. If the following string

of events, (e1, e4, e5, e2), is received, the object ends up in state h3; 6i by the following transitions.

h1; 4i
e1
�! h2; 4i

e4
�! h2; 5i

e5
�! h2; 6i

e2
�! h3; 6i

4

6

5
e4/m4

e5/m5

e6/m5

1 2

3

e1/m1

e2/m2 e3/m3

Figure 5.4 Concurrent State Diagram

In a non-concurrent statechart, an object must be in a single state; however, within a state,

substates may exist that re�ne the state allowing the object to change its substate while remaining

in the superstate as shown in Figure 5.5. Such substates \inherit" the transitions of their super-

state. In the theory-based object model, substates are handled similarly to concurrent states { by

adding additional substate attributes whose values are only meaningful when the object is in the

appropriate superstate. Thus, the object in Figure 5.5 must always be in a superstate 1, 2, or 3;

however, while in state 2, the events e4, e5, and e6 allow the object to change it substate and re-

main in state 2. Once an e2 event is received, the superstate transitions to state 3 and the substate

attribute value is no longer meaningful. The object will not change state even if an e4, e5, or e6

event is received.
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1
2a

3
e1 e2

e3

2c

2b
2

e4

e5

e6

Figure 5.5 SubState Diagram

5.4.2 Dynamic Model Translation Problems. This section discusses problems inherent in

translating the dynamic model, as speci�ed by Rumbaugh, into algebraic theories and describes the

incompatibility of the dynamic model with the translation requirements described in Section 5.2.

There is little problem associated with translating individual statecharts into sorts, functions,

and �rst-order axioms in algebraic speci�cations. Each statechart, substatechart, and component

of concurrent statecharts de�nes an attribute function. The states within each diagram de�ne a

sort where the values in the sort are the states in the diagram. Each state also de�nes a nullary

function for each individual state or substate. Events and actions translate into functions. Axioms

are used to de�ne the e�ects of transitions on state attributes and actions. Additional axioms may

also be generated to show that receipt of events with no de�ned transitions from a given state result

in no changes. Actions are modelled as either functions representing operations on the object or as

events to be broadcast to the system. Use of the categorical constructs of morphisms and colimits

allows speci�cation of event transmission.

Even though translation seems straightforward, some inconsistencies may occur when inher-

itance is taken into account. For instance, substates may be used to re�ne a superclass state as

long as the superclass events de�ning transitions from the superstate are not used in the substate

diagram. Attempting to override an exit transition from the superstate results in inconsistencies as

shown in Figure 5.6. Rumbaugh interprets this statechart to mean that when an object is in state

2b and event e2 occurs, the substate transition overrides the superstate transition and the state
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moves to 2c; however, this violates the substitution property since the subclass object no longer

behaves as a superclass object.

3
e2

e3

2a

2c

2b
2

e4

e2

e6

1
e1

Figure 5.6 Invalid Substate Diagram

Figure 5.7 shows a valid concurrent state diagram. This diagram is valid since the states and

events of the two concurrent subdiagrams are distinct. However, not all concurrent dynamic models

satisfy this consistency condition. Concurrent state diagrams are only valid when the attributes of

the class are partitionable and the actions in a concurrent subdiagram a�ect only the attributes in

a single partition. When this condition is violated, inconsistencies between diagrams may result.

Therefore, when a concurrent statechart is introduced in a subclass to re�ne the dynamic model,

the actions associated with transitions in the concurrent component must a�ect only the subclass

attributes. This requires that the actions in the concurrent component be operations de�ned in the

subclass and that those actions modify only subclass attributes.

4

6

5
e4/m4

e5/m5

e6/m5

1 2

3

e1/m1

e2/m2 e3/m3

Figure 5.7 Inheritance of Dynamic Behavior - Concurrent Diagram

5.4.3 The Restricted OMT Dynamic Model. With the exception of substate transition

overriding, there are no inconsistencies with statecharts as used by Rumbaugh; however, for sim-

plicity, I limit the dynamic model to a Mealy machine representation where all actions must occur
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on transitions as discussed in Section 5.4.1. I also assume that if the user speci�es guard conditions

for a set of transitions on event e from state s, then the guards for that set of transitions are con-

sistent and complete. This may require the user to de�ne transitions that \do nothing"; however,

this assumption ensures that a complete and consistent set of axioms can be generated from the

dynamic model without resorting to considerable reasoning about the validity of the guard condi-

tions. I also assume that all guard conditions are written in O-Slang syntax and are based only

on the parameters passed to the object by the event and the object's attribute values. The user

may specify multiple actions on a transition; however, since non-send actions represent operation

invocations and there is no sequence implied by the order of actions, multiple non-send actions

occur in parallel. If two actions have a speci�c sequence, the user can easily create an operation

that implements this sequential behavior; therefore, in general, only one non-send action is speci�ed

per transition. My restrictions to Rumbaugh's dynamic model are shown below.

1. Assumption V.2 All actions must occur on transitions between states.

2. Assumption V.3 All guard conditions must be written in valid O-Slang syntax using only

event parameters, object attributes, and constants.

3. Assumption V.4 Guard conditions for a set of transitions for a single event are consistent

and complete.

4. Assumption V.5 Only one non-send action may be speci�ed per transition.

5. Assumption V.6 Events on transitions leading from a superstate may not be used in sub-

states (i.e., no overriding superstate transitions).

6. Assumption V.7 Concurrent statecharts must partition the attributes a�ected by methods

in di�erent concurrent sections into disjoint sets.
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5.4.4 Dynamic Model Semantics. In this section I formally de�ne the semantics of the

restricted dynamic model. As expected, the semantics of dynamic model statecharts are based the

standard automata de�nition (47:43).

De�nition 5.4.1 A Mealy machine is a six-tuple M = (Q;�;�; �; �; q0) where

� Q is a �nite set of states.

� � is a input alphabet.

� � is the output alphabet.

� � is the transition function mapping Q��! Q.

� � is a mapping from Q! � giving the output for each transition.

� q0 2 Q, is the initial state.

The mapping from the Mealy machine to a statechart is straightforward and given in the

de�nition of a statechart below.

De�nition 5.4.2 A dynamic model Statechart is a six-tuple M = (Q;�;�; �; �; q0) where

� Q is the set of states in the statechart.

� � is the set of input events.

� � is the set of output events and actions.

� � is the transition function mapping Q��! Q based on transition arrows and guard condi-

tions.

� � is a mapping from Q! � giving the output for each transition based on transition arrows

and guard conditions.

� q0 2 Q, is the initial state.
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Substates and concurrent states are a simple translation into this ordinary automata (45)

due to Rumbaugh's simpli�cation of statecharts and the additional restrictions of Section 5.4.3.

Substates are \unfolded" into their superstate by transferring incoming superstate transitions to

the initial state of the substate statechart and adding outgoing superstate transitions to each

substate as shown in Figure 5.8.

3
e2

e3

2a

2c

2b
2

e4

e5

e6

1
e1

3

e5

e3

2a

2c

2b
e4

e2

e6

1
e1

e5

e5

Figure 5.8 Unfolding Substates into a Single Statechart

Concurrent state diagrams, such as shown in Figure 5.4, are translated by creating a state for

each combination of concurrent state values and adding the appropriate transitions. The translation

of Figure 5.4 is shown in Figure 5.9. In this example, the events and operations of the two concurrent

subdiagrams are disjoint. Although operations must be disjoint, events may be shared. If events

e1 and e4 in Figure 5.4 are equivalent (i.e., they have the same name), then the translation to a

single-level, non-concurrent diagram is shown in Figure 5.10. In this example, state (1; 5) is not

included since event e1 now transitions the state directly from (1; 4) to (2; 5). The composition of

operations m1 and m4 is not problematic since in the restricted dynamic model they are required

to modify a disjoint sets of attributes.
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Figure 5.9 Composition of Single Statechart from Concurrent Diagram
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Figure 5.10 Composition of Single Statechart from Concurrent Diagram
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5.5 Functional Model

This section discusses the OMT functional model and the problems encountered in attempting

to translate it into algebraic speci�cations. Section 5.5.1 presents an overview of the OMT functional

model, Section 5.5.2 discusses the problems encountered in trying to translate the OMT functional

model, Section 5.5.3 describes my proposed restrictions to functional model, and Section 5.5.4

derives the semantics of the restricted functional model from the semantics of generalized data 
ow

diagrams.

5.5.1 Overview of Rumbaugh's Functional Model. The OMT functional model is de�ned

using standard data 
ow diagrams describing the computations that a system must perform. The

functional model is intended to be used in conjunction with the object and dynamic models to

complete the system de�nition. Whereas the object model de�nes system components and the

dynamic model de�nes system control, the functional model de�nes what computations occur in

the system. The functional model describes what outputs are derived from inputs, but not how,

or in what order, this transformation is accomplished. The \how" is an implementation question

while the \order" of the computations is de�ned in the dynamic model.

As stated above, the functional model uses data 
ow diagrams to describe what computations

occur in the system and the relationship of inputs to outputs. Data 
ow diagrams consist of four

basic entities: processes, data 
ows, data stores, and actors. Processes transform input data values

into output data values and are represented by ovals in the data 
ow diagram. Rumbaugh states

that \the lowest-level processes are pure functions without side e�ects" (83:124) while higher-level

processes may have side e�ects such as modifying data stores or other external objects. In general,

high-level processes represent non-side a�ecting operations or actions de�ned in the dynamic model.

Each process may be decomposed into subprocesses which take the inputs to its higher-level process

and provide a more detailed description of the transformations necessary to produce the high-level

outputs. These \nested" data 
ow diagrams require that all higher-level process input data 
ows
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be present in the nested data 
ow diagram and that the outputs of the higher-level process be

computed by processes in the nested data 
ow diagram. Eventually, all nested data 
ow diagrams

terminate with purely functional processes.

create spec
diagrams formal spec

export diagram
diagrams formal spectransform

AST

parse files

data file AST

Figure 5.11 High-Level and Nested Data Flow Diagrams

In the functional model, data 
ows are denoted by lines drawn between processes and repre-

sent data values input to, or output from a process. Arrows indicate the direction the data 
ows.

A data 
ow from one process to another speci�es that the data is output by the �rst process and

input to the second process. Often, data 
ows are \forked" to denote copying the data value and

sending it to more than one process as shown in Figure 5.12. When a data 
ow represents an

aggregate data type, the data 
ow may \split" into its various components. Likewise, aggregate

components may be composed into an aggregate value by merging two or more data 
ows into a

single data 
ow.

Data stores are passive objects in the system used to store data and are represented by parallel

lines. Data stores are usually objects, object classes, or associations de�ned in the object model.

5-17



data location
x-coordinate
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(a)  Copy (b)  Split or Decompose

Figure 5.12 Data Flows

Data 
ows into a data store represent modi�cations to the stored data while data 
ows out of

a data store represent data retrieved from the data store. Data 
ows with hollow-tipped arrows

represent the dynamic creation of a new object. Such arrows 
ow from a process to a data store

and are unique to the OMT functional model. Figure 5.13 shows the use of data stores in a data


ow diagram. In Figure 5.13 the Bank-Accounts data store is the set, or class, of accounts in a

bank. The get-account process chooses an account based on an account number entered by a user.

The selected account then becomes a data store and is manipulated by the deposit process.

get-account
accounts account

Bank-Accounts Account

Customer

number

deposit
amount

balance balance

Figure 5.13 Data Stores

Actors are objects outside the system that provide input to or consume the output of data


ow diagrams. Actors are not actually part of the system and are not modeled further in OMT.

Actors are represented by rectangles and their inclusion in the functional model simply provides

the context for the computations de�ned within.
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Rumbaugh also allows for control 
ows within the functional model. Control 
ows are boolean

values that a�ect whether a process is performed and are not input values to the process. Control


ows are denoted by dashed lines between processes. According to Rumbaugh, control 
ows \can

occasionally be useful, but they duplicate information in the dynamic model and should be used

sparingly" (83:129).

5.5.2 Functional Model Translation Problems. This section discusses problems inherent

in translating the functional model, as speci�ed by Rumbaugh, into algebraic speci�cations. Some

of these problems are caused by translation requirements discussed in Section 5.2 while some are

problems inherent to data 
ow diagrams in general.

The �rst problem is the representation of actors. Since actors are only used to set the context

of the functional model and do not a�ect computations or data 
ows involved in the model, actor

objects can be ignored as long as all system inputs and outputs are accounted for. Therefore, in

the ensuing discussion of the functional model, I assume that actors are unimportant to translating

the functional model and may be excluded.

The second problem is Rumbaugh's use of the functional model. While he states that high-

level processes should equate to operations in the object model or actions in the dynamic model,

he tends to a take a system-level view when developing his functional model and, as a result, his

processes are unrelated to the object or dynamic models. This system-level use forces the speci�er

to backtrack and attempt to determine exactly where these new processes should reside. However,

if I stick to his original statement that processes represent operations and actions and use the

functional model only to decompose non-side a�ecting operations (i.e., queries) and previously

de�ned actions, this problem disappears and the three models become integrated. While many of

the operations and actions of basic object classes are simple enough to write axiomatic de�nitions,

operations and actions of aggregate objects tend to require more thought and decomposition. Thus,
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in this research, I assume that only non-side a�ecting operations or previously de�ned actions are

decomposed using functional models and that these are generally used at the aggregate level.

Next, problems associated with translation requirement I, that all entities in the model must

be represented by pure functions, sorts, and �rst order axioms, are addressed. Initially, it seems

that processes may simply be represented by functions, data 
ows by sorts and variables in �rst

order axioms, and data stores by speci�c values in the sorts. However, the �rst problem with this

simplistic approach is the requirement to use pure functions to represent processes. While Rum-

baugh states that the lowest-level processes are pure functions, higher-level processes are allowed to

cause side a�ects (i.e., modify other objects, classes of objects, or associations) within the system.

Since algebraic speci�cations require pure functions at all levels, the question is how to represent

side e�ects in pure functions. Functions in algebraic speci�cations may emulate side a�ects by

requiring the object of interest to be input to and output from the function. If I assume processes

only a�ect the objects, object classes, or associations within the aggregate for which they are being

designed, all processes may be de�ned as pure functions. Because process side e�ects may only

a�ect the current aggregate object, if the aggregate object is passed as an input parameter to a

function and returned as an output parameter, then the process is a pure function.

The second problem related to translation requirement I involves the use of data stores. Since

data stores represent objects, object classes, or associations within the aggregate object, passing

the aggregate object as an input parameter to each process allows each processes access to any

object within the aggregate. The process may modify or send events to aggregate components as

speci�ed and return their modi�ed values upon completion. Actually, if a particular process only

accesses or modi�es a single component within the aggregate, only that particular component need

be passed as a parameter. In e�ect, the process in question becomes an operation on the component

it accesses or modi�es.
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The �nal, and most di�cult, set of problems is related to translation requirement II, that

all functional models be completely deterministic. Unfortunately, Rumbaugh himself states that

the functional model does not uniquely specify results of side-e�ecting processes and shows only

possible data paths. Basically what Rumbaugh is saying is that just because certain processes and

data paths are shown in the functional model, not all processes or data 
ows are necessarily used

to compute the high-level process outputs. For instance, Figure 5.14 shows a functional model for

a process update data. The data 
ow diagram at the bottom depicts the decomposition. The data

modi�cations is input to process A which computes two outputs x and y. These outputs become

inputs to processes B and C respectively. Process B retrieves a data value d from the Data store

and updates Data store with data d as well. Process C, on the other hand, simply updates Data

store with a data value d. As Rumbaugh states, this diagram only shows us possible data 
ows and

processes used to implement update data. Do B and C both execute and update di�erent aspects

of Data store and does the order of their execution matter? Or, does either B or C execute (based

on a decision made in A) and update Data store? Obviously, the diagram does not provide enough

information to decide, and therefore cannot be deterministically translated into a set of functions

and axioms that implement update data.

Since all processes are required to be pure functions, process A must output both x and y

everytime it is called, thus requiring some control feature to determine when B or C is executed.

One solution is to require the sorts for both x and y to provide a \distinguished" value, such as

unde�ned, for A to output indicating which process should execute. An alternative solution is

to require A to output explicit control 
ow information. Both of these choices are particularly

uninspiring. Impregnating sorts with distinguished values to control execution is unacceptable

as it inhibits reuse and is theoretically impure . This example only requires the de�nition of a

single distinguished value; however, in more complex control situations, additional distinguished

values might be added to the point where reuse of speci�cations in di�erent contexts might become

unmanageable due to con
icting sort values. Use of control 
ows is also unacceptable since control
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Figure 5.14 A Nondeterministic Functional Model
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ow is de�ned in the dynamic model. Use of additional control 
ows in the functional model leads

to confusion and almost certainly inconsistent speci�cations. A better approach is to place all

control 
ow information in the dynamic model using additional states and transitions as shown in

Figure 5.15, or to de�ne these decisions using axiomatic process de�nition. Either solution removes

such conditional execution and thus produces a deterministic functional model.

event/update-data(modifications)
1 2

1 1a

1c

1b

2
event/A(modifications)

[easy-mod]/C(y)

[diff-mod]/B(x)

Figure 5.15 Placing Control in Dynamic Model

The �nal problem with the functional model is a problem with data 
ow diagrams in general:

How are sequencing, iteration, and conditional execution represented? In Rumbaugh's functional

model this is not a problem since he allows the functional model to represent \possible paths".

However, as pointed out above, to translate the functional model into algebraic speci�cations, it

must be deterministic. Therefore, the sequencing/iteration/conditional execution problem is the

same problem discussed above and requires the same solution: specify all control in the dynamic

model or directly using axioms. Sequencing, iteration, and conditional execution can all be handled

by either method.
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5.5.3 The Restricted OMT Functional Model. To deterministically translate the func-

tional model into algebraic speci�cations, certain restrictions were suggested in Section 5.5.2. These

suggestions are embodied in the following rules and ensure translation requirements I and II are

met.

1. Assumption V.8 Only non-side a�ecting operations (i.e., queries) or actions (side a�ecting

operations) de�ned in the dynamic model are decomposed using functional models.

2. Assumption V.9 Processes only a�ect the objects, object classes, or associations within the

class (aggregate) for which it is being designed.

3. Assumption V.10 Data stores must be class sets or associations while data 
ows are indi-

vidual objects and links. If a data store is a class set, the name of the data store is assumed

to be \c-CLASS" or a role name (where \c" is the name of the class). If the data store is an

association, the name of the data store is assumed to be \c-ASSOC".

4. Assumption V.11 All processes are pure functions. All data stores accessed must be input

as parameters to the process.

5. Assumption V.12 All processes must be either 1) a method, or 2) a purely functional op-

eration:

(a) All processes implementing dynamic model actions are assumed to be side a�ecting and

take an object (and possibly other parameters) as input and return the modi�ed object as

output.

(b) All processes/subprocesses that access or modify data stores must input the appropriate

class set or association.

(c) All processes/subprocesses that modify data stores may output only a single data store

and thus become \leaf" process in the functional model.
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6. Assumption V.13 All retrievals from data stores are performed by a \leaf" process that

accesses only a single data store. This retrieval occurs before modi�cations to data stores may

occur.

7. Assumption V.14 By convention, data 
ows to or from a data store are label with <class-

name : class-set-sort> or <association-name : association-sort>.

8. Assumption V.15 There is no explicit ordering of updates to the same data store. All

sequencing requirements must be speci�ed in the dynamic model only.

9. Assumption V.16 All subprocesses execute and produce all outputs whenever the higher-

level process is executed.

10. Assumption V.17 Conditions, loops, and sequencing requirements are speci�ed in the dy-

namic model only. Sequencing in the functional model is derived solely from data dependen-

cies.

11. Assumption V.18 All uniquely named data 
ows into or out of a process are individual

inputs or outputs of the process and completely de�ne the input and output parameters of the

process. Data 
ows from a single process with identical names and types are considered a

single output and may be used as inputs to multiple processes or data stores.

12. Assumption V.19 Data 
ows are represented as name : type and are assumed to be unique.

If two identically named data 
ows are outputs from the same process, they are assumed to

be a single output.

13. Assumption V.20 Composition and decomposition of aggregate values is performed by user-

de�ned processes. Forking and joining of data 
ows is not supported.

14. Assumption V.21 Copying of data may be performed by a speci�c process or by outputting

multiple copies of a data 
ow from a single process. Copying by splitting data 
ows is not

supported.
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5.5.4 Functional Model Semantics. In this section I formally de�ne the semantics of the

restricted OMT functional model. A few formal de�nitions of data 
ow diagram semantics have

been proposed. Adler (2) and Tao (92) propose graph-based semantics with a relation de�ning

the precedence, or \is used to compute", relationship that exists between data 
ows. Vazquez (94)

de�nes semantics of data 
ow diagrams by sentences over a �-term algebra, where � is an algebraic

signature de�ning the basic constructs of data 
ow diagrams including some very simplistic control

structures. Since control is not included in the restricted functional model, I choose to model the

semantics of data 
ow diagrams using the approach of Tao and Kung. Tao and Kung formally

de�ne data 
ow diagrams as a directed graph with a precedence relation over the data 
ows as

de�ned below.

De�nition 5.5.1 A Data Flow Diagram is a quadruple D = (C;F;K;R) where

� C = P [S [E is a nonempty �nite set of components consisting of pairwise disjoint sets: P ,

the set of processes; S the set of data stores; and E the set of external entities.

� F � (P � P ) [ (P � S) [ (S � P ) [ (P � E) [ (E � P ) is the set of data 
ows; each with a

unique name.

� K � P [ S is the set of subsystem components, and C �K the environment.

� R � F � F is a precedence relation between elements of F .

This de�nition de�nes a data 
ow diagram as a directed graph with a set of components

(processes and data stores) within the environment (the system) being modelled as well as outside

the environment (actors) to set the diagram \context". Each data 
ow is assumed to have a unique

name and transfer data directly from one component to another (i.e., no splitting or forking).

Because general data 
ow diagrams do not require all paths to be executed, certain data 
ow

inputs to a process may not be used to compute all outputs of the process. Thus Tao and Kung

de�ne a precedence relation to describe exactly which inputs are required to produce which outputs

as de�ned below.

De�nition 5.5.2 The Precedence Relation of a data 
ow diagram, D, denoted RD, is the

transitive closure of the union of the precedence relations for all components c 2 K, or RD =
(
S
c2K Rc)

+ where Rc denotes the precedence relation for the component c and + is the transitive

closure. Rc is de�ned as:
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� If c 2 P then Rc is the empty set fg if P 2 C �K; otherwise, P is a mapping from I(c) to
O(c) such that (di; dj) 2 Rc if and only if di is used by P to produce dj .

� If c 2 S then Rc is the empty set fg if S 2 C � K; otherwise, di 2 I(c) and dj 2 O(c),
(di; dj) 2 Rc if and only if di and dj contain some data item in common.

� If c 2 E then Rc is the empty set fg.

where I(c) and O(c) are the input to and outputs from component C.

The precedence relation de�nes precisely which data 
ows must be de�ned prior to the com-

putation of other data 
ows. The relation is de�ned over the components in the environment. Just

because a data 
ow is an input to a process does not mean it is used to compute a particular

output of the same process. That information lies solely in the internal semantics of the process.

For example, assume we have a process, ProduceReports that produces two reports, a summary

report and an error report, as shown in Figure 5.16. In this case, the summary report is generated

as long as there are valid or invalid accounts input to the process whereas the error report is only

generated when there are invalid accounts input to the process. In this case, RProduceReports =

f(invalid-accounts; error-report)g, since neither valid or invalid accounts are required to produce

a summary report; however, an invalid account is required to produce an error report.

summary-report

valid-accounts

error-report

invalid-accounts

ProduceReports

Figure 5.16 Non-Deterministic Precedence

Therefore, to de�ne the precedence relation, the analyst must know the functionality of each

process. That is, he or she must know which output data is dependent upon which input data.

Although the precedence relation captures the data 
ow relationships, it does not provide control

information. For instance, in Figure 5.14, it is still not known whether process B or C executes, or

in what order the input and output to the data store occur.
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Given the restrictions placed on general data 
ow diagrams in the restricted OMT functional

model in Section 5.5.3, the semantics of data 
ow diagrams as de�ned by Tao and Kung can be

re�ned to de�ne the semantics of the restricted OMT functional model.

De�nition 5.5.3 A Restricted OMT Functional Model is a quadruple D = (C;F;K;R)
where

� C = P [ S [ E is a nonempty �nite set of components consisting of pairwise disjoint sets:

P , the set of processes; S the set of data stores; and E = fExterng where Extern represents

any entity external to the object being de�ned.

� F � (P � P ) [ (P � S) [ (S � P ) [ (P � E) [ (E � P ) is the set of data 
ows; each with a

unique name.

� K = P [ S is the set of subsystem components.

� R � F � F is a precedence relation between elements of F .

Because the functional model restrictions require all inputs to precede all outputs, and for all

data store reads to precede data store writes, the precedence relation becomes computable directly

from C and F and requires no analyst intervention.

De�nition 5.5.4 The Precedence Relation for a restricted OMT functional model, D, denoted

RD, is the transitive closure union of the precedence relations for all components c 2 K, or RD =
(
S
c2K Rc)

+ where Rc denotes the precedence relation for the component c and + is the transitive

closure. Rc is de�ned as:

� If c 2 P then Rc = f(di; dj) j di 2 I(c) ^ dj 2 O(c)g.

� If c 2 S then Rc = f(di; dj) j di 2 I(c) ^ dj 2 O(c)g.

� RExtern = fg.

Thus, for the restricted functional model, the precedence relation simply de�nes which data


ows must be computed before others based on their graph location. With these semantics, struc-

tural aspects of the restricted functional model are completely de�ned. For a subdiagram that

de�nes a higher-level process, this de�nes the semantics of the higher-level process in terms of

lower-level processes. The internal functionality of these low-level processes are de�ned axiomati-

cally.
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5.6 Summary

This report describes the OMT object model as used by Rumbaugh as well as problems

encountered when attempting translate it into algebraic speci�cations. Restrictions and exact

interpretations of the object model, dynamic model, and functional model entities are presented

which allow the object model to be deterministically translated into algebraic speci�cations. The

formal semantics of the restricted object model are represented by Bourdeau and Cheng's algebraic

speci�cation, the semantics of the restricted dynamic model are derived from the semantics of

statecharts as de�ned by Harel, while the semantics of the restricted functional model are derived

from generalized data 
ow diagram semantics.

The semantics de�ned in this chapter are used in Chapter VI to help de�ne the theory-based

model. Their main use, however, is in Chapter VII where they are used to show that the translations

de�ned in that chapter preserve the semantics of the individual models.
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VI. A Theory-Based Object Model

6.1 Introduction

This chapter de�nes a theory-based object model based on Rumbaugh's semi-formal Object

Modeling Technique (OMT) (83). The theory-based object model is described using algebraic

speci�cations to de�ne object classes while relationships between classes are de�ned via category

theory operations within the category Spec. The algebraic theory language used to capture the

internal class structure as well as the relationships between classes is O-Slang, an object-oriented

derivative of Slang (54). A complete description of O-Slang is contained in Appendix B.

This theory-based object model is designed to faithfully capture the essence of an object-

oriented speci�cation in a formal framework and to provide the capability to reason about the

resulting speci�cation. This framework is based on a formal de�nition of generally accepted object-

oriented concepts. Section 6.2 presents the basic concepts of object classes including attributes,

methods, events, operations, and states and how they are captured in an algebraic speci�cation.

The next three sections discuss relationships between objects using algebraic class speci�cations and

category theory concepts: Section 6.3 de�nes the mechanism and e�ects of inheritance, Section 6.4

presents the concept of links and associations, and Section 6.5 discusses a unique speci�cation, the

aggregate class. The �nal section, Section 6.6, explains how event theories and category theory

operation are used to create communication paths in a domain model based on events de�ned in

the dynamic model.

There are four basic premises upon which the theory-based object model is based.

1. The model is designed to capture information necessary for domain modeling. Domain mod-

eling is concerned with capturing general object classes and operations within a domain.

System speci�cations are derived from domain models by selecting the speci�c number and

types of object classes as well as providing detailed system level requirements as discussed in

Chapter II.
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2. The two central concepts of object-orientation are object classes and the relationships between

them. These relationships include association, generalization-specialization, and aggregation.

3. The model assumes consistent user de�ned class speci�cations. The model only ensures that

this consistency is maintained when composing speci�cations.

4. All three Rumbaughmodels map into classes using a restricted notion of Rumbaugh semantics

as de�ned in Chapter V. For instance, Rumbaugh's object model is used to de�ne classes

and their relationships. There is a dynamic model for each class which de�nes how the class

responds to incoming events and a functional model to de�ne how aggregate actions are

transformed into component actions.

6.2 Classes

The building block of object-orientation is the object class. There are two types of classes:

abstract and concrete. A concrete class is a blueprint from which instances of the class, called

objects, are created. An abstract class is a class with no direct instances but whose descendents do

have direct instances (83:61) and are discussed in detail in Section 6.2.10. Concrete classes have two

parts: a class type and a class set. Class sets are discussed in Section 6.2.8. A class type de�nes the

structure of an object and its response to external stimuli based its current state. A class type also

has two components: attributes and operations. An attribute is an observable characteristic of an

object and may either be constant or change over time. Attribute values do not necessarily uniquely

de�ne individual objects { two distinct objects may have identical attribute values. Although an

object's attribute values are generally accessible to other objects, modi�cations of those values may

only be done by the object itself, thus providing greater reuse potential. Objects communicate

via message passing or through global events. In message passing, one object sends a message

to another object. The message is then processed by the receiving object, possibly causing it to

change state or to send additional messages. In an event driven system, objects generate events
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which are broadcast globally and \captured" by other objects in the system. In general, the object

generating an event does not know its destination nor does the receiving object know its source.

In the theory-based object model, I de�ne an object class type as a theory presentation as

de�ned in De�nition 4.2.1. For a given class C, S represents the sorts in the class including a class

sort and any other sorts referenced in the theory while 
 is a set of theory operations and are used

to represent attributes, operations, methods, and events. Each of these is discussed in detail below.

6.2.1 Sorts. Sorts are collections of values. Sorts may represent conventional data types

such as integers, reals, or strings, or they may be abstract, representing such things as people,

places, or ideas. The theory-based object model has two distinguished sort types: class sorts and

state sorts. A class sort is the set of all possible object names in the class. Each object within the

class has a unique name from the class sort. Objects themselves are not explicitly represented in

a class type or speci�cation: they are maintained external to the class type. By de�ning the class

sort as a set of object names, objects may be referenced without having to maintain multiple copies

of the object. A second set of sorts in a class type are the state sorts. Elements of a state sort are

the individual class states as de�ned in the dynamic model.

6.2.2 Attributes. Attributes are visible operations that take an object name and return

the value of a particular characteristic associated with that object. Attribute operations provide

information about an object; they do not modify the object in any way. State attributes return

values in the state sort representing the current state of an object. There is generally one state

attribute per state sort. Multiple state sorts and attributes are used to de�ne concurrent states

and substates. A more complete discussion of state sorts and state attributes can be found in

Section 6.2.7.

6.2.3 Methods. Methods are non-visible operations that modify an object's attribute

values and are de�ned by actions in the dynamic model or functions in the functional model. In
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the theory-based object model, a method is not visible to external objects. Communication between

objects is handled strictly by events. A method may modify none, some, or all of an object's non-

state attribute values while event operations may only modify state attributes. Formal parameters

of a method consist of an object name followed by other additional parameters. The return value

of a method is the name of the object. Although the name is unchanged, returning the name

of the object allows the nesting of method and attribute calls. Generally, the e�ect of a method

on an object is de�ned by its e�ect on each of the non-state attributes of the object. Since the

method returns the name of the object passed to it, a method invocation may be \embedded" in

an attribute invocation allowing the e�ect of the method on the attribute to be precisely speci�ed

as shown below.

attribute-name(method-name(object-name)) = new-value-of-attribute

In a concrete class, it is assumed that the e�ect of each method is completely de�ned for all

possible object states and input parameters.

Assumption VI.1 In a concrete class, the e�ect of each method on each normal attribute in the

class is completely de�ned for all states and input parameters.

If the general result of a method applied to an object in a particular state cannot be computed or

doesn't make sense (i.e., divide by zero, etc.), the e�ect of the method must still be de�ned. In

most cases, if an object is in an inappropriate state prior to the method invocation or parameters

passed to the method are invalid, there is simply no e�ect on the object. These preconditions are

speci�ed easily through the use of implication. For instance, for an integer, a divide method only

makes sense when the divisor parameter is non-zero. Axioms describing the desired behavior are

easily speci�ed an shown below.

parameter 6= 0) value(divide(integer;parameter)) = integer=parameter

parameter = 0) value(divide(integer;parameter)) = integer
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This assumption plays an important role in de�ning the e�ects of inheritance in Section 6.3.

Each class type has a create method used to create valid objects of the class type. This

method is only used to create objects and assign initial values to attributes.

6.2.4 Events. Events are the visible operations that allow objects to communicate. Event

operations are derived from the dynamic model and are only allowed to directly modify the state

attributes of a class as shown in Figure 6.1. As a side e�ect, events may cause the other actions to

be initiated. These actions might include the invocation of one or more methods or the generation

of events to be sent to other objects. Each class type has a default new event which triggers the

create method and initializes the object's state attributes. Event operations are discussed in more

detail in Sections 6.3 and 6.6.

Figure 6.1 shows an example of a theory-based representation of an object class type in O-

Slang. The operations date, bal, and acct-state are attributes, create-acct, credit and debit are

methods, and new-acct, deposit and withdrawal are events.

6.2.5 Operations. Theory-based object model Operations are visible operations that do

not meet the criteria of an attribute, method, or an event. These operations are generally used to

compute derived attributes, but are not restricted to this purpose; however, operations may not

modify any of an object's attribute values.

A common example of a non-derived attribute operation is attr-equal. The attr-equal operation

determines if two objects from a class are equal based on the non-state attribute's values. This

operation is especially useful in specifying method invocation after receipt of a particular event. In

this case, attr-equal speci�es that the e�ect of a method on the non-state attributes is equivalent

to the e�ect of an event on an object. In Figure 6.1, the axiom

acct-state(a) = ok) acct-state(deposit(a; x)) = ok ^ attr-equal(deposit(a; x); credit(a; x))
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class Acct is

import Amnt, Date

class sort Acct

sorts Acct-State

operations

attr-equal : Acct, Acct ! Boolean

attributes

date : Acct ! Date

bal : Acct ! Amnt

state-attributes

acct-state : Acct ! Acct-State

methods

create-acct : Date ! Acct

credit, debit : Acct, Amnt ! Acct

states

ok, overdrawn : ! Acct-State

events

new-acct : Date ! Acct

deposit, withdrawal : Acct, Amnt ! Acct

axioms

% state uniqueness and invariant axioms

ok 6= overdrawn;

8 (a: Acct) acct-state(a) = ok ) bal(a) � 0;

8 (a: Acct) acct-state(a) = overdrawn) bal(a) < 0;

% operation de�nitions

8 (a,a1: Acct) attr-equal(a, a1) ) date(a) = date(a1) ^ bal(a) = bal(a1);

% method de�nitions

8 (d: Date) date(create-acct(d)) = d ^ bal(create-acct(d)) = 0;

8 (a: Acct, x: Amnt) bal(credit(a,x)) = bal(a) + x

^ date(credit(a,x)) = date(a) ^ rate(credit(a,x)) = rate(a)

^ int-date(credit(a,x)) = int-date(a) ^ check-cost(credit(a,x)) = check-cost(a);

% event de�nitions

8 (d: Date) acct-state(new-acct(d))=ok ^ attr-equal(new-acct(d), create-acct(d))

8 (a: Acct, x: Amnt) acct-state(a)=ok

) acct-state(deposit(a,x))=ok ^ attr-equal(deposit(a,x), credit(a,x));

8 (a: Acct, x: Amnt) acct-state(a)=overdrawn ^ bal(a) + x � 0

) acct-state(deposit(a,x))=ok ^ attr-equal(deposit(a,x), credit(a,x));

8 (a: Acct, x: Amnt) acct-state(a)=overdrawn ^ bal(a) + x < 0

) acct-state(deposit(a,x))=overdrawn ^ attr-equal(deposit(a,x), credit(a,x));

8 (a: Acct, x: Amnt) acct-state(a)=ok ^ bal(a) � x

) acct-state(withdrawal(a,x))=ok ^ attr-equal(withdrawal(a,x), debit(a,x));

8 (a: Acct, x: Amnt) acct-state(a)=ok ^ bal(a) < x

) acct-state(withdrawal(a,x))=overdrawn ^ attr-equal(withdrawal(a,x), debit(a,x));

8 (a: Acct, x: Amnt) acct-state(a)=overdrawn

) acct-state(withdrawal(a,x))=overdrawn ^ attr-equal(withdrawal(a,x), a)

end-class

Figure 6.1 Object Class
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states that if an account is in the ok state and a deposit event is received, the object stays in the

ok state and that the e�ect of the deposit event on non-state attributes is equivalent to the e�ect

of the credit method on the same object.

6.2.6 Axioms. Class axioms are �rst-order logic statements that must be true for any

object of the class. They are used in class speci�cations to de�ne the semantics of class operations

as well as invariants between class attributes. In general, axioms de�ne methods and events by

describing their e�ects on attributes or through composition of other operations.

6.2.7 State. State is vital to object-orientation. As de�ned by Rumbaugh, state is an ab-

straction of an object's attribute values and is represented by a statechart in the dynamic model. A

brief overview and the semantics of statecharts are presented in Section 5.4. To explicitly represent

state in the theory-based object model, each class type has at least one state sort representing this

abstraction of attribute values, a state attribute (one for each state sort) which returns an element

from its associated state sort, a set of states (nullary operations) which are elements in a state

sort, and a set of state invariants that describe constraints on class attributes that must hold true

while in a given state. State attributes are only modi�ed by events as de�ned by transitions in the

class dynamic model. In Figure 6.1, the class state sort is Acct-State, the class state attribute is

acct-state, the state constants are ok and overdrawn, and the state invariants are

acct-state(a) = ok) bal(a) � 0;

acct-state(a) = overdrawn) bal(a) < 0;

These axioms state that when the balance of an account is greater than or equal to zero, the account

must be in the ok state; however, when the balance of the account becomes less than zero, the state

must become overdrawn. Although not a state invariant, the axiom

ok 6= overdrawn
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is critical to the correct interpretation of the speci�cation. It ensures that there are two distinct

states ok and overdrawn. Without this axiom, a valid speci�cation model might have a single

element in the state sort, equivalent to both ok and overdrawn. Notice that the speci�cation does

not restrict the class state sort to only these values. Limiting the class state sort to these values

would not permit valid extensions of the class state by subclasses as discussed in Section 6.3.4.1.

The e�ect of these states on the behavior of the class as shown in Figure 6.2 and is represented by

the axioms of the form

acct-state(a) = ok ^ bal(a) < x) acct-state(withdrawal(a; x)) = overdrawn

This particular axiom requires that withdrawals be made only when the account is in the ok state

prior to the withdrawal event and that if the account is overdrawn as a result of a withdrawal,

the new state of the account becomes overdrawn. Acct state transitions and method invocations

de�ned in the dynamic model are de�ned by the following axioms.

acct-state(a) = ok) acct-state(deposit(a; x)) = ok ^ attr-equal(deposit(a; x); credit(a; x));

acct-state(a) = overdrawn ^ bal(a) + x � 0) acct-state(deposit(a; x)) = ok

^attr-equal(deposit(a; x); credit(a; x));

acct-state(a) = overdrawn ^ bal(a) + x < 0) acct-state(deposit(a; x)) = overdrawn

^attr-equal(deposit(a; x); credit(a; x));

acct-state(a) = ok ^ bal(a) � x) acct-state(withdrawal(a; x)) = ok

^attr-equal(withdrawal(a; x); debit(a; x));

acct-state(a) = ok ^ bal(a) < x) acct-state(withdrawal(a; x)) = overdrawn

^attr-equal(withdrawal(a; x); debit(a; x));

acct-state(a) = overdrawn) acct-state(withdrawal(a; x)) = overdrawn

^attr-equal(withdrawal(a; x); a)

These axioms require that the account state become overdrawn when a withdrawal is performed

that makes the account balance less than zero and that the account state may only change back to

ok when a deposit is made making the balance greater than or equal to zero.

Dynamic model statecharts allow concurrent states and substates. Concurrent statecharts are

used when the attributes of a class type are partitionable into subsets as discussed in Section 5.4.1.
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withdrawal(a,x) [bal(a) < x]
        /debit(a,x)

deposit(a,x) [x + bal(a) >= 0]/credit(a,x)

OK overdrawn

deposit(a,x) [x + bal(a) < 0]
        /credit(a,x)

withdrawal(a,x) [bal(a) >= x]/debit(a,x)

deposit(a,x)/credit(a,x)

new-acct(d)

Figure 6.2 Account Dynamic Model

Formally, concurrent states are represented by multiple state attributes, one for each concurrent

statechart. Substates are handled similarly to concurrent states { by adding additional substate

attributes which are valid only when the class state attribute is in the appropriate state. Additional

examples of using and specifying concurrent and substates are described in Section 6.3.4.1.

6.2.8 Class Set. The Acct class as de�ned in Figure 6.1 only speci�es a template for

creating new objects of the Acct class. However, Rumbaugh's informal model implies the ability to

collectively manage a set of objects in a class. To provide this capability, a class set is created for

each class de�ned (both abstract and concrete).

De�nition 6.2.1 Class Set - A class set is a class whose class sort is a set of objects from a

previously de�ned object class, C. A class set includes a \class event" de�nition for each event in

C such that the reception of a class event by a class set object sends the corresponding event in C

to each object of type C contained in the class set object. If the class C is a subclass of D1:::Dn

then the class set of C is a subclass of the class sets of D1:::Dn.

The class set creates a class type whose class sort is a set of objects and some basic operations

on that set. Using the speci�cations of TRIV and SET as de�ned in Appendix E and basic category

theory operations, the class set can be derived automatically as shown in Figure 6.3. The equivalent

O-Slang speci�cation is shown in Figure 6.4.
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spec Acct-Class-Colimit is

colimit of diagram

nodes TRIV, ACCT, SET

arcs TRIV ! ACCT : fE ! Acctg
TRIV ! SET : fg

end-diagram

spec Acct-Class-Set is

translate ACCT-CLASS-COLIMIT

by fSet ! Acct-Class, E ! Acctg

spec Acct-Class is

import ACCT-CLASS-SET

sort Acct-Class

operations

new-acct-class : ! Acct-Class

withdrawal : Acct-Class, Amnt ! Acct-Class

deposit : Acct-Class, Amnt ! Acct-Class

axioms

new-acct-class() = empty-set;

8 (a: Acct, ac: Acct-Class, x: Amnt) a 2 ac , deposit(a,x) 2 deposit(ac,x);

8 (a: Acct, ac: Acct-Class, x: Amnt) a 2 ac , withdrawal(a,x) 2 withdrawal(ac,x)

end-class

Figure 6.3 Slang Class Set Speci�cation

class Acct-Class is

contained-class ACCT

class sort Acct-Class

events

new-acct-class : ! Acct-Class

withdrawal : Acct-Class, Amnt ! Acct-Class

deposit : Acct-Class, Amnt ! Acct-Class

axioms

new-acct-class() = empty-set;

8 (a: Acct, ac: Acct-Class, x: Amnt) a 2 ac , deposit(a,x) 2 deposit(ac,x);

8 (a: Acct, ac: Acct-Class, x: Amnt) a 2 ac , withdrawal(a,x) 2 withdrawal(ac,x)

end-class

Figure 6.4 O-Slang Class Set Speci�cation
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The speci�cationACCT-CLASS-COLIMIT creates a new speci�cation using the sort E in the

speci�cation SET as a formal parameter and instantiating it using the speci�cation TRIV, unifying

sort E in SET with the class sort Acct from the ACCT class. The diagram for this operation is

shown in Figure 6.5.

Acct-Class-ColimitAcct

SetTriv

c

c

 i 

c{E → Acct}

Acct-Class-Set

Acct-Class

t

i

Figure 6.5 Colimit of Accounts

The colimit of TRIV, SET, and ACCT results in an intermediate speci�cation with a set of

account objects named Set. To eliminate ambiguity, the intermediate speci�cation is translated in

theACCT-CLASS-SET speci�cation such that the sort Set translates toAcct-Class and the sort E is

translated to Acct. The renaming of E eliminates the sort name equivalence class fE, Acctg created

by the colimit operation while the renaming of Set creates the class sort of the �nal speci�cation

ACCT-CLASS.

ACCT-CLASS imports the ACCT-CLASS-SET speci�cation (and with it the ACCT class

type de�nition) in order to add additional \class" events. These class events mirror the individual
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\object" events de�ned in the class type speci�cation. Class set speci�cations simply distribute

the event invocation to each object currently contained in the class set. Additional operations for

selecting individual objects from the class set based on class attributes may also be speci�ed by the

designer using an aggregate or association quali�er. Use of quali�ers is discussed in Section 6.4.2

and 6.5.2.

6.2.9 Object-Valued Attributes. As discussed in Section 6.2, each object within the class

has a unique name which allows other objects (including itself) to reference it. Object-Valued

attributes are the mechanism used to reference external objects from within a class type de�nition

and are the key to formally modeling association and aggregation. An object-valued attribute is a

class attribute whose sort type is a set of object names (a class set sort). Object-valued attributes

behave like normal class attributes. Formally, they are speci�cation operations that take an object

name and return an external object name or set of names.

The e�ects of methods on object-valued attributes are de�ned similarly to normal attributes.

However, instead of directly specifying a new value for the object-valued attribute, an event from

the object-valued attribute's class is sent to the object named by the object-valued attribute.

An example of using an object-valued attribute is shown in Figure 6.6. In this example,

Producer is a class of objects which produce items to be stored in a bu�er. Bu�er is a class of

simple bu�er objects with get and put operations. The attribute bu�er-obj is an object-valued

attribute which holds the name of the speci�c bu�er object in which the producer object stores its

items. Once the producer and bu�er are initialized, each produce-item event invokes the produce

method which causes the item produced by the producer to be put into the bu�er referenced by

the bu�er object-valued attribute as de�ned by the following axiom.

buffer-obj(produce(p; i)) = put(buffer-obj(p); i)

The put event is made available by importing the Bu�er class type speci�cation directly into

the Producer speci�cation. It is important to note that all modi�cations of objects referenced
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by object-valued attributes are accomplished by sending events to the objects instead of directly

invoking methods since events ensure the object is in the appropriate state before a method is

invoked. A direct method invocation could result in errors or inconsistencies in the referenced

object.

class Producer is

imports Bu�er, Item

class sort Producer

sorts Producer-State

operations

attr-equal : Producer, Producer ! Boolean

attributes

bu�er-obj : Producer ! Bu�er

methods

create-producer : Bu�er ! Producer

produce : Producer, Item ! Producer

events

new-producer : Bu�er ! Producer

produce-item : Producer, Item ! Producer

axioms

% operation de�nitions

8 (p,p1: Producer) attr-equal(p, p1) ) bu�er-obj(p) = bu�er-obj(p1);

% event de�nitions

8 (b: Bu�er) attr-equal(new-producer(b), create-producer(b));

8 (i: Item, p: Producer) attr-equal(produce-item(p,i), produce(p,i));

% method de�nitions

8 (b: Bu�er) bu�er-obj(create-producer(b)) = b;

8 (i: Item, p: Producer) bu�er-obj(produce(p,i)) = put(bu�er-obj(p),i)

end-class

Figure 6.6 Object-Valued Attribute Example

6.2.10 Abstract Classes. Abstract classes and concrete classes are de�ned in the same

manner with one exception. Because abstract classes are not instantiable, they are not required to

fully de�ne operations and thus Assumption VI.1 does not hold. Basically this allows speci�cation

operations (methods or operations) to be de�ned without fully de�ning their e�ect on every at-

tribute. Only characteristics that must hold true in all subclasses need be speci�ed. If an operation

is not completely de�ned, it is called an abstract operation. Abstract classes are generally used to

abstract out common elements of subclasses without having to fully de�ne them.
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6.3 Inheritance

In this research, inheritance holds to the substitution property as presented in Section 4.4.

Simple inheritance is modelled using speci�cations morphisms between class speci�cations as de-

�ned in De�nition 4.4.2 while multiple inheritance is de�ned in De�ntion 4.4.3.

As discussed in Section 4.2.1, showing that a group of �rst order axioms are consistent is

generally not possible; however, since by Assumption I.1 user de�ned speci�cations are consistent,

I can develop rules to ensure this consistency is not violated when inheritance is applied. Because

methods and events are de�ned in terms of their a�ect on attributes, these rules are developed

based on the e�ect of methods and events on attributes. Table 6.1 shows the rules for methods and

normal attributes. Basically this tables shows that in a subclass, new axioms may not be generated

that de�ne how a method de�ned in the superclass a�ects an attribute de�ned in the superclass.

Table 6.1 Method/Attribute Inheritance Rules

Validity of axiomatic de�nition

Method de�ned in Attribute de�ned in in subclass of

e�ect of method on attribute

Superclass Superclass Invalid

Superclass Subclass Valid

Subclass Superclass Valid

Subclass Subclass Valid

Because, by Assumption VI.1, superclass methods are completely de�ned over superclass

attributes, additional axioms are not needed and can only lead to inconsistencies in the subclass.

Notice that the other three combinations are valid. In fact, the other three combinations are

required to ensure that methods introduced in the subclass and superclass are completely de�ned

over attributes introduced in both the superclass and subclass. These same rules hold for events and

state attributes as well; however, additional rules for substates and concurrent states are developed

in Section 6.3.4.1.

An example of single inheritance using a subclass of the ACCT class, SACCT { a savings

account class, is shown in Figure 6.7. The import statement includes all the sorts, operations,
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and axioms declared in the ACCT class directly into the new class while the class sort declaration

SAcct < Acct states that SAcct is a subsort of Acct, and as such, all operations and axioms

that apply to an Acct object apply to a SAcct object as well. The dynamic model for SACCT is

shown in Figure 6.8. The import operation de�nes a speci�cation morphism between ACCT and

SACCTwhile the subsort declaration completes the requirements of De�nition 4.4.2 for inheritance.

Therefore, SACCT is a valid subclass of ACCT, the substitution property holds, and internal class

consistency is preserved.

6.3.1 Implications of the Substitution Property. Since my interpretation of the substitu-

tion property de�ned in Equation 4.3 implies that a subclass D must only act like its superclass

in an environment design speci�cally for the superclass, it is possible for a subclass to have states

in which it does not behave like its superclass. The substitution property only requires that these

new states not be reachable via events available to the superclass. Consider the example shown in

Figure 6.9. The statechart in Figure 6.9(b) extends the statechart in Figure 6.9(a) by adding a new

state. A subclass object behaves like an object from its superclass as long as event e4 sending the

object from state 3 to state 4 is not received. Once in state 4, the subclass no longer behaves like a

member of the superclass. While de�nitely not wrong, this e�ect may not satisfy one's intuition of

what is expected in a subclass { superclass relationship. The more restrictive interpretation given

by Bourdeau and Cheng (14), as discussed in Section 4.4, forces a subclass object to reside only in

states de�ned in the superclass object and thus would not allow state 4 to be added in the subclass.

6.3.2 Multiple Inheritance. Multiple inheritance is de�ned in De�nition 4.4.2. To create

an account that combines the features of a savings account with those of a checking account,

CACCT (Figures 6.10 and 6.11), the colimit of classes ACCT, SACCT, CACCT, and morphisms

from ACCT to SACCT and CACCT is computed as shown in Figure 6.12, where an arrow labeled

with an \i" represents an import morphism and a \c" represents a morphism formed by the colimit

operation. A simple extension of the colimit speci�cation with the class sort de�nition
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class SAcct is

import Acct, Rate

class sort SAcct < Acct

operations

attr-equal : SAcct, SAcct ! Boolean

attributes

rate : SAcct ! Rate

int-date : SAcct ! Date

methods

create-sacct : Date ! SAcct

set-rate : SAcct, Date, Rate ! SAcct

comp-int : SAcct, Date ! SAcct

events

new-sacct : Date ! SAcct

rate-change : SAcct, Date, Rate ! SAcct

compute-interest : SAcct, Date ! SAcct

axioms 8 (d: Date, r: Rate, a, a1: SAcct)

% operation de�nitions

8 (a,a1: SAcct) attr-equal(a, a1) ) rate(a) = rate(a1) ^ int-date(a) = int-date(a1);

% create method de�nition

8 (d: Date) date(create-sacct(d)) = date(create-acct(d)) ^ bal(create-sacct(d)) = bal(create-acct(d))

^ acct-state(create-sacct(d)) = acct-state(create-acct(d)) ^ int-date(create-sacct(d)) = d

^ rate(create-sacct(d)) = 0;

% credit method de�nitions

8 (s: SAcct, a: Amnt) rate(credit(s,a)) = rate(s) ^ int-date(credit(s,a)) = int-date(s);

% debit method de�nitions

8 (s: SAcct, a: Amnt) rate(debit(s,a)) = rate(s) ^ int-date(debit(s,a)) = int-date(s);

% set-rate method de�nitions

8 (d: Date, r: Rate, a: SAcct) rate(set-rate(a,d,r)) = r ^ int-date(set-rate(a,d,r)) = d

^ bal(set-rate(a,d,r)) = bal(a) ^ date(set-rate(a,d,r)) = date(a);

% comp-int method de�nitions

8 (d: Date, a: SAcct) rate(comp-int(a,d)) = rate(a) ^ int-date(comp-int(a,d)) = d

^ bal(a) � 0 ) bal(comp-int(a,d)) = bal(a) + rate(a) * ((d - int-date(a))/days-per-year(d))

^ bal(a) � 0 ) bal(comp-int(a,d)) = bal(a) ^ date(comp-int(a,d)) = date(a);

% new event de�nition

8 (d: Date) acct-state(new-sacct(d)) = ok ^ attr-equal(new-sacct(d), create-sacct(d));

% rate-change event de�nitions

8 (d: Date, r: Rate, a: SAcct) acct-state(a) = ok ) acct-state(rate-change(a,d,r)) = ok

^ attr-equal(rate-change(a,d,r),set-rate(comp-int(a,d),d,r));

8 (d: Date, r: Rate, a: SAcct) acct-state(a) = overdrawn

) acct-state(rate-change(a,d,r)) = overdrawn

^ attr-equal(rate-change(a,d,r),set-rate(comp-int(a,d),d,r));

% compute-interest event de�nitions

8 (d: Date, a: SAcct) acct-state(a) = ok ) acct-state(compute-interest(a,d)) = ok

^ attr-equal(compute-interest(a,d),comp-int(a,d));

8 (d: Date, a: SAcct) acct-state(a) = overdrawn ) acct-state(compute-interest(a,d)) = overdrawn

^ attr-equal(compute-interest(a,d),a)

end-class

Figure 6.7 Savings Class
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withdrawal(a,x) [bal(a) < x]
        /debit(a,x)

deposit(a,x) [x + bal(a) >= 0]/credit(a,x)

OK overdrawn

deposit(a,x) [x + bal(a) < 0]
        /credit(a,x)

withdrawal(a,x) [bal(a) >= x]/debit(a,x)

deposit(a,x)/credit(a,x)

rate-change(a,d,r)
   /set-rate(a,d,r)

rate-change(a,d,r)
   /set-rate(a,d,r)

compute-interest(a,d)
   /int(a,d)

Figure 6.8 Savings Account Dynamic Model

1 2 3
e1 e2

e3

1 2 3
e1 e2

e3

4
e4

e5

(a) Superclass state model

(b) Subclass state model

Figure 6.9 Subclass State Extension

Comb-Acct < SAcct; CAcct

yields the desired class where Comb-Acct is a subclass of both SAcct and CAcct. Figures 6.13, 6.14,

and 6.15 show the \long" version of the combined speci�cation with all the attributes, methods,

and events inherited by the Comb-Acct class.

6.3.3 Subclasses and Class Sort Subsorts. The subclass { superclass relationship corre-

sponds to the subsort { supersort relationship of the class sort. Since a subclass has all the features

of the superclass and subclass object can be substituted for superclass objects, it subclass objects

are in fact, members of the superclass. Since there is a one-to-one correspondence between objects

in a class and names in the class sort, an object in a subclass must have a name in the subsort as

well as in the class sort.

The O-Slang subsort operator < de�nes a subset relationship among sorts such that for two

sorts, A and B in speci�cation S, A < B ) A
0
� B

0 where A0 and B0 are sets representing A
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class CAcct is

import Acct class sort CAcct < Acct

operations

attr-equal : CAcct, CAcct ! Boolean

attributes

check-cost : CAcct ! Amnt

methods

create-cacct : Date ! CAcct

set-check-cost : CAcct, Amnt ! CAcct

events

new-cacct : Date ! CAcct

change-check-cost : CAcct, Amnt ! CAcct

write-check : CAcct, Amnt ! CAcct

axioms 8 (a: CAcct, x: Amnt)

% operation de�nitions

attr-equal(a, a1) ) check-cost(a) = check-cost(a1);

% create method de�nition

date(create-cacct(d)) = date(create-acct(d));

bal(create-cacct(d)) = bal(create-acct(d));

acct-state(create-cacct(d)) = acct-state(create-acct(d));

check-cost(create-cacct(d)) = 0;

% credit method de�nitions

8 (c: CAcct, a: Amnt) check-cost(credit(c,a)) = check-cost(c);

% debit method de�nitions

8 (c: CAcct, a: Amnt) check-cost(debit(c,a)) = check-cost(c);

% set-check-cost method de�nition

8 (a: CAcct, x: Amnt) check-cost(set-check-cost(a, x)) = x;

% new event de�nition

8 (d: Date) acct-state(new-cacct(d)) = ok ^ attr-equal(new-cacct(d), create-acct(d));

% write-check-cost event de�nition

8 (a: CAcct, x: Amnt) acct-state(a) = ok ^ bal(a) � x

) acct-state(write-check(a,x)) = ok ^ attr-equal(write-check(a,x), debit(a,x);

8 (a: CAcct, x: Amnt) acct-state(a) = ok ^ bal(a) < x

) acct-state(write-check(a,x)) = overdrawn ^ attr-equal(write-check(a,x), debit(a,x);

8 (a: CAcct, x: Amnt) acct-state(a) = overdrawn

) acct-state(write-check(a,x)) = overdrawn ^ attr-equal(write-check(a,x), debit(a,x);

% set-check-cost method de�nition

8 (a: CAcct, x: Amnt) acct-state(a) = ok

) acct-state(write-check(a,x)) = ok ^ attr-equal(change-check-cost(a,x), set-check-cost(a,x)) ;

8 (a: CAcct, x: Amnt) acct-state(a) = overdrawn

) acct-state(write-check(a,x)) = overdrawn ^ attr-equal(change-check-cost(a,x), set-check-cost(a,x))

end-class

Figure 6.10 Checking Class
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withdrawal(a,x) [bal(a) < x]
        /debit(a,x)

deposit(a,x) [x + bal(a) >= 0]
        /credit(a,x)

OK overdrawn

deposit(a,x) [x + bal(a) < 0]
        /credit(a,x)

withdrawal(a,x) [bal(a) >= x]/debit(a,x)

deposit(a,x)/credit(a,x)

change-check-cost(a,x)
   /set-check-cost(a,x)

write-check(a,x)/debit(a,x,+check-cost(a))

change-check-cost(a,x)
   /set-check-cost(a,x)

write-check(a,x) 
    [bal(a) >= x+check-cost(a)]
    /debit(a,x+check-cost(a))

write-check(a,x) 
    [bal(a) < x+check-cost(a)]
    /debit(a,x+check-cost(a))

new-cacct(d)

Figure 6.11 Checking Account Dynamic Model

SAcct CAcct

Acct

Comb-Acct

c

c

c

 i  i 

Figure 6.12 Colimit of Accounts

and B in a model of S. Thus, if a class D is a subclass of a class C, then the class sort of D, Dcs,

is a subsort of the class sort of class C, Ccs, or D
0
cs � C

0
cs.

6.3.4 Behavioral Inheritance. There are two methods of behavioral speci�cation in OMT:

the dynamic model and the functional model. Dynamic behavior is speci�ed by a statechart for

each class while functional behavior is speci�ed at the system, or aggregate level by data 
ow

diagrams. Section 6.3.4.1 de�nes the e�ects of inheritance on the dynamic model while Section

6.3.4.2 describes the e�ects of inheritance of functional behavior.

6.3.4.1 Dynamic Inheritance. Because the e�ect of a method or event is based

on the object's state and must be equivalent to the e�ect of a method or event on a superclass

object, modi�cation of inherited dynamic behavior must conform to certain rules. Since each class

has possibly multiple \state", \substate", or \concurrent state" attributes (as described in Section
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class Comb-Acct is

import SAcct, CAcct

class sort Comb-Acct < SAcct, CAcct

sorts Acct-State

operations

attr-equal : Comb-Acct, Comb-Acct ! Boolean

attributes

date : Comb-Acct ! Date

bal : Comb-Acct ! Amnt

rate : Comb-Acct ! Rate

int-date : Comb-Acct ! Date

check-cost : Comb-Acct ! Amnt

state-attributes

acct-state : Comb-Acct ! Acct-State

methods

create-acct : Date ! Comb-Acct

create-sacct : Date ! Comb-Acct

create-cacct : Date ! Comb-Acct

create-comb-acct : Date ! Comb-Acct

credit : Comb-Acct, Amnt ! Comb-Acct

debit : Comb-Acct, Amnt ! Comb-Acct

set-rate : Comb-Acct, Date, Rate ! Comb-Acct

int : Comb-Acct, Date ! Comb-Acct

set-check-cost : Comb-Acct, Amnt ! Comb-Acct

write-check : Comb-Acct, Amnt ! Comb-Acct

states

ok : ! Acct-State

overdrawn : ! Acct-State

events

new-acct : Date ! Comb-Acct

new-sacct : Date ! Comb-Acct

new-cacct : Date ! Comb-Acct

new-comb-acct : Date ! Comb-Acct

deposit : Comb-Acct, Amnt ! Comb-Acct

withdrawal : Comb-Acct, Amnt ! Comb-Acct

rate-change : Comb-Acct, Date, Rate ! Comb-Acct

compute-interest : Comb-Acct, Date ! Comb-Acct

change-check-cost : Comb-Acct, Amnt ! Comb-Acct

write-check : Comb-Acct, Amnt ! Comb-Acct

Figure 6.13 Combined Account Signature
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axioms

% state uniqueness and invariant axioms

ok 6= overdrawn;

8 (a: Acct) acct-state(a) = ok ) bal(a) � 0;

8 (a: Acct) acct-state(a) = overdrawn) bal(a) < 0;

% operation de�nitions

8 (a,a1: Acct) attr-equal(a, a1) ) date(a) = date(a1) ^ bal(a) = bal(a1);

8 (a,a1: SAcct) attr-equal(a, a1) ) rate(a) = rate(a1) ^ int-date(a) = int-date(a1);

8 (a,a1: CAcct) attr-equal(a, a1) ) check-cost(a) = check-cost(a1);

% create-acct method de�nition

8 (d: Date) date(create-acct(d)) = d ^ bal(create-acct(d)) = 0;

% create-sacct method de�nition

8 (d: Date) date(create-sacct(d)) = date(create-acct(d))

wedge bal(create-sacct(d)) = bal(create-acct(d)) wedge rate(create-sacct(d)) = 0

wedge int-date(create-sacct(d)) = d;

% create-cacct method de�nition

8 (d: Date) date(create-cacct(d)) = date(create-acct(d))

^ bal(create-cacct(d)) = bal(create-acct(d)) ^ check-cost(create-cacct(d)) = 0;

% create-comb-cacct method de�nition

8 (d: Date) date(create-comb-acct(d)) = date(create-acct(d))

wedge bal(create-comb-acct(d)) = bal(create-acct(d)) wedge rate(create-comb-acct(d)) = 0

wedge int-date(create-comb-acct(d)) = d ^ check-cost(create-comb-acct(d)) = 0;

% credit method de�nition

8 (a: Acct, x: Amnt) bal(credit(a,x)) = bal(a) + x

^ date(credit(a,x)) = date(a) ^ rate(credit(a,x)) = rate(a)

^ int-date(credit(a,x)) = int-date(a) ^ check-cost(credit(a,x)) = check-cost(a);

% debit method de�nitions

8 (a: Acct, x: Amnt) bal(debit(a,x)) = bal(a) - x

^ date(debit(a,x)) = date(a) ^ rate(debit(a,x)) = rate(a)

^ int-date(debit(a,x)) = int-date(a) ^ check-cost(debit(a,x)) = check-cost(a);

% set-rate method de�nitions

8 (a: Acct, d: Date, r: Rate) rate(set-rate(a,d,r)) = r

^ int-date(set-rate(a,d,r)) = d ^ bal(set-rate(a,d,r)) = bal(a)

^ date(set-rate(a,d,r)) = date(a);

% comp-int method de�nitions

8 (a: Acct, d: Date) rate(comp-int(a,d)) = rate(a)

^ int-date(comp-int(a,d)) = d ^ date(comp-int(a,d)) = date(a);

8 (a: Acct, d: Date) bal(a) � 0 ) bal(comp-int(a,d)) = bal(a);

8 (a: Acct, d: Date) bal(a) � 0 ) bal(comp-int(a,d)) = bal(a)

+ rate(a) * ((d - int-date(a))/days-per-year(d));

% set-check-cost method de�nition

8 (a: Acct, x: Amnt) check-cost(set-check-cost(a, x)) = x

^ bal(set-check-cost(a,x)) = bal(a) ^ data(set-check-cost(a,x) = date(a)

Figure 6.14 Combined Account Class Axioms
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% new event de�nition

8 (d: Date) acct-state(new-acct(d)) = ok ^ attr-equal(new-acct(d), create-acct(d));

8 (d: Date) acct-state(new-sacct(d)) = ok ^ attr-equal(new-sacct(d), create-sacct(d));

8 (d: Date) acct-state(new-cacct(d)) = ok ^ attr-equal(new-cacct(d), create-cacct(d));

8 (d: Date) acct-state(new-comb-acct(d)) = ok ^ attr-equal(new-comb-acct(d), create-comb-acct(d));

% deposit event de�nition

8 (a: Acct, x: Amnt) acct-state(a) = ok ) acct-state(deposit(a,x)) = ok

^ attr-equal(deposit(a,x), credit(a,x));

8 (a: Acct, x: Amnt) acct-state(a) = overdrawn ^ bal(a) + x � 0

) acct-state(deposit(a,x)) = ok ^ attr-equal(deposit(a,x), credit(a,x));

8 (a: Acct, x: Amnt) acct-state(a) = overdrawn ^ bal(a) + x < 0

) acct-state(deposit(a,x)) = overdrawn ^ attr-equal(deposit(a,x), credit(a,x));

% withdrawal event de�nition

8 (a: Acct, x: Amnt) acct-state(a) = ok ^ bal(a) � x

) acct-state(withdrawal(a,x)) = ok ^ attr-equal(withdrawal(a,x), debit(a,x));

8 (a: Acct, x: Amnt) acct-state(a) = ok ^ bal(a) < x

) acct-state(withdrawal(a,x)) = overdrawn ^ attr-equal(withdrawal(a,x), debit(a,x));

8 (a: Acct, x: Amnt) acct-state(a) = overdrawn

) acct-state(withdrawal(a,x)) = overdrawn ^ attr-equal(withdrawal(a,x), a);

% rate-change event de�nitions

8 (a: Acct, d: Date, r: Rate) acct-state(a) = ok

) acct-state(rate-change(a,d,r)) = ok ^ attr-equal(rate-change(a,d,r),set-rate(comp-int(a,d),d,r));

8 (a: Acct, d: Date, r: Rate) acct-state(a) = overdrawn

) acct-state(rate-change(a,d,r)) = overdrawn

^ attr-equal(rate-change(a,d,r),set-rate(comp-int(a,d),d,r));

% compute-interest event de�nitions

8 (a: Acct, d: Date) acct-state(a) = ok

) acct-state(compute-interest(a,d)) = ok ^ attr-equal(compute-interest(a,d),comp-int(a,d));

8 (a: Acct, d: Date) acct-state(a) = overdrawn

) acct-state(compute-interest(a,d)) = overdrawn ^ attr-equal(compute-interest(a,d),a);

% write-check-cost event de�nition

8 (a: Acct, x: Amnt) acct-state(a) = ok

^ bal(a) � x ) acct-state(write-check(a,x)) = ok

^ attr-equal(write-check(a,x), debit(a,x));

8 (a: Acct, x: Amnt) acct-state(a) = ok

^ bal(a) < x ) acct-state(write-check(a,x)) = overdrawn

^ attr-equal(write-check(a,x), debit(a,x));

8 (a: Acct, x: Amnt) acct-state(a) = overdrawn

) acct-state(write-check(a,x)) = overdrawn ^ attr-equal(write-check(a,x), debit(a,x));

% set-check-cost method de�nition

8 (a: Acct, x: Amnt) acct-state(a) = ok

) acct-state(write-check(a,x)) = ok ^ attr-equal(change-check-cost(a,x), set-check-cost(a,x)) ;

8 (a: Acct, x: Amnt) acct-state(a) = overdrawn

) acct-state(write-check(a,x)) = overdrawn

^ attr-equal(change-check-cost(a,x), set-check-cost(a,x))

end-class

Figure 6.15 Combined Account Class Axioms (Continued)
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6.2) that explicitly capture its de�ning statecharts, the requirements of the substitution property

(Equation 4.3) apply to dynamic behavior and are captured in the speci�cation morphism require-

ment for inheritance. Figures 6.16 through 6.20 show examples of how a Rumbaugh statechart

may, and may not be modi�ed.

1 2 3
e1 e2

e3

Figure 6.16 Superclass Dynamic Behavior

Figure 6.16 shows the statechart for a superclass, C. This statechart translates into the

following axioms.

state(o) = 1) state(e1(o)) = 2

state(o) = 1) state(e2(o)) = 1

state(o) = 1) state(e3(o)) = 1

state(o) = 2) state(e1(o)) = 2

state(o) = 2) state(e2(o)) = 3

state(o) = 2) state(e3(o)) = 2

state(o) = 3) state(e1(o)) = 3

state(o) = 3) state(e2(o)) = 3

state(o) = 3) state(e3(o)) = 2

1 2 3
e1 e2

e3

4
e4

e5

Figure 6.17 Inheritance of Dynamic Behavior - State Extension

To be valid, the subclass statechart must translate into a set of axioms that incorporate the

axioms of its superclass (i.e., the axioms from the superclass must be theorems in the subclass).

Figure 6.17 shows the statechart for a valid subclass, Cb, of the superclass C. This statechart

translates to the following axioms. (NOTE: From this point forward in this section, axioms de�ning

no change are omitted for brevity.)
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state(o) = 1) state(e1(o)) = 2

state(o) = 2) state(e2(o)) = 3

state(o) = 3) state(e3(o)) = 2

state(o) = 3) state(e4(o)) = 4

state(o) = 4) state(e5(o)) = 3

To determine if Cb is a valid subclass of C, the axioms of C must appear as theorems in Cb and

the internal class consistency conditions must hold. Clearly, the axioms of C are theorems in Cb

since each axiom in C appears as an axiom in Cb. Note that, as shown in Figure 4.7, it is possible

to add axioms that are inconsistent. However, in this case, there are no inconsistent axioms and

thus Cb is a valid subclass of C.

1 2
e1 e2

e3

3

Figure 6.18 Inheritance of Dynamic Behavior - Illegal

Figure 6.18 shows the statechart for an invalid subclass, Cc, of the superclass C. This state-

chart translates to the following axioms:

state(o) = 1) state(e1(o)) = 2

state(o) = 2) state(e2(o)) = 3

state(o) = 3) state(e3(o)) = 1

Clearly class Cc is not a valid subclass of C since the axioms of C are not theorems in Cc. For

valid inheritance, there must be a speci�cation morphism from the superclass to the subclass such

that the axioms in the superclass are theorems in the subclass. If such a morphism existed in this

case, the following axioms must both true in Cc:

state(o) = 3) state(e3(o)) = 2(fromCc)

state(o) = 3) state(e3(o)) = 1(fromC)
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Obviously, the two axioms are con
icting unless state 1 and state 2 are equivalent. However, as part

of the translation process, axioms are generated which specify the uniqueness of states. Therefore

the axioms of C are not theorems in Cc and, therefore, Cc is not a valid subclass of C. To ensure

class consistency, extension of the statechart may not allow new transitions from a state de�ned

in the superclass using events de�ned in the superclass. This rule is analogous to not allowing

superclass methods to modify superclass attributes as shown in Table 6.1.

1
2a

3
e1 e2

e3

2c

2b
2

e4

e5

e6

Figure 6.19 Inheritance of Dynamic Behavior - SubState Statechart

Figure 6.19 shows the statechart for a valid subclass, Cd, of the superclass C this time re�ned

using substates. This statechart translates to the following axioms:

state(o) = 1) state(e1(o)) = 2 ^ substate2(e1(o)) = 2a

state(o) = 3) state(e3(o)) = 2 ^ substate2(e3(o)) = 2a

state(o) = 2) state(e2(o)) = 3

state(o) = 2 ^ substate2(o) = 2a) state(e4(o)) = 2 ^ substate2(e4(o)) = 2b

state(o) = 2 ^ substate2(o) = 2b) state(e5(o)) = 2 ^ substate2(e5(o)) = 2c

state(o) = 2 ^ substate2(o) = 2c) state(e6(o)) = 2 ^ substate2(e6(o)) = 2a

Although the post-conditions describing the e�ect of events e1 and e3 have changed in Cd, the

axioms from C can be derived from those in Cd; thus the axioms of C are theorems in Cd. Since

there are no inconsistent axioms, the internal class consistency conditions hold and Cd is a valid

subclass of C. It is important to note that the only time a substate attribute a�ects the behavior

of an object is when the object is in state 2 and that if event e2 is applied any time the state of a

Cd object is in state 2, regardless of the substate, the state transitions to 3 as required by C.

In general, substates can be used freely to re�ne a superclass statechart as long as superclass

events which cause transitions from the superstate are not used within the substate statechart (i.e.,
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the superstate exit transition is not overridden). Attempting to override an exiting transition from

the superstate results in inconsistent axioms as shown by the axioms below which are the result of

replacing event e6 by e2 in Figure 6.19.

state(o) = 2) state(e2(o)) = 3

state(o) = 2 ^ substate2(o) = 2c) state(e2(o)) = 2 ^ substate2(e4(o)) = 2a

Obviously, both axioms cannot be true since state(e2(o)) cannot be both 2 and 3 simultaneously.

Note that this interpretation of the statechart does not satisfy the intent of such a statechart as

de�ned by Rumbaugh (83:97). According to Rumbaugh, the intent of such a statechart would be

to override the e�ect of event e2 when in state 2c; however, if the axioms implemented Rumbaugh

intended semantics, the statechart would violate the substitution property.

4

6

5
e4

e5

e6

1 2 3
e1 e2

e3

Figure 6.20 Inheritance of Dynamic Behavior - Concurrent Statechart

Figure 6.20 shows the statechart for a valid subclass, Ce, of the superclassC, this time re�ned

using concurrent states. This statechart translates to the following axioms.

state(o) = 1) state(e1(o)) = 2

state(o) = 2) state(e2(o)) = 3

state(o) = 3) state(e3(o)) = 2

conc-state(o) = 4) conc-state(e4(o)) = 5

conc-state(o) = 5) conc-state(e5(o)) = 6

conc-state(o) = 6) conc-state(e6(o)) = 4

In this example, Ce, as de�ned by Figure 6.20, is a valid subclass since only new states and

events are used in the concurrent statechart. However, not all concurrent statecharts satisfy class

consistency conditions. Concurrent statecharts are intended to be used when the attributes of a
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class are partitionable into distinct subsets. If class attributes are paritionable, then the actions of

each concurrent component may only a�ect attributes in a single partition. When this is not the

case, inconsistencies between the statechart components may result. Therefore, when the dynamic

model is extended in a subclass by a concurrent statechart, the actions of the concurrent statechart

component must modify only the attributes de�ned in the subclass. This implies that only methods

de�ned in the subclass may be used in a subclass concurrent statechart component and that those

methods may not modify attributes de�ned in the superclass.

In terms of statecharts, then, the substitution property requires that superclass dynamic

model be included, as is, into all subclass dynamic models. Additions to the superclass statechart,

including substates and concurrent states, that do not violate class consistency conditions are the

only allowable extensions that satisfy the substitution property.

6.3.4.2 Functional Inheritance. The second type of behavioral inheritance involves

inheritance of the functional model. In general, functions de�ne how data is transformed in the

system without regard to when these transformations take place (83). Functions de�ned in the

functional model correspond to actions de�ned in the dynamic model and are generally modeled

at the aggregate level. Inheritance from an abstract class often allows the subclass the freedom to

de�ne the actions speci�ed in its dynamic model. In the case of an abstract operation, there is

no functional de�nition or constraints put on the function of the operation in the abstract class;

therefore, specialization of such an operation in a concrete class must include its complete functional

de�nition.

In the case of inheritance from concrete classes, the functional behavior (as de�ned by meth-

ods) is completely de�ned in the superclass. This greatly restricts the ability to specialize these

functions in subclasses; however, this is not a problem since overriding of function behavior is not

allowed by the de�nition of inheritance and overriding for other reasons (e�ciency, etc.) is purely

a design issue and not important in domain modeling. Therefore, the only real way to functionally
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specialize a subclass is to add new functions in the subclass or to specify the e�ects of existing

superclass functions on new subclass attributes. These new functions would be derived from new

actions de�ned in the dynamic model and only need axiomatic de�nition in the functional model.

New data 
ow diagrams may be developed to further de�ne the actions, or, if simple enough, ax-

ioms may be written directly to de�ne the action as a method. For example, the dynamic model for

the savings account class (Figure 6.8) identi�es two new actions: int and set-rate. The de�nition

of these actions are relatively simple and de�ned without the need for a new data 
ow diagram,

as shown in Figure 6.7. More complex actions might require new data 
ow diagrams which would

generate additional methods to help compute the de�ned actions.

Introducing new attributes in a subclass requires the extending existing superclass methods

de�nitions to include their e�ect on the subclass attributes. As long as the requirements speci�ed

in Table 6.1 are followed, class consistency is maintained.

6.4 Associations

Rumbaugh de�nes a link as a physical or conceptual connection between object instances

while an association is a group of links with a common structure and semantics (83). The rela-

tionship between associations and links is similar to the relationship between classes and objects.

In this model, a link de�nes what object classes may be connected along with any link attributes,

operations, or quali�ers. Link attributes and link operations are attributes and operations that do

not belong to any one of the objects involved in a link, but exist only when there is a link between

objects. An association quali�er is an attribute that is used to select an associated object based

on the value of the quali�er. Often, a quali�er is used to reduce a one-to-many association to a

one-to-one association based on the quali�er value.

In this model, associations are represented generically, as a speci�cation that de�nes a sets

of individual links. A link de�nes a speci�cation that uses object-valued attributes to reference
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individual objects from two or more classes. Links may also de�ne link attributes, operations, or

quali�ers in a manner identical to object classes. Basically, a link is a class whose class-set is an

association.

De�nition 6.4.1 Link A link is an object class type with two or more object-valued attributes.

An example of a link speci�cation between a class of customers (Figure 6.21) and the ACCT

class is shown in Figure 6.22. To improve reusability and maintainability, integration of account

numbers or references directly into the associated classes is not desired. Therefore, a link speci�ca-

tion, CA-Link, is created to associate customers with their accounts. The CA-Link link speci�cation

has two object-valued attributes, customer and acct, and a method to create new instances of the

association. Thus, the CA-Link link speci�cation can relate objects from the two classes without

embedding internal references into the classes themselves. Although the names of the object-valued

attributes and sorts correspond to the CUSTOMER and ACCT classes, the link speci�cation does

not formally tie the classes together. This relationship is actually formalized in an aggregate spec-

i�cation as de�ned in Section 6.5.

An associations is a set of links and is represented as such in this model.

De�nition 6.4.2 Association An association is the class set of a link speci�cation.

An association between the ACCT class and the CUSTOMER class is shown in Figure 6.23.

The CA-LINK class has two object-valued attributes, customer and account, and a method to

create new instances of the association. The CUST-ACCT class de�nes a set of CA-Link objects

while its axioms de�ne the multiplicity relationships between accounts and customers. In this case,

there is exactly one customer per account while each customer may have one or more accounts.

Associations with more than two classes are handled in a similar manner by simply adding additional

object-valued attributes.
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class Customer is

import Name, Address, Cust-No

class sort Customer

operations

attr-equal : Customer, Customer ! Boolean

attributes

name : Customer ! Name

address : Customer ! Address

cust-no : Customer ! Cust-No

methods

create-customer : Name, Address, Cust-No ! Customer

update : Customer, Name, Address, Cust-No ! Customer

events

new-customer : Name, Address, Cust-No ! Customer

update-customer : Customer, Name, Address ! Customer

axioms

% operation de�nition

8 (c,c1: Customer) attr-equal(c,c1), name(c) = name(c1)

^ address(c) = address(c1) ^ cust-no(c) = cust-no(c1);

% create method de�nition

8 (n: Name, a: Address, cn: Cust-No)

name(create-customer(n,a,cn)) = n ^ address(create-customer(n,a,cn)) = a

^ cust-no(create-customer(n,a,cn)) = cn;

% update method de�nition

8 (c: Customer, n: Name, a: Address, cn: Cust-No)

name(update(c,n,a,cn)) = n ^ address(update(c,n,a,cn)) = a

^ cust-no(update(c,n,a,cn)) = cn;

% new event de�nition

8 (n: Name, a: Address, cn: Cust-No)

attr-equal(new-customer(n,a,cn), create-customer(n,a,cn));

% update-customer event de�nition

8 (c: Customer, n: Name, a: Address, cn: Cust-No)

attr-equal(update-customer(c,n,a,cn), update(c,n,a,cn))

end-class

Figure 6.21 Customer Class
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link CA-Link is

class sort CA-Link

sorts Customer, Account

operations

attr-equal : CA-Link, CA-Link ! Boolean

attributes

customer : CA-Link ! Customer

account : CA-Link ! Account

methods

create-ca-link : Customer, Account ! CA-Link

events

new-ca-link : Customer, Account ! CA-Link

axioms

% operation de�nition

8 (c,c1: Customer)

attr-equal(c,c1), customer(c) = customer(c1) ^ account(c) = account(c1);

% create method de�nition

8 (c: Customer, a: Account)

customer(create-ca-link(c,a)) = c ^ account(create-ca-link(c,a)) = a;

% new event de�nition

8 (c: Customer, a: Account)

attr-equal(new-ca-link(c,a), create-ca-link(c,a))

end-link

Figure 6.22 Customer Account Link

association Cust-Acct is

link-class CA-Link

class sort Cust-Acct

sorts Accounts, Customers

methods

image : Cust-Acct, Customer ! Accounts

image : Cust-Acct, Account ! Customers

events

new-cust-acct : ! Cust-Acct

axioms

% multiplicity axioms

8 (ca: Cust-Acct, c: Customer) size(image(ca, c)) � 1;

8 (ca: Cust-Acct, a: Account) size(image(ca, a)) = 1;

% new event de�nition

new-cust-acct() = empty-set;

... de�nition of image operations ...

end-association

Figure 6.23 Cust-Acct Association
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6.4.1 Multiplicity. For binary associations, there are �ve categories of association mul-

tiplicities: exactly one, many, optional, one or more, or numerically speci�ed. Since multiplicities

are based on the number of links of an association in which any given object may participate in, an

image operation is de�ned for each class in the association. Basically, in a binary association, the

image operation returns a set of objects with which a particular object is associated and is used to

de�ne multiplicity constraints as shown in Figure 6.24.

exactly one 7! size(image(a,o)) = 1

many 7! size(image(a,o)) � 0

optional 7! size(image(a,o)) = 1 _ size(image(a,o)) = 0

one or more 7! size(image(a,o)) � 1

numerically speci�ed 7! size(image(a,o)) = x

numerically speci�ed 7! size(image(a,o)) � x ^ size(image(a,o)) � y

Figure 6.24 Association Multiplicity Axioms

True ternary associations are relatively rare; however, they can be modeled using an asso-

ciation class. The only di�erences between binary and ternary associations are the number of

object-valued attributes and the signature of the image operation. In a ternary association, the

image operation returns a set of object tuples associated with a given object. Since the output is

a set of tuples, the same multiplicity axioms shown in Figure 6.24 apply to ternary association as

well.

6.4.2 Quali�ed Associations. Quali�ers are special attributes used to reduce the multi-

plicity of a binary association, generally from one-to-many to one-to-one. A quali�er distinguishes

among a set, or class, of objects. For instance, a customer at a bank may own many accounts.

This is a one-to-many association. However, if the owns association is modeled with an account

number quali�er as shown in Figure 6.25, the association becomes one-to-one since each account

has a unique account number.

In the theory-based object model, quali�ers are modeled as link attributes with a quali�ed

image operation that selects associated objects based on an object and a quali�er. Again, the
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acct-no
owns

Cusomer Account

Figure 6.25 Association Quali�er

multiplicity axioms de�ned in Figure 6.24 can be used to restrict the quali�ed association using the

quali�ed image operation.

An example of a quali�ed account association is shown in Figures 6.26 and 6.27. The CA-

Link speci�cation includes the quali�er acct-no as an link attribute. Therefore, to create a new

link, a customer, account, and account number must be provided. The Cust-Acct association is

modi�ed by adding the acct-no quali�er to the customer image operation. Thus, as stated by the

axiom size(image(ca,c,n)) = 1, the multiplicity of the association is changed from one-to-many to

one-to-one.

link CA-Link is

class sort CA-Link

sorts Customer, Account, Acct-No

operations

attr-equal : CA-Link, CA-Link ! Boolean

attributes

customer : CA-Link ! Customer

account : CA-Link ! Account

acct-no : CA-Link ! Acct-No

methods

create-ca-link : Customer, Account ! CA-Link

events

new-ca-link : Customer, Account, Acct-No ! CA-Link

axioms

% operation de�nition

8 (c,c1: Customer)

attr-equal(c,c1), customer(c) = customer(c1) ^ account(c) = account(c1)

acct-no(c) = acct-no(c1);

% create method de�nition

8 (c: Customer, a: Account, n: Acct-No)

customer(create-ca-link(c,a,n)) = c ^ account(create-ca-link(c,a,n)) = a

acct-no(new-ca-link(c,a,n)) = n;

% new event de�nition

8 (c: Customer, a: Account)

attr-equal(new-ca-link(c,a), create-ca-link(c,a))

end-link

Figure 6.26 Quali�ed Customer Account Link
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association Cust-Acct is

link-class CA-Link

class sort Cust-Acct

sorts Accounts, Customers

methods

image : Cust-Acct, Customer, Acct-No ! Accounts

image : Cust-Acct, Customer ! Accounts

image : Cust-Acct, Account ! Customers

events

new-cust-acct : ! Cust-Acct

axioms

% multiplicity axioms

8 (ca: Cust-Acct, c: Customer, an: Acct-No) size(image(ca,c,an)) = 1;

8 (ca: Cust-Acct, a: Account) size(image(ca,a)) = 1;

% new event de�nition

new-cust-acct() = empty-set;

... de�nition of image operations ...

end-association

Figure 6.27 Quali�ed Cust-Acct Association

6.5 Aggregation

Aggregation is another concept central to object-orientation. Aggregation is a relationship

between two classes where one class, the aggregate, represents the entire assembly and the other

class, the component, is \part-of" the assembly. Aggregate class behavior is de�ned by its com-

ponents and the associations and constraints between them. Without aggregate objects, a system

composed of multiple subsystems cannot be modeled. Components may or may not exist apart

from an aggregate and may be members of several aggregates. Aggregates may have �xed, vari-

able, or a recursive structure (83:59). In a �xed aggregate, the type and number of components

are always the same. For example, a car has one body, four wheels, one engine, etc. In a variable

aggregate, the type of components in the aggregate are �xed but the number of components vary.

For instance, in the banking example, a bank may consist of a number of employees, customers,

and bank accounts. While each bank has employees, customers, and accounts, the number of each

component varies with time and between banks. Finally, in the recursive aggregate, components

may be de�ned as aggregates made up of additional components of the same type. For example,

in a computer program, the program is made up of one or more program blocks. Program blocks
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consist of statements. Statements may be simple or complex, where complex statements consist of

at least one program block.

Not only do aggregate classes allow the modeling of systems from components, but they also

provide a convenient context in which to place constraints between components. For example,

although the object-valued attributes in CA-Link are named customer and account (Figure 6.23),

they are uni�ed with the CUSTOMER and ACCT classes. Uni�cation of these sorts with the ap-

propriate class sorts requires a higher-level speci�cation that describes how classes and associations

interact. This higher-level speci�cation is an aggregate class. Once again, object-valued attributes

describe this relationship between aggregate classes and their components. I now formally de�ne

an aggregate using the colimit operation and object-valued attributes.

De�nition 6.5.1 Aggregate - A class C is an aggregate of a collection of component classes,

(D1::Dn), if there exists a speci�cation morphism from the colimit of (D1::Dn) to C such that C

has at least one corresponding object-valued attribute for each class sort in (D1::Dn).

An aggregate class combines a number of classes via the colimit operation to specify system

or subsystem level functionality. The colimit operation also uni�es sorts and operations de�ned in

separate classes and associations.

To create system-level aggregates, the colimit of all classes and associations within the system

is taken. In the bank account example, the CUSTOMER, ACCT, and CUST-ACCT classes are

combined to form an aggregate system. To integrate the components into an aggregate, the sorts

from CUST and CUST-ACCT and the sorts from ACCT and CUST-ACCT are uni�ed via speci�-

cation morphisms that de�ne their equivalence as shown in Figure 6.28. The actual speci�cation of

the aggregation colimit is shown in Figures 6.29 and 6.30. The SET speci�cation is used to unify

sorts while the INTEGER speci�cation (Appendix E) is included to ensure only a single copy of

integers is included. Because each class imports the SET speci�cation (Appendix E) which in turn

imports the INTEGER speci�cation, failure to include the INTEGER speci�cation in the colimit
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would create a unique copy of INTEGER for each class in the aggregate. Three copies of the SET

speci�cation are included in the colimit operation since each class is de�ned as a unique set and

cannot be uni�ed with the other class sets or associations de�ned in the colimit.

{E ➝ CA-Link,
 Set ➝ Cust-Acct}

Acct-Class Cust-ClassCust-Acct

Bank

c c
c

Set Set

{E ➝ Acct,
 Set ➝ Acct-Class}

{E ➝ Account,
 Set ➝ Accounts}

{E ➝ Customer,
 Set ➝ Customers}

{E ➝ Customer,
 Set ➝ Cust-Class}

Integer

Set

Figure 6.28 Aggregation Composition

aggregate Bank-Aggregate is

nodes INTEGER, SET-1: SET, SET-2: SET, SET-3: SET,

ACCT-CLASS, CUST-CLASS, CUST-ACCT

arcs SET-1 ! ACCT-CLASS : fE ! Acct, SET ! Acct-Classg,
SET-1 ! CUST-ACCT : fE ! Account, SET ! Accountsg,
SET-2 ! CUST-CLASS : fE ! Customer, SET ! Cust-Classg,
SET-2 ! CUST-ACCT : fE ! Customer, SET ! Customersg,
SET-3 ! CUST-ACCT : fE ! CA-Link, SET ! Cust-Acctg,
INTEGER ! SET-1 : fg,
INTEGER ! SET-2 : fg
INTEGER ! SET-3 : fg

end-aggregate

Figure 6.29 Aggregation Speci�cation

Once the BANK-AGGREGATE speci�cation is computed, the CUST-ACCT association ac-

tually associates the CUSTOMER class to the ACCT class. New operations and axioms can be
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class Bank is

import BANK-AGGREGATE

class sort Bank

attributes

acct-obj : Bank ! Acct-Class

cust-obj : Bank ! Cust-Class

cust-acct-assoc : Bank ! Cust-Acct

methods

aggregate methods de�ned here

events

aggregate events de�ned here

axioms

de�nition of aggregate methods in terms of components here

size(a) � 1;

size(c) � 1;

size(ca) � 1

end-class

Figure 6.30 Aggregate Speci�cation

added to an extension of colimit speci�cation, the BANK class type speci�cation (Figure 6.30), to

describe aggregate-level interfaces and aggregate behavior based on component events and methods.

6.5.1 Speci�cation of Components. As stated above, components have either a �xed,

variable, or recursive structure. All three structures use object-valued attributes to reference other

objects and de�ne the aggregate. The di�erence between them lies in the types of objects that

are referenced and the operations and axioms de�ned over object-valued attributes. In a �xed

con�guration, once an aggregate references a particular object, that reference may not be changed.

The ability of an aggregate object to change the object references of its object-valued attributes is

determined by whether a method exists (other than the initialization method) to modify the object-

valued attribute. If no methods modify any object-valued attributes then the aggregate is �xed. If

methods do modify the object-valued attributes, then the aggregate is variable. An example of a

�xed con�guration aggregate is the PRODUCER class as de�ned in Figure 6.6. In this example, the

component, bu�er, is de�ned at initialization and cannot be changed. Although axioms de�ning the

e�ect of the method produce on the attribute bu�er-obj appears to modify the value of bu�er-obj,

they, in fact, do not. The axioms simply send events to the bu�er object which modify its internal
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state. An example of a variable version of the PRODUCER class is shown in Figure 6.31. In this

example, the method change-buf changes the object reference value of bu�er-obj.

class Producer is

imports Bu�er, Item

class sort Producer

sorts Producer-State

operations

attr-equal : Producer, Producer ! Boolean

attributes

bu�er-obj : Producer ! Bu�er

methods

create-producer : Bu�er ! Producer

produce : Producer, Item ! Producer

change-buf : Producer, Bu�er ! Producer

events

new-producer : Bu�er ! Producer

produce-item : Producer, Item ! Producer

change-bu�er : Producer, Bu�er ! Producer

axioms

% operation de�nitions

8 (p,p1: Producer) attr-equal(p, p1) ) bu�er-obj(p) = bu�er-obj(p1);

% event de�nitions

8 (b: Bu�er) attr-equal(new-producer(b), create-producer(b));

8 (i: Item, p: Producer) attr-equal(produce-item(p,i), produce(p,i));

8 (p: Producer, b: Bu�er) attr-equal(change-bu�er(p,b), change-buf(p,b));

% method de�nitions

8 (b: Bu�er) bu�er-obj(create-producer(b)) = b;

8 (i: Item, p: Producer) bu�er-obj(produce(p,i)) = put(bu�er-obj(p),i);

8 (b: Bu�er, p: Producer) bu�er-obj(change-buf(p,b)) = b

end-class

Figure 6.31 Object-Valued Attribute Example

A recursive structure is also easily represented using object-valued attributes. In this case, an

object-valued attribute is de�ned in the class type that references its own class sort. For example, a

machine may consist of a number of assemblies. Assemblies can be composed from individual parts

and other subassemblies, which in turn can be composed of parts and subassemblies, etc. In this

case, the machine class type has one object-valued attribute, assembly-set-obj, which references

a set of assembly objects. The assembly class type de�nition has two object-valued attributes:

a parts-set-obj which references a set of parts, and an assembly-set-obj, which references a set of

assembly objects. There are no inconsistencies with a recursive aggregate as long as the references
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are not cyclic. Cyclic references are easily avoided via axiomatic speci�cation as de�ned below for

some class X.

operations

non-cyclic : X;X ! boolean

axioms

8(x; y : X)non-cyclic(x; x-obj(x)); (a)

8(x; y : X)non-cyclic(x; y)) x 6= y; (b)

8(x; y : X)non-cyclic(x; y)) non-cyclic(x; x-obj(y)); (c)

(6.1)

These axioms de�ne a non-cyclic operation which determines if a cycle exists in a self-

referencing class type X. Axiom (a) states the invariant condition that all objects within class

X must be non-cyclic over the self-referencing object-valued attribute x-obj while axioms (b) and

(c) recursively de�ne the operation over all objects within the aggregate.

6.5.2 Quali�ed Aggregates. Because aggregation is a form of association, quali�ers may

be speci�ed between aggregates and their components. Aggregate quali�ers are a special case of

association quali�ers and are de�ned as special attributes used to reduce the multiplicity of an

aggregation. Just as in associations, a quali�er is used to distinguish among a set, or class, of

objects. For instance, a bank may have many customers; however, if the aggregation is modeled

with a customer number quali�er as shown in Figure 6.32, the aggregation becomes one-to-one

since each customer has a unique customer number.

    cust-no

Bank

Account Customer

Figure 6.32 Aggregate Quali�er
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In the theory-based object model, quali�ers are modeled as an attribute of the quali�ed class

with a quali�ed image operation de�ned in its class set. This image operation is similar to those

for quali�ed associations that select components from a class set based on the quali�er. Again, the

multiplicity axioms of Figure 6.24 are used to restrict the quali�ed aggregate using the quali�ed

image operation.

An example of a quali�ed bank { customer aggregation is shown in Figures 6.33 and 6.34. The

CUSTOMER class type de�nition includes the quali�er cust-no as a normal attribute. Therefore, to

create a new customer, a name, address, and customer number must be provided. The Cust-Class

class set is modi�ed by adding an image operation with the cust-no quali�er. The update-customer

class event is used in conjunction with the image operation to perform the update-customer event

on a single customer as designated via the cust-no (e.g., update-customer(image(customer-class,

cust-no), new-name, new-address)). Thus, as stated by the axiom size(image(cc; n)) = 1, the

aggregate multiplicity is changed from one-to-many to one-to-one.

6.5.3 Speci�cation of Behavior. Once an aggregate is created via a colimit operation,

further speci�cation is required to make the aggregate behave in an integrated manner. First, new

aggregate level functions are de�ned to enable the aggregate to respond to external events. Then,

constraints between aggregate components are speci�ed to ensure that the aggregates do not behave

in an unsuitable or unexpected manner, and �nally, local event communication paths are de�ned.

The de�nition of new functions and constraints is discussed in this section while communication

between objects is discussed in Section 6.6.

6.5.3.1 Speci�cation of Functionality. In an aggregate, components work together

to provide the desired functionality. This desire to de�ne functionality across components leads

naturally to the use of the functional model. The functional model is used to specify the results of

a computation without de�ning where or how they are computed and is used to de�ne actions gen-

6-40



class Customer is

import Name, Address, Cust-No

class sort Customer

operations

attr-equal : Customer, Customer ! Boolean

attributes

name : Customer ! Name

address : Customer ! Address

cust-no : Customer ! Cust-No

methods

create-customer : Name, Address, Cust-No ! Customer

update : Customer, Name, Address, Cust-No ! Customer

events

new-customer : Name, Address, Cust-No ! Customer

update-customer : Customer, Name, Address ! Customer

axioms

% operation de�nition

8 (c,c1: Customer) attr-equal(c,c1), name(c) = name(c1)

^ address(c) = address(c1) ^ cust-no(c) = cust-no(c1);

% create method de�nition

8 (n: Name, a: Address, cn: Cust-No)

name(create-customer(n,a,cn)) = n ^ address(create-customer(n,a,cn)) = a

^ cust-no(create-customer(n,a,cn)) = cn;

% update method de�nition

8 (c: Customer, n: Name, a: Address, cn: Cust-No)

name(update(c,n,a,cn)) = n ^ address(update(c,n,a,cn)) = a

^ cust-no(update(c,n,a,cn)) = cn;

% new event de�nition

8 (n: Name, a: Address, cn: Cust-No)

attr-equal(new-customer(n,a,cn), create-customer(n,a,cn));

% update-customer event de�nition

8 (c: Customer, n: Name, a: Address, cn: Cust-No)

attr-equal(update-customer(c,n,a,cn), update(c,n,a,cn))

end-class

Figure 6.33 Quali�ed Customer Class
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class Cust-Class is

contained-class CUST

class sort Cust-Class

operations

attr-equal: Cust-Class, Cust-Class ! Boolean

methods

image : Cust-Class, Cust-No ! Cust-Class

events

new-cust-class : ! Acct-Class

update-customer : Cust-Class, Name, Address ! Cust-Class

axioms 8 (c: Cust, n: Name, a: address, cc: Cust-Class)

8 (cc: Cust-Class, n: Name) size(image(cc,n)) = 1;

new-cust-class = empty-set;

8 (c: Cust, cc: Cust-Class, n: Name, a: Address)

c 2 cc , update-customer(c,n,a) 2 update-customer(cc,n,a);

... de�nition of image operations ...

end-class

Figure 6.34 Quali�ed Customer Class Set

erated by the dynamic model (83:123). Processes de�ned in the functional model are implemented

using events and attributes de�ned in the aggregate components.

An example of de�ning the functional behavior of an aggregate using the functional model

is shown in Figure 6.35 with the full speci�cation shown in Figure 6.36. The Bank aggregate

actually de�nes three new events (start-account, make-deposit, and make-withdrawal) and a derived

attribute balance. The functional model de�nes the method implementing the start-account event,

add-account as shown in Figure 6.35. The make-deposit and make-withdrawal events map directly

to component events and do not require a functional decomposition.

Figure 6.35 shows the functional model for the add-account action. The left-hand side is

the top-level diagram while the right-hand side shows the decomposition of add-account. The

add-account process adds an account for an established customer. The following axiom de�nes add-

account in terms of its subprocesses and data 
ows and is translated directly from the functional

model using the restricted functional model semantics described in Section 5.5.
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Figure 6.35 Bank Aggregate Functional Model

add-account(b; customer; acct-no) = b1

^ acct = new-acct(date) %% assume date is built in

^ acct-obj(b1) = update-accts(acct-obj(b); acct)

^ cust-acct = new-cust-acct(customer; acct; acct-no)

^ cust-acct(b1) = update-cust-acct(cust-acct(b); cust-acct);

The add-account method has three parameters, the bank object (b) plus an account number and an

existing customer object as de�ned in the functional model, and returns the modi�ed bank object

(b1). The add-account method is de�ned by its subprocesses. First, a new account is created by

invoking the new-account event which is then passed to the update-accts process which stores the

new account in the account class. Then, the new account is passed as a parameter to the new-

cust-acct event which returns a cust-acct link which relates the customer, the account number, and

the new account. Finally, the new cust-acct link is passed to the update-cust-acct process which

stores it in the cust-acct association. The subprocesses in Figure 6.35 are not de�ned here. The

new-account and new-cust-acct processes are the events de�ned in the account class and cust-acct

association respectively and are already available via the aggregate. The update-accts and update-

cust-acct processes either already exist as part of the account class and cust-acct association or

may be de�ned in this speci�cation.
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class Bank is

import BANK-AGGREGATE

class sort Bank

operations

balance : Bank, Acct-No ! Amnt

attr-equal : Bank, Bank ! Boolean

attributes

acct-obj : Bank ! Acct-Class

cust-obj : Bank ! Cust-Class

cust-acct-assoc : Bank ! Cust-Acct

methods

create-bank : ! Bank

add-account : Bank, Customer, Acct-No ! Bank

update-accts : Acct-Class, Acct ! Acct-Class

update-cust-acct : Cust-Acct, Cust-Acct-Link ! Cust-Acct

events

new-bank : ! Bank

start-account : Bank, Customer, Acct-No ! Bank

make-deposit, make-withdrawal : Bank, Acct-No, Amnt ! Bank

axioms % invariants

8 (a: Acct-Class, c: Cust-Class) size(a) � 0 ^ size(c) � 0;

8 (c: Cust-Acct-Class, b: Bank, a: Acct-No) size(c) � 0 ^ balance(b,a) � 0;

% de�nition of operations

8 (b,b1: Bank) attr-equal(b,b1) , acct-obj(b) = acct-obj(b1)

^ cust-obj(b) = cust-obj(b1) ^ cust-acct-assoc(b) = cust-acct-assoc(b1);

8 (b: Bank, a: Address, an: Acct-No, c: Customer) size(image(acct-obj(b),c,an)) = 1

) singleton(a) = image(acct-obj(b),c,an) ^ balance(b,an) = bal(a);

% de�nition of methods

acct-obj(create-bank()) = create-acct-class();

cust-obj(create-bank()) = create-cust-class();

cust-acct-assoc(create-bank()) = create-cust-acct();

8 (b, b1: Bank, an: Acct-No, c: Customer)

add-account(b, c, an) = b1

^ acct = new-acct(date) %% date built in

^ acct-obj(b1) = update-accts(acct-obj(b), acct)

^ cust-acct = new-cust-acct(cust, acct, acct-no)

^ cust-acct(b1) = update-cust-acct(cust-acct(b), cust-acct);

% de�nition of events

attr-equal(new-bank(), create-bank());

8 (b:Bank, an:Acct-No, c:Customer) attr-equal(start-account(b,c,an),add-account(b,c,an));

8 (b: Bank, an: Acct-No, c: Customer, am: Amount) size(image(acct-obj(b),c,an)) = 1

) attr-equal(image(cust-acct-assoc(make-deposit(b,an,am),c,an)),

deposit(image(cust-acct-assoc(b),c,an),am));

8 (b: Bank, an: Acct-No, c: Customer, am: Amount)

size(image(acct-obj(b),c,an)) = 1 ^ balance(b,an) � x

) attr-equal(image(cust-acct-assoc(make-withdrawal(b,an,am))),

withdrawal(image(cust-acct-assoc(b),c,an),am))

end-class

Figure 6.36 Full Aggregate Speci�cation
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Both the make-deposit and make-withdrawal events mirror events de�ned in the ACCT class

and thus invoke those events directly. However, because the bank aggregate has the requirement

to ensure an account does not overdraw its available cash, a precondition is placed on the make-

withdrawal event.

size(image(acct-obj(b); c; an)) = 1 ^ balance(b; an) � x

) attr-equal(image(cust-acct-assoc(make-withdrawal(b; an; am)));

withdrawal(image(cust-acct-assoc(b); c; an); am))

Because theACCT class allowed an account to be overdrawn exactly once, a precondition overriding

the ACCT withdrawal precondition was added. This is a case of restricting the behavior of the

aggregate.

The derived attribute balance is di�erent from the attributes de�ned in Section 6.2 in that

it takes additional parameters. The additional parameter is due to the fact that balance is not an

attribute of a bank, but of an account. The parameter acct-no is required to uniquely identify a

speci�c account. The axiom below de�nes the balance attribute.

size(image(acct-obj(b); c; an)) = 1

) singleton(a) = image(acct-obj(b); c; an) ^ balance(b; an) = bal(a)

Because the image function returns a set of accounts, a few axiomatic gymnastics are required

to de�ne the operation. While this additional complexity seems unnecessary, use of sets with

object-valued attributes provides the most 
exible approach to building domain models and can be

simpli�ed in the functional speci�cation generated by Speci�cation Generation/Re�nement System

as de�ned in Chapter II.

6.5.3.2 Speci�cation of Constraints Between Components. In an aggregate, compo-

nent behavior must often be constrained if the aggregate is to act in an integrated fashion. For

instance, in an automobile there is an engine, transmission, and four wheels; however, they do not
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act independently. When the engine is running and the transmission is engaged, there is a exact

relationship that exists between the engine speed, transmission state, and the wheel rotation speed.

This relationship is a constraint between the automobile components. Generally, these relationships

are expressed by axioms de�ned over component attributes. Because the aggregate is the colimit of

its components, the aggregate may access components directly and de�ne axioms relating various

component attributes.

Engine WheelTransmission

4

Drives

Automobile

2

RPMs Conversion-Factor RPMs

Connected

wheel1

wheel2

Figure 6.37 Automobile Aggregate Functional Model

A simpli�ed automobile object model is shown in Figure 6.37. The object model contains

one engine with an RPMs attribute, one transmission with a Conversion-Factor attribute, and four

wheels, each with an RPMs attribute. Two relationships exist between these objects, Drives, that

relates the transmission to exactly two wheels, and Connected that relates two wheels (probably

by an axle). Obviously, there are a number of constraints implicit in the object model that must

be made explicit in the aggregate. First, as discussed above, the RPMs of the engine, Conversion-

Factor of the transmission, and RPMs of the wheels are all related. Also, the wheels driven by the

transmission must be \connected", and all \connected" wheels should have the same RPMs. These

constraints can be speci�ed in the aggregate speci�cation shown in Figure 6.38. The axiom

8(e : Engine; t : Transmission; d : Drives)

e 2 engine-obj(a)^ t 2 transmission-obj(a)^ d 2 drives-assoc(a)

) rpm(wheel-obj(d)) = rpm(e) � conversion-factor(t)
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class Automobile is
import AUTOMOBILE-AGGREGATE
class sort Automobile
operations

attr-equal : Automobile, Automobile! Boolean
attributes

engine-obj : Automobile! Engine-Class
transmission-obj : Automobile! Transmission-Class
wheels-obj : Automobile! Wheels-Class
drives-assoc : Automobile! Drives
connected-assoc : Automobile! Connected

methods

create-automobile : ! Automobile
events

new-automobile : ! Automobile
axioms

% invariants

8 (ec: engine-class) size(ec) = 1;
8 (tc: transmission-class) size(tc) = 1;
8 (wc: wheels-obj) size(wc) = 4;
8 (d: drives-assoc) size(d) = 2;
8 (c: connected-assoc) size(c) = 2;

% constraints

8 (e: Engine, t: Transmission, d: Drives)
e 2 engine-obj(a) ^ t 2 transmission-obj(a) ^ d 2 drives-assoc(a)
) rpm(wheel-obj(d)) = rpm(e) * conversion-factor(t);

8 (c: Connected) c 2 connected-assoc(a))) rpm(wheel1(c)) = rpm(wheel2(c));
% de�nition of attr-equal

8 (a,a1: Automobile)
attr-equal(a,a1)) engine-obj(a) = engine-obj(a1)
^ transmission-obj(a) = transmission-obj(a1)
^ wheels-obj(a) = wheels-obj(a1)
^ drives-assoc(a) = drives-assoc(a1)
^ connected-assoc(a) = connected-assoc(a1);

% de�nition of create-automobile

t = new-transmission()
^ w1 = new-wheel() ^ w2 = new-wheel() ^ w3 = new-wheel() ^ w4 = new-wheel()
^ transmission-obj(create-automobile()) = insert(t, new-transmission-class())
^ drives-assoc(create-automobile()) =
insert(new-drives-link(t,w2),insert(new-drives-link(t,w1),new-drives()))

^ connected-assoc(create-automobile()) =
insert(new-connected-link(w1,w2),insert(new-connected-link(w3,w4),new-connected()))

^ engine-obj(create-automobile()) = insert(new-engine(), new-engine-class());
% de�nition of new-automobile

attr-equal(new-automobile(), create-automobile())
end-class

Figure 6.38 Automobile Aggregate Speci�cation
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de�nes the relationship between the RPMs of the wheels driven by the transmission, the transmis-

sion conversion-factor and the engine RPMs. While written in set notation, the invariants state

that the size of the engine and transmission class sets is only one; therefore, the axiom uniquely

identi�es the engine, transmission, and each wheel driven by the transmission. The axiom

8(c : Connected)c 2 connected-assoc(a))) rpm(wheel1(c)) = rpm(wheel2(c));

ensures that the two wheels connected in a \connected" link have the same RPMs values. The �nal

constraint, that the two wheels driven by the transmission be connected, is speci�ed implicitly in

the speci�cation of the create-automobile method. Because the create-automobile method creates

its components when invoked, the relationships of the wheels can be controlled directly. After the

wheel objects (w1, w2, w3, and w4) are created, links are created for, and inserted into, the drives

and connected associations as de�ned below.

^ drives-assoc(create-automobile()) =

insert(new-drives-link(t;w2); insert(new-drives-link(t; w1); new-drives()))

^ connected-assoc(create-automobile()) =

insert(new-connected-link(w1;w2); insert(new-connected-link(w3;w4); new-connected()))

Because wheels w1 and w2 are associated with the transmission via the drives association in the

�rst line, they are also associated together via the connected association in the second line. Thus,

the constraint is satis�ed whenever an automobile aggregate object is created.

6.6 Communication

At this point the theory-based object model is su�cient for describing classes, their relation-

ships, and their composition into aggregate classes; however, object communication has not yet

been addressed. For example, suppose the banking system described earlier has an ARCHIVE

object which logs each transaction as it occurs. Obviously, the ARCHIVE object must be told

when a transaction takes place. This communication is accomplished in one of three ways. The

simplest method is to force the BANK aggregate to be responsible for directly invoking events in
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each object to accomplish the archival function and passing the appropriate information to each

object. While simple in this example, as aggregate complexity and object interaction increases, an

enormous burden is placed on the aggregate.

A second solution is to make each object responsible for handling its own communications.

Each object directly communicates with other objects by maintaining internal object-valued at-

tributes and invoking their events directly. Unfortunately, if each object is required to know each

object with which it may communicate, reusability is lost since those objects may not exist in a

di�erent system.

The third, and preferred, method is a combination of the above techniques. In this method,

each object is aware of only a certain set of events that it generates or receives. From an object's

perspective, these events are generated and broadcast to the entire system and received from the

system. In this technique, each event is de�ned in a separate event theory as shown in Figure 6.39.

event Archive-Withdrawal is

class sort Archive

sorts Acct, Amnt

events

archive-withdrawal : Archive, Acct, Amnt ! Archive

end-class

Figure 6.39 Event Theory

An event theory consists of a class sort, parameter sorts, and an event signature that are

mapped via signature morphisms to sorts and events in the generating and receiving classes. The

event theory class sort represents the class sort of any class whose objects can receive the associated

event. Because events are actually sent to individual objects represented by object-valued attributes

as de�ned in Section 6.2.9, an event may only be sent to one object in the event theory class sort.

Therefore, if the event theory class sort is mapped to the class sort of class X then communication

occurs with a single object from class X. However, if the event theory class sort is mapped to the

class sort of the class set of type X (i.e., X-CLASS), then communication may occur with a set of

objects of classX. The other sorts de�ned in an event theory class are the sorts of other parameters

6-49



of the event. The �nal part of an event theory is the event signature itself. This signature is mapped

to an event in the receiving classes with compatible parameters as de�ned in the event theory. Once

the event and sorts are mapped to the required class speci�cations under signature morphisms, the

colimit of the classes, the event theory, and the morphisms unify the event and sorts such that any

invocation of the event in the generating class is an invocation of the actual event in the receiving

class.

Figure 6.40 shows how an event theory would be incorporated into the original ACCT class.

The ARCHIVE-WITHDRAWAL event theory speci�cation is imported into the ACCT class and an

object-valued attribute, archive-obj, is added to reference the archival object. The axioms de�ning

the e�ect of the withdrawal event are modi�ed to re
ect the communication with the ARCHIVE

object as shown below.

8(a : Acct; x : Amnt)acct-state(a) = ok ^ bal(a) � x) acct-state(withdrawal(a; x)) = ok

^ archive-obj(withdrawal(a; x)) = archive-withdrawal(archive-obj(a); a; x)

^ attr-equal(withdrawal(a; x); debit(a; x));

8(a : Acct; x : Amnt)acct-state(a) = ok ^ bal(a) < x) acct-state(withdrawal(a; x)) = overdrawn

^ archive-obj(withdrawal(a; x)) = archive-withdrawal(archive-obj(a); a; x)

^ attr-equal(withdrawal(a; x); debit(a; x));

Basically, the axioms state that when a withdrawal event is received, the value of the archive-obj is

modi�ed by the archive-withdrawal event de�ned in the event theory speci�cation. Thus the ACCT

object knows it communicates with some other object or objects; however, it does not know who

they are. With whom an object communicates (or, for that matter, if the object communicates

at all) is determined at the aggregate-level where the actual connections between communicating

components are made. In this example, for instance, there could be zero, one, or many archival

objects.

Figure 6.41 shows a modi�ed BANK aggregate that includes the ARCHIVE-WITHDRAWAL

event theory and an ARCHIVE-CLASS speci�cation. The colimit operation includes morphisms

from ARCHIVE-WITHDRAWAL to ACCT-CLASS and ARCHIVE-CLASS that unify the sorts
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class Acct is

import Amnt, Date, Archive-Withdrawal

class sort Acct

sorts Acct-State

operations

attr-equal : Acct, Acct ! Boolean

attributes

date : Acct ! Date

bal : Acct ! Amnt

archive-obj : Acct ! Archive

state-attributes

acct-state : Acct ! Acct-State

methods

create-acct : Date, Archive ! Acct

credit, debit : Acct, Amnt ! Acct

states

ok, overdrawn : ! Acct-State

events

new-acct : Date, Archive ! Acct

deposit, withdrawal : Acct, Amnt ! Acct

axioms

ok 6= overdrawn;

8 (a: Acct) acct-state(a) = ok ) bal(a) � 0;

8 (a: Acct) acct-state(a) = overdrawn ) bal(a) < 0;

% operation de�nitions

8 (a,a1: Acct) attr-equal(a,a1)

) date(a)=date(a1) ^ bal(a)=bal(a1) ^ archive-obj(a)=archive-obj(a1);

% method de�nitions

8 (d: Date, o: Archive) date(create-acct(d,o)) = d ^ bal(create-acct(d,o)) = 0

^ archive-obj(create-acct(d,o)) = o;

8 (a: Acct, x: Amnt) bal(credit(a,x)) = bal(a) + x ^ date(credit(a,x)) = date(a)

^ rate(credit(a,x)) = rate(a) ^ int-date(credit(a,x)) = int-date(a)

^ check-cost(credit(a,x)) = check-cost(a);

% event de�nitions

8 (d: Date) acct-state(new-acct(d,o)) = ok ^ attr-equal(new-acct(d,o), create-acct(d,o));

8 (a: Acct, x: Amnt) acct-state(a) = ok ) acct-state(deposit(a,x)) = ok

^ attr-equal(deposit(a,x), credit(a,x));

8 (a: Acct, x: Amnt) acct-state(a) = overdrawn ^ bal(a) + x � 0 ) acct-state(deposit(a,x)) = ok

^ attr-equal(deposit(a,x), credit(a,x));

8 (a: Acct, x: Amnt) acct-state(a) = overdrawn ^ bal(a) + x < 0

) acct-state(deposit(a,x)) = overdrawn ^ attr-equal(deposit(a,x), credit(a,x));

8 (a: Acct, x: Amnt) acct-state(a) = ok ^ bal(a) � x ) acct-state(withdrawal(a,x)) = ok

^ attr-equal(withdrawal(a,x), debit(a,x))

^ archive-obj(withdrawal(a,x)) = archive-withdrawal(archive-obj(a),a,x);

8 (a: Acct, x: Amnt) acct-state(a) = ok ^ bal(a) < x ) acct-state(withdrawal(a,x)) = overdrawn

^ attr-equal(withdrawal(a,x), debit(a,x))

^ archive-obj(withdrawal(a,x)) = archive-withdrawal(archive-obj(a),a,x);

8 (a: Acct, x: Amnt) acct-state(a) = overdrawn) acct-state(withdrawal(a,x)) = overdrawn

^ attr-equal(withdrawal(a,x), a)

end-class

Figure 6.40 Account Class with Communications
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and event signature in ACCT-CLASS with the sorts and event signature of ARCHIVE-CLASS.

This uni�cation creates the communication path between account objects and archive objects.

When an account object invokes the archive-withdrawal event, it is actually invoking the archive-

withdrawal event of the archive class object. The simpli�ed BANK composition diagram is shown

in Figure 6.42. The INTEGER and SET speci�cations and the associated morphisms shown in

Figure 6.28 are left out for simplicity, but still apply.

aggregate Bank-Aggregate is

nodes INTEGER, SET-1: SET, SET-2: SET, ACCT-CLASS,

CUST-CLASS, CUST-ACCT, ARCHIVE-WITHDRAWAL, ARCHIVE-CLASS

arcs SET-1 ! ACCT-CLASS : fE ! Acct, SET ! Acct-Classg,
SET-1 ! CUST-ACCT : fE ! Account, SET ! Acct-Classg,
SET-2 ! CUST-CLASS : fE ! Customer, SET ! Cust-Classg,
SET-2 ! CUST-ACCT : fE ! Customer, SET ! Customersg,
SET-3 ! CUST-ACCT : fE ! CA-Link, SET ! Cust-Acctg,
INTEGER ! SET-1 : fg,
INTEGER ! SET-2 : fg,
INTEGER ! SET-3 : fg,
INTEGER ! ARCHIVE-CLASS : fg,
ARCHIVE-WITHDRAWAL ! ACCT-CLASS: fg,
ARCHIVE-WITHDRAWAL ! ARCHIVE-CLASS: fg

end-aggregate

Figure 6.41 Communicating Bank Aggregate Class

Acct-Class Cust-ClassCust-Acct

Bank

c c
c

Archive-Withdrawal

Archive-Class

c

c

Figure 6.42 Bank Aggregate with Archive

Communicating with objects from multiple classes requires the addition of another level of

speci�cation which \broadcasts" the communication event to all interested object classes. The
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class sort of a broadcast theory is called a broadcast sort and represents the object with which the

sending object communicates. The broadcast theory then de�nes an object-valued attribute for

each receiving class. Figure 6.43 shows an example of theARCHIVE-WITHDRAWAL-MULT event

theory modi�ed to communicate with two classes. In this case, the ARCHIVE-WITHDRAWAL

theory is used to unify the ARCHIVE-WITHDRAWAL-MULT with the ACCOUNT class as well

as the other two classes. An example of the required colimit speci�cation is shown in Figure 6.44

while the diagram of the speci�cation (showing only the morphisms between event and broadcast

theories) is shown in Figure 6.45.

event Archive-Withdrawal-Mult is

class sort Archive

sorts Amnt, Acct, X, Y

attribute

x-obj : Archive ! X

y-obj : Archive ! Y

events

archive-withdrawal : Archive , Acct, Amnt ! Archive

archive-withdrawal : X, Acct, Amnt ! X

archive-withdrawal : Y, Acct, Amnt ! Y

axioms

8 (a: Archive, ac: Acct, am: Amnt)

x-obj(archive-withdrawal(a,ac,am)) = archive-withdrawal(x-obj(a),ac,am)

^ y-obj(archive-withdrawal(a,ac,am)) = archive-withdrawal(y-obj(a),ac,am)

end-class

Figure 6.43 Broadcast Theory

Multiple receiver classes add a layer of speci�cation; however, multiple sending classes is

handled very simply. The only additional construct required is a morphism from each sending class

to the event theory mapping the appropriate object-valued attribute in the sending class to the class

sort of the event theory and the event signature in the sending class to the event signature in the

event theory. A diagram showing the e�ect of a second class sending the same archive-withdrawal

event is shown in Figure 6.46.

A question requiring further research is how to specify exactly which objects in communicating

classes actually communicate. In the banking example using a single archival object, the problem

is straightforward. Send the events to the only instance of the class. Determining which classes
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aggregate Bank-Aggregate is

nodes INTEGER, SET-1: SET, SET-2: SET, ACCT-CLASS, CUST-CLASS,

ARCHIVE-WITHDRAWAL-1: ARCHIVE-WITHDRAWAL, CUST-ACCT,

ARCHIVE-WITHDRAWAL-2: ARCHIVE-WITHDRAWAL, ARCHIVE-CLASS,

ARCHIVE-WITHDRAWAL-3: ARCHIVE-WITHDRAWAL, PRINTER-CLASS

arcs SET-1 ! ACCT-CLASS : fE ! Acct, SET ! Acct-Classg,
SET-1 ! CUST-ACCT : fE ! Account, SET ! Acct-Classg,
SET-2 ! CUST-CLASS : fE ! Customer, SET ! Cust-Classg,
SET-2 ! CUST-ACCT : fE ! Customer, SET ! Customersg,
SET-3 ! CUST-ACCT : fE ! CA-Link, SET ! Cust-Acctg,
INTEGER ! SET-1 : fg,
INTEGER ! SET-2 : fg,
INTEGER ! SET-3 : fg,
INTEGER ! ARCHIVE-CLASS : fg,
ARCHIVE-WITHDRAWAL-1 ! ACCT-CLASS: fg,
ARCHIVE-WITHDRAWAL-1 ! ARCHIVE-WITHDRAWAL-MULT: fg
ARCHIVE-WITHDRAWAL-2 ! ARCHIVE-CLASS: fg,
ARCHIVE-WITHDRAWAL-2 ! ARCHIVE-WITHDRAWAL-MULT: fArchive ! Xg,
ARCHIVE-WITHDRAWAL-3 ! PRINTER-CLASS: fg,
ARCHIVE-WITHDRAWAL-3 ! ARCHIVE-WITHDRAWAL-MULT: fArchive ! Yg

end-aggregate

Figure 6.44 Uni�cation of Multiple Broadcast Classes

Acct-Class Cust-ClassCust-Acct

Bank

Archive-ClassPrinter-Class

Archive-Withdrawal-Mult
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Archive-
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Archive-
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Archive-
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c

cc

c

Figure 6.45 Aggregate Using a Broadcast Theory
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Figure 6.46 Aggregate Using a Broadcast Theory With Multiple Generators

communicate is much simpler and is de�ned in the dynamic model based on event name equivalence.

If there is only one instance of a receiving class, then this model completely describes which objects

communicate; all instances of the account class communicate with the archive object and the printer

object. However, if certain accounts must send their archive events to certain archive or printer

objects, then the model breaks down. An extension to the OMT model is required; however, that

extension is not de�ned in this research. Because the theory-based object model is used for domain

modeling, describing what classes may communicate is acceptable. Determining exactly which

objects communicate is dealt with in the System Generation/Re�nement Subsystem as de�ned in

Chapter II.

6.6.1 Communication Between Aggregate and Components. Communication between

components is handled at the aggregate level as described above. However, when the communication

is between the aggregate and one of its components, the uni�cation of object-valued attributes and

class sorts via event theories does not work. Consider the example where a component sends an

event that is received by its aggregate. An event theory can be created; however, because the class

sort of the aggregate is not created until after the colimit is computed, the object-valued attribute

from the event theory and the aggregate class sort cannot be uni�ed in the colimit operation. There

are two solutions to this problem.
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The �rst, and simplest solution is to perform the uni�cation at the next higher level aggre-

gate or domain-level speci�cation. This is the solution implemented in the translation de�ned in

Chapter VII. Since each class is a component of an overall domain model class, the uni�cation is

performed at that level.

The second solution requires the use of a sort axiom that equivalences two or more sorts as

shown below:

sort-axiom sort1 = sort2

Using the automobile example discussed above, assume the Engine generates an engine-warning

event that is received by the Automobile aggregate. The event theory for such an event is shown

in Figure 6.47. This event theory is included into the Engine class type de�nition and, by the

colimit operation, the Automobile aggregate. To enable the Automobile aggregate to receive the

engine-warning event, it uses a sort-axiom to equivalence the Automobile sort of the aggregate with

the Controller sort from the event theory as shown in Figure 6.48. Use of the sort axiom uni�es

the Automobile sort and the Controller sort and thus the signatures of the engine-warning events

de�ned in the event theory and the Automobile aggregate are equivalent.

event Engine-Warning is

class sort Controller

events

engine-warning : Controller, Integer ! Controller

end-class

Figure 6.47 Engine-Warning Event Theory

Communications from the aggregate to the components, or subcomponents, is much simpler.

Since the aggregate includes all the sorts, operations, and axioms of all of its components and

subcomponents via the colimit operations, it can directly reference those components by the object-

valued attributes declared either in itself (in the case of components) or in its components (for

subcomponents). Because an aggregate is aware of its con�guration, determining the correct object-

valued attribute to use is not a problem.
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class Automobile is

import AUTOMOBILE-AGGREGATE

class sort Automobile

sort-axiom Automobile = Controller

operations

attr-equal : Automobile, Automobile ! Boolean

attributes

engine-obj : Automobile ! Engine-Class

transmission-obj : Automobile! Transmission-Class

wheels-obj : Automobile ! Wheels-Class

drives-assoc : Automobile ! Drives

connected-assoc : Automobile! Connected

methods

create-automobile : ! Automobile

events

new-automobile : ! Automobile

engine-warning : Automobile, Integer ! Automobile

axioms

axioms omitted

end-class

Figure 6.48 Use of Sort Axiom in Aggregate Speci�cation

6.7 Summary

This chapter presented a theory-based object model based on the restricted semantics pre-

sented in Chapter V of the Rumbaugh OMT object-oriented speci�cation methodology. It de�ned

the basic constructs necessary to capture an object-oriented speci�cation as well as some basic re-

lationships that must hold between speci�c types of object classes. These basic relationships form

the laws of object composition and de�ne the relationships between classes based on inheritance,

association, and aggregation.

An object class is de�ned as a theory presentation with operations that represent attributes,

methods, events, operations, and states while class inheritance is speci�ed through the use of the

import block and subsorting in a class speci�cation. Links are de�ned generically as a class of objects

that relate two or more objects from other classes. While link speci�cations are not exactly the same

as a class speci�cation, links may de�ne attributes and operations. Associations are de�ned simply

as a set of link objects. A unique type of speci�cation is introduced to de�ne an aggregate class. An

aggregate speci�cation de�nes a diagram of class speci�cations and the morphisms in the category

6-57



Spec. The classes in an aggregate speci�cation consist of the aggregate's component classes and

their associations. Finally, event theories and category theory operation are used to formally de�ne

the communication paths between classes in a domain model based on events speci�ed in the

dynamic model.

The next chapter builds on the information in this chapter by formally de�ning the trans-

formations required to map graphically-based OMT domain models into the formal theory-based

object model described in this chapter.
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VII. Translation to Theory-Based Speci�cation

7.1 Introduction

In the previous chapter, a theory-based model of object-orientation was de�ned based on con-

cepts from Rumbaugh's OMT. This chapter de�nes the transformation rules to correctly translate

a Rumbaugh OMT speci�cation into its theory-based representation based on the theory-based

object model. However, because there is no standard representation for OMT speci�cations other

than their graphically-based diagrams, a generic OMT (GOMT) abstract syntax tree is used (as

de�ned in Appendix A) to capture the components of the OMT diagrams in a more computation-

ally familiar form. This GOMT AST was developed to ensure independence from any particular

front-end tool. As de�ned in Appendix D, the demonstration system developed during this research

translates the output of a commercial OMT-based tool into the GOMT before it is translated into

O-Slang to ensure isolation of tool-dependent concerns from the actual transformations. Thus,

the transformations in this chapter de�ne translations from a OMT speci�cation captured in a

GOMT AST into an O-Slang abstract syntax tree. These transformation rules are described us-

ing �rst order algebraic axioms de�ned over the GOMT and O-Slang abstract syntax trees using

the notation and names de�ned in Appendix C.

The correctness of these transformations is established in Section 7.6 by showing that the

formal semantics of each model ( as de�ned in Chapter V ) is preserved by the transformations

de�ned in Sections 7.2, 7.3, and 7.4. This preservation of semantics is proved by de�ning a mapping

from the theory-based representation in O-Slang to the formal semantics and then showing that

the semantics of an OMT speci�cation is equivalent before and after its translation to O-Slang.

In this chapter I use the convention that calligraphic uppercase letters such as A and C refer

to associations and classes from the GOMT AST while outlined letter A and C refer to equivalent

associations and classes in the O-Slang AST (i.e., C is the GOMT class corresponding to the

O-Slang class C ). Dot notation is used to refer to both subobjects and attributes of objects in the
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ASTs. For example C :Name would refer to the name attribute of class C while C :Class-Sort is

the class-sort subobject which itself has the two attributes class-sort-id and inherited-sort-id. The

distinction between attributes and subobjects are clear from context and the GOMT andO-Slang

AST de�nitions.

Axioms de�ned in this chapter are written as quoted strings of characters. In an axiom, all

uppercase strings denote actual characters in the string while object and attribute names denote

placeholders for the associated values of those objects and attributes. For example, the axiom

\SIZE(c:Name-OBJ(X)) = 1"

de�nes a string where the value of c:Name is inserted. Thus if c:Name = STUDENT , the axiom

becomes

\SIZE(STUDENT -OBJ(X)) = 1"

Within axioms, I also use pattern matching placeholders, \..." to match an arbitrary sequence of

characters in an axiom. Thus a test

if ax =\::: SIZE(IMAGE(A;X)) = 1 :::"

returns true if the string of characters \SIZE(IMAGE(A;X)) = 1" is a substring of ax.

Many objects in the GOMT and O-Slang ASTs de�ne sets or sequences of objects. When

forming a set or sequence, general set former notation is used. The set S = fx j P (x)g denotes

the set S where x2S only if P (x) is true. Sequences are formed in the same manner using square

brackets [x j P (x)] instead of curly braces. Standard set and sequence operations are used, with

k representing the concatenation of two sequences.

7.2 Object Model Translations

A GOMT object model representation consists of two kinds of entities: classes and asso-

ciations. This section discusses the translations of each of these in relation to the OMT object

model.
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7.2.1 Class Translation. The object model of a GOMT Class, C, consists of the following

items

� name

� set of superclass names

� set of component connections

� set of attributes

With the exception of the class name, all items are optional. The following transformations convert

a GOMT class, C, into an O-Slang speci�cation, C .

7.2.1.1 Class Speci�cation. If there are any abstract operations in C then C generates

an abstract class, C abstract . If there are no abstract operations in C, C generates a concrete class,

C concrete . The name of C de�nes the name of C as well as the name of its class sort. All other

transformations on C are made without regard to whether C is abstract or concrete.

C 2 GOMT -DomainTheory:GOMT -Class

^ (8 (o) o 2 C:GOMT -Op) o:is-abstract = false)

) 9 (CConcrete) CConcrete 2 O-Slang-DomainTheory

^ CConcrete :Name = C:Name

^ CConcrete :class-sort:classsort-id = C:Name (OMT-1)

C 2 GOMT -DomainTheory:GOMT -Class

^ (9 (o) o 2 C:GOMT -Op ^ o:is-abstract = true)

) 9 (CAbstract) CAbstract 2 O-Slang-DomainTheory

^ CAbstract :Name = C:Name

^ CAbstract :class-sort:classsort-id = C:Name (OMT-2)

From this point forward in the translation rules, it is assumed that C is the O-Slang class

generated from C by Rules OMT-1 or OMT-2 and that C may represent either an abstract class or

a concrete class.

7.2.1.2 Superclasses. The classes C inherits from are de�ned by a set of superclass

names. In O-Slang this requires importing each superclass and de�ning the class sort of C to be

a subset of each of the superclass class sorts. This is accomplished by placing each superclass name
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in the import block of C and stating that the class sort of C is a subsort of each of its superclass

class sorts as shown below (where s1:::sn are superclass names in C.superclass).

class-sort C:Name < s1:::sn

This translation is de�ned in Rules OMT-3 and OMT-4

s 2 C:Superclass ) s 2 C :Import (OMT-3)

s 2 C:Superclass ) s 2 C :class-sort:inherited-sort-id (OMT-4)

7.2.1.3 Components. If C has component connections it is an aggregate object and

requires the creation of an aggregate class. This aggregate class is then imported into C as de�ned

in Section 7.2.3. A component of C consists of the following items.

� name

� quali�er (with a name and a datatype)

� role

� multiplicity

Besides generating an aggregate class, each component connection, c, in class C de�nes an

attribute in C that takes the class sort of C as input and returns a set of component objects. As

de�ned in Section 6.5, a component, c, becomes an object-valued attribute referencing a set of

objects of class c:Name. If the role attribute is de�ned, then the name of the attribute becomes

the role name given. If the role attribute is not de�ned, the component name appended with the

string \-OBJ" is used to de�ne the object-valued attribute.

c:Name-OBJ : C:Name! c:Name-Class

or

c:role : C:Name! c:Name-Class

The formal speci�cation of this transformation is
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c 2 C:Connection) hattr-name(c); [C:Name]; [c:Name-CLASS]i 2 C :Attribute) (OMT-5)

where the function attr-name is de�ned below.

defined?(c:role)) attr-name(c) = c:Role

undefined?(c:role)) attr-name(c) = c:Name-OBJ
(7.1)

A component quali�er is used to discriminate between components in a set. According to

Section 6.5.2, a quali�er becomes an attribute of the component. This requirement is speci�ed

formally in Rule OMT-6. In this rule, c is a quali�ed component whoseO-Slang class speci�cation

is C q and whose class set is C qs .

c 2 C:Connection^ c:Name = C q :Name ^ c:Name-CLASS = C qs :Name

^ defined?(c:Qualifier))

(hc:Qualifier:Name; [c:Name]; [type(c:Qualifier)]i 2 C q :Attribute

^ hIMAGE; [C qs :Name; c:Qualifier:Name]; [C qs :Name]i 2 C qs :Operation

^ \IMAGE(C;Q) = fX j X 2 C ^ c:Qualifier:Name(C) = Qg" 2 Cqs :Axiom) (OMT-6)

where the function type is de�ned as

defined?(c:datatype)) type(c) = c:Datatype

undefined?(c:datatype)) type(c) = c:Name

(7.2)

According to Section 6.5, a class, C , with components also includes an attribute for each

association whose components are all components (or subcomponents) of C . Assuming there exists

such an association, A , the attribute takes the form show below. Because of the intricacies of

determining exactly when this is applicable, the actual rule for this transformation is de�ned in

Rule OMT-30.

A :Name-ASSOC : C:Name! A :Name

The component class named c.Name and its class set named c.Name-CLASS are both assumed

to exist. As discussed above, an object with components generates an aggregate speci�cation. This

aggregate speci�cation includes the de�nition of all lower-level components and must be imported

into C . This requirement is de�ned formally in Rule OMT-7.
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(9 (c) c 2 C:Connection)) C:Name-AGGREGATE 2 C :Import (OMT-7)

The multiplicity of a component de�nes how many of each component may be part of the

aggregate class C . As de�ned by Rumbaugh, these multiplicities include:

� One

� Many

� Plus (with an integer)

� Optional

� Speci�ed (with a set of Spec-Ranges which have one or two integers indicating the range of
multiplicities)

where a multiplicity of One allows only one component, a multiplicity of Many allows zero or

more components, Plus allows the user to specify a minimum number of components, Optional

allows exactly zero or one component, and Speci�ed allows the user to specify the exact number or

range of components allowed to be part of the aggregate. Therefore, as de�ned in Section 6.4.1,

the multiplicity of component c de�nes an O-Slang axiom specifying the allowable number of

components that may be part of C . Generally, the axioms de�ned by the �rst four multiplicities

(One, Many, Plus, and Optional) are simple and are given in O-Slang syntax below.

One 7! SIZE(attr-name(c)(O)) = 1

Many 7! SIZE(attr-name(c)(O)) � 0

Plus 7! SIZE(attr-name(c)(O)) � c:P lus:integer

Optional 7! SIZE(attr-name(c)(O)) = 0 _ SIZE(attr-name(c)(O)) = 1

However, if the component is quali�ed, the multiplicity is de�ned on the quali�ed image operation

de�ned in the component class by Rule OMT-6. The format of the quali�ed multiplicity axiom is

show below.

One 7! SIZE(IMAGE(attr-name(c)(O); q)) = 1

Many 7! SIZE(IMAGE(attr-name(c)(O); q)) � 0

Plus 7! SIZE(IMAGE(attr-name(c)(O); q)) � c:P lus:integer

Optional 7! SIZE(IMAGE(attr-name(c)(O); q)) = 0 _ SIZE(IMAGE(attr-name(c)(O); q)) = 1

7-6



These requirements are formalized in the following axioms.

c 2 C:Connection^ c:Mult = One )

((undefined?(c:Qualifier)) \SIZE(attr-name(c)(X)) = 1" 2 C :Axiom)

(defined?(c:Qualifier)

) \SIZE(IMAGE(attr-name(c)(X); Q)) = 1" 2 C :Axiom)) (OMT-8)

c 2 C:Connection^ c:Mult =Many )

((undefined?(c:Qualifier)) \SIZE(attr-name(c)(X)) � 0" 2 C :Axiom)

(defined?(c:Qualifier)

) \SIZE(IMAGE(attr-name(c)(X); Q)) � 0" 2 C :Axiom)) (OMT-9)

c 2 C:Connection^ c:Mult = Plus )

((undefined?(c:Qualifier)

) \SIZE(attr-name(c)(X)) � c:P lus:integer" 2 C :Axiom)

(defined?(c:Qualifier)

) \SIZE(IMAGE(attr-name(c)(X); Q)) � c:P lus:integer" 2 C :Axiom)) (OMT-10)

c 2 C:Connection^ c:Mult = Optional )

((undefined?(c:Qualifier)

) \SIZE(attr-name(c)(X)) = 0 _ SIZE(attr-name(c)(X)) = 1" 2 C :Axiom)

(defined?(c:Qualifier)

) \SIZE(IMAGE(attr-name(c)(X); Q)) = 0

_ SIZE(IMAGE(attr-name(c)(X);Q)) = 1" 2 C :Axiom)) (OMT-11)

Generating the axiom for a Speci�ed multiplicity is more complex. It may be used to specify

either an exact number, a range of numbers, or a combination of both. Each Speci�ed multiplicity

may have a number of speci�ed ranges. For each speci�ed range, s, if only one value (value1) is

speci�ed in an unquali�ed Speci�ed multiplicity then the subaxiom

SIZE(attr-name(c)(O)) = s:V alue1

is generated as part of the overall speci�ed axiom. However, if two values (value1 and value2) are

speci�ed, then the multiplicity de�nes a range as shown in the following subaxiom.

SIZE(attr-name(c)(O)) � s:V alue1 ^ SIZE(attr-name(c)(O)) � s:V alue2
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Because a user may specify multiple Speci�ed values or ranges, the axioms generated for each

Speci�ed multiplicity must be disjuncted to create a single axiom de�ning the possible multiplicities

of a component c as shown below.

c 2 C:Connection^ c:Mult = Specified)

((undefined?(c:Qualifier))

OR(fax j s 2 c:Mult ^

(defined?(s:value2)) ax = \SIZE(attr-name(c)(X)) � s:value1

^ SIZE(attr-name(c)(X)) � s:value2")

^ (undefined?(s:value2)) ax = \SIZE(attr-name(c)(X)) = s:value1")g)

2 C :Axiom)

(defined?(c:Qualifier))

OR(fax j s 2 c:Mult ^

(defined?(s:value2)) ax = \SIZE(IMAGE(attr-name(c)(X);Q)) � s:value1

^ SIZE(IMAGE(attr-name(c)(X); Q)) � s:value2")

^ (undefined?(s:value2)

) ax = \SIZE(IMAGE(attr-name(c)(X);Q)) = s:value1")g)

2 C :Axiom)) (OMT-12)

where OR is a function that returns a single axiom that is the logical disjunction of all axioms in

the input set.

7.2.1.4 Attributes. Each attribute, �, in C is either a normal or derived attribute.

Each attribute in the GOMT AST consists of the following items.

� name

� datatype (optional)

� expression (optional)

Each normal attribute, �norm, in C de�nes an attribute declaration in C of the form:

�norm.Name: C.Name ! type(�)

where type is the function de�ned in Equation 7.2.

An expression of a normal attribute is interpreted as the initial value computation for that

the attribute. Therefore, each normal attribute expression de�nes an axiom in the axiomblock of

C of the form
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�norm:Name(CREATE-C:Name(parameters)) = �norm:expression

where CREATE-C:Name(parameters) is the create object function automatically created when

C is de�ned. Parameters of the create function are de�ned by the dynamic or functional model as

de�ned in Rule OMT-75 or OMT-85. If no dynamic model exists and create is not speci�ed in the

functional model then it is assumed there are no parameters to the create function. If the create

function is speci�ed in the dynamic model, then the parameter number and types de�ned in the

dynamic model are used.

The formal transformations required for normal attributes are shown in Rule OMT-13.

� 2 C:NormAttr

) (h�:Name; [C:Name]; [type(�)]i 2 C :Attribute

^ defined?(�:expression))

\�:Name(CREATE-C:Name(C:Name; create-domain(C)))

= �:expression" 2 C :Axiom) (OMT-13)

where the function create-domain is de�ned as

(9 (�; a) � 2 C:T ransition ^ a 2 �:Action ^ a:Name = CREATE-C:Name)
) create-domain(C) = domain(a)

:(9 (�; a) � 2 C:T ransition ^ a 2 �:Action ^ a:Name = CREATE-C:Name)
) create-domain(C) = []

(7.3)

and the function domain is de�ned as the following sequence.

domain(a) = [type(p) j p 2 a:Parameter] (7.4)

Because a derived attribute calculates its valued based on normal attributes, each derived

attribute, �derived, in C de�nes an operation declaration in C of the form

�derived:Name : C:Name! type(�)

where again, type is de�ned in Equation 7.2. The user may de�ne the value of a derived attribute

in one of two ways: via a functional model decomposition or by providing an expression in the

attribute de�nition. A functional model de�nes a set of axioms as described in Section 7.4. If the

user provides an expression, the expression becomes an axiom in the axiom block of C , . These
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expressions are assumed to have the correctO-Slang syntax and semantics to compute the derived

attribute value. The axiom generated is shown below.

�derived:Name(C:Name) = �derived:expression

The formal transformations required for derived attributes are speci�ed in Rule OMT-14

where create-domain is de�ned as in Equation 7.3.

� 2 C:DerivedAttr ) h�:Name; [C:Name]; [type(�)]i 2 C :Operation

^ (defined?(�:expression)) \�:Name(C:Name) = �:expression" 2 C :Axiom)(OMT-14)

7.2.1.5 Operations. Operations are transformed in the functional model as de�ned

in Section 7.4 or via special operation de�nitions as de�ned in Section 7.5. The only exception to

these rules is the operation attr-equal. The attr-equal operation determines if two objects of the

same class have identical non-state attribute values. Therefore, if a class, C, has normal attributes,

it must have an attr-equal operation. The signature of the operation is shown below.

attr-equal : C:Name; C:Name! Boolean

Assuming C has normal attributes �1:::�n, the axiom de�ning the attr-equal operation takes the

form

attr-equal(c1; c2) = �1(c1) = �1(c1)^ ::: ^ �n(c1) = �n(c1)

Formally, the transformations that create the attr-equal operation and its de�nition are
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(9 (�) � 2 C:NormAttr) ) hATTR-EQUAL; [C:Name; C:Name]; [Boolean]i 2 C :Operation

^ \ATTR-EQUAL(O1; O2) = attr-compare(C)" 2 C :Axiom (OMT-15)

where the function attr-compare is de�ned as the logical conjunction of equations between two

attributes of two objects, O1 and O2 as de�ned below in Equation 7.5. The AND function is

de�ned similar to the OR function as the conjunction of a set of axioms.

attr-compare(C) = AND(f\�(O1) = �(O2)" j � 2 C:NormAttrg) (7.5)

7.2.1.6 Methods. Because of my approach to using OMT in this research, methods

are de�ned either in the dynamic or functional models; however, if there is no dynamic model and

a create process is not de�ned in the functional model, a default create method must be de�ned.

A default create method takes no inputs and produces a value of the class sort of of C as shown

below.

CREATE-C:Name :! C:Name

The default de�nition of the create method is shown below.

SIZE(C:T ransition) = 0 ^ (8 (p) p 2 processes(C) p:Name 6= CREATE-C:Name)

) hCREATE-C:Name; []; [C:Name]i 2 C :Method (OMT-16)

In Rule OMT-16, the function processes returns the set of all subprocesses of a class or a process

in a class as de�ned below.

processes(x) = fp j p 2 Process(x)
_ p1 2 processes(x) ^ p 2 Process(p)

(7.6)

The default values of normal attributes are used to create the de�nition of create. For each

normal attribute, �, in C with a de�ned default value expression, the following axiom is generated

as de�ned in Rule OMT-13.

�:Name(CREATE-C:Name()) = �:expression
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7.2.1.7 Events. When a default create process must be created as de�ned above, a

corresponding new event must also be created to invoke the create method. This new event has the

exact same domain and range as the create method

NEW -C:Name :! C:Name

and its only axiom \invokes" the create method as shown below.

ATTR-EQUAL(NEW -C:Name(); CREATE-C:Name())

These two de�nitions are captured in the following transformation rules.

SIZE(C:T ransition = 0)^ (8 (p) p 2 processes(C) p:Name 6= CREATE-C:Name)

) (hNEW -C:Name; []; [C:Name]i 2 C :Event (OMT-17)

SIZE(C:T ransition = 0)^ (8 (p) p 2 processes(C) p:Name 6= CREATE-C:Name)

) \ATTR-EQUAL(NEW -C:Name(); CREATE-C:Name())" 2 C :Axiom) (OMT-18)

where processes is de�ned in Equation 7.6.

7.2.2 Class Sets. Each class C generates a second speci�cation called the class set, C s

that de�nes a set of objects of type C . The name C de�nes the name of C s as well as the name of the

class sort of C s . The string \-CLASS" is simply appended to the name of the class set speci�cation

and class sort. To explicitly state that C s de�nes a set of objects of type C , a contained-in name is

de�ned as the name of the de�ning class. The formal speci�cation of the transformation is shown

in Rule OMT-19.

C 2 GOMT -DomainTheory:Class) 9 (C s ) C s 2 O-Slang-DomainTheory

^ C s :Name = C :Name-CLASS

^ C s :class-sort:classsort-id = C :Name-CLASS

^ C s :contained-in = C :Name (OMT-19)

7.2.2.1 Class Set Superclasses. The set of superclass names of C de�nes the classes

from which C inherits. As de�ned in De�nition 6.2.1, the class set of the superclasses of C must
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also be imported into the class set of C . This is accomplished by placing each superclass name in

the import block of C s as de�ned in Rule OMT-20.

s 2 C:Superclass ) s-CLASS 2 C s :Import (OMT-20)

7.2.2.2 Class Set Event. Each event in class C de�nes a class event in C s . These

class events have the same signature as the events from class C with the class sort of C replaced

by the class sort of C s . The formal transformation is shown below where the function rest returns

all items in a sequence but the �rst item.

e = hname; domain; rangei 2 C :Event )

hname; [C :Name-CLASS] k rest(domain); [C :Name-CLASS] k rest(range)i

2 C s :Event (OMT-21)

The purpose of class-level events are to distribute the object-level event to each object in the

class set. Thus for each event in C s , an axiom is added via the following transformation.

e = hname; domain; rangei 2 C :Event )

\8 (C : c:Name; CC : c:Name-CLASS) C 2 CC ,

e:Name(C; parameters(e)) 2 e:Name(CC;parameters(e))" 2 C s :Axiom (OMT-22)

where parameters is de�ned as

parameters(e) = [unique(x) j x 2 rest(e:domain)] (7.7)

and unique is a function that returns a unique symbol name based on the input symbol.

In Section 6.2.4, the Theory-Based Object Model requires each class to de�ne a new event

that causes the creation of a new object. Because the class sort of a class set is a set, a new class

set object is simply an empty set. This requirements is captured by de�ning a new event

NEW -C :Name-CLASS :! C s :Name-CLASS

with the axiom de�ning a new class set to be empty.

NEW -C :Name-CLASS() = EMPTY -SET
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Formally, these de�nitions are captured by the following transformation rule.

C s 2 O-Slang-DomainTheory

hNEW -C :Name-CLASS; []; [C :Name-CLASS]i 2 C s :Event

^ \NEW -C :Name-CLASS() = EMPTY -SET" 2 C s :Axiom (OMT-23)

7.2.3 Aggregates. As discussed in Section 7.2.1, each class C with components de�nes an

aggregate class C A . This aggregate class has a special form that de�nes the colimit of a diagram.

In this section C denotes the GOMT class that generates C , the class speci�cation, and C A , the

aggregate speci�cation in O-Slang. When generating the aggregate class, the name of C A is

de�ned by simply appended the string \-AGGREGATE" to the name of the C. Rule OMT-24

formally de�nes this translation requirement.

c 2 C:Connection) 9 (C A ) C A 2 O-Slang-DomainTheory

^ C A :Name = C:Name-AGGREGATE (OMT-24)

The diagram of speci�cations and speci�cation morphisms is de�ned by a set of nodes (spec-

i�cations) and a set of arcs (speci�cation morphisms). These nodes correspond to all classes, data

types, associations, and event theories referenced by a class, or any of its superclasses or compo-

nents. A speci�cation is in the node set of C A if it is one of the following.

1. A speci�cation imported in C .

2. A component of C.

3. The class set speci�cation of a component of C.

4. The aggregate speci�cation of a component of C.

5. Any speci�cation imported by nodes in C A .

6. An association speci�cation whose connections are all nodes in C A .

7. Any speci�cation imported by components of two or more nodes of C A .

8. A unique TRIV speci�cation is added to the node set for each connection in an association
speci�cation C A .Node.

9. An event theory de�ning the communication between nodes in C A .

10. A broadcast theory de�ning the communication between multiple nodes in C A .
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The �rst seven of these transformations are de�ned next. Item 8, the creation of a unique

TRIV speci�cation, is created as part of Rule OMT-38 while the event and broadcast nodes and

arcs are more complex and are de�ned in Section 7.2.3.1. The formal transformation rules for

determining the set of nodes in an aggregate are expressed in Rules OMT-25 through OMT-39.

s 2 C :Import ) hs; si 2 C A :Node (OMT-25)

s 2 C:Connection) hs:Name; s:Namei 2 C A :Node (OMT-26)

s 2 C:Connection) hs:Name-CLASS; s:Name-CLASSi 2 C A :Node (OMT-27)

s 2 C:Connection ^ s:Name = C0

:Name ^ (9 (c) c 2 C0

:Connection)

) hC0

:Name-AGGREGATE; C0

:Name-AGGREGATEi 2 C A :Node (OMT-28)

hx; s:Namei 2 C A :Node ^ s1 2 s:Import) hs1; s1i 2 C A :Node (OMT-29)

A 2 GOMT -DomainTheory:Assoc ^ (8 (c) c 2 A:Connection hx; c:Namei 2 C A :Node

) (hA:Name;A:Namei 2 C A :Node)

hA:Name-ASSOC; [C :Name]; [A:Name]i 2 C :Attribute) (OMT-30)

hz; s1:Namei; hy; s2:Namei 2 C A :Node ^ x 2 imports(s1) ^ x 2 imports(s2)

) hx; xi 2 C A :Node (OMT-31)

where the function imports recursively de�nes the set of all imports of a given class as shown below.

defined?(c:Node)) imports(c) = fs j s 2 imports(x) _ hx; s:Namei 2 c:Nodeg
defined?(c:Import)) imports(c) = fs j s 2 c:Import _ (s 2 imports(x) ^ x 2 c:Import)g

(7.8)

The morphisms between nodes of C de�ne the set of arcs in C and are critical to correctly

de�ning the colimit of the diagram. An arc is in the arc set of C if for n1, n2 in the node set of C A

one of the following holds.

1. n1 is directly or indirectly imported by n2

2. n1 is a component of n2

3. n1 is superclass of n2

4. n2 = n1-CLASS

5. n1 = n2-AGGREGATE

6. n1 = n2-LINK
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7. n2 is a connection of n1, an association

8. n1 is an event theory received by n2 (or a subcomponent of n2)

9. n1 is an event theory sent by a component of n2

Once the nodes of an aggregate are known, the arcs may be computed. Once again, the �rst

seven items above are straightforward and discussed below, while de�ning the arcs between event

and broadcast theories is more complicated and is discussed separately in Section 7.2.3.1. The �rst

seven transformations may be expressed formally as shown below. In these transformations, n1

and n2 are classes in the O-Slang Domain Theory whose names, n1:Name and n2:Name, are in

the node set of aggregate C A and Cn1 and Cn2 represent the GOMT classes that generated classes

n1 and n2. The transformations to de�ne the set of arcs for an aggregate C A are shown below.

hx; n1:Namei; hy; n2:Namei 2 C A :Node

^ n1:Name 2 imports(n2)) hhx; n1:Namei; hy; n2:Namei; fgi 2 C A :Arc (OMT-32)

n1:Name 2 imports(n2)

) hhn1:Name; n1:Namei; hn2:Name; n2:Namei; fgi 2 C A :Arc (OMT-33)

n1:Name 2 n2:ClassSort:Inherited-Sort-Id

) hhn1:Name; n1:Namei; hn2:Name; n2:Namei; fgi 2 C A :Arc

^ hhn1:Name-CLASS;n1:Name-CLASSi;

hn2:Name-CLASS;n2:Name-CLASSi; fgi 2 C A :Arc (OMT-34)

n2:Name = n1:Name-CLASS

) hhn1:Name; n1:Namei; hn2:Name; n2:Namei; fgi 2 C A :Arc (OMT-35)

n1:Name = n2:Name-AGGREGATE

) hhn1:Name; n1:Namei; hn2:Name; n2:Namei; fgi 2 C A :Arc (OMT-36)

n1:Name = n2:Name-LINK

) hhn1:Name; n1:Namei; hn2:Name; n2:Namei; fgi 2 C A :Arc (OMT-37)

c 2 Cn1:Connection^ c:Name = n2:Name ^ TRIVx = hunique(TRIV ); TRIV i )

((defined?(n2:role)

) hTRIVx; hn1:Name-LINK; n1:Name-LINKi; fE ! n2:rolegi 2 C A :Arc)

^ (undefined?(n2:role)

) hTRIVx; hn1:Name-LINK; n1:Name-LINKi; fE ! attr-name(n2)gi 2 C A :Arc)

^ hTRIVx; hn2:Name; n2:Namei; fE ! n2:Namegi 2 C A :Arc

^ TRIVx 2 C A :Node) (OMT-38)
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7.2.3.1 Communication Theories in Aggregates. When discussing event and broad-

cast theories, it is often di�cult to determine exactly when to include them in aggregate nodes and

arcs. If there is only one class that receives an event, the problem is not di�cult. Event theories

become nodes in an aggregate when (1) a class which is a node in the aggregate imports the event

theory (the class sends the event), or (2) when the nodes of an aggregate include both a sending

class and a receiving class. The formal transformation rules of this simple case are shown below

e 2 O-Slang-DomainTheory:Event ^ size(receives(e)) = 1

^ hn1; n1i; hn2; n2i 2 C A :Node ^ n1 2 comp-sends(e)^ n2 2 comp-receives(e)

) (he:Name; e:Namei 2 C A :Node

^ hhe:Name; e:Namei; hn1; n1i; fgi 2 C A :Arc

^ hhe:Name; e:Namei; hn2; n2i; fdomain-map(e; n2)gi 2 C A :Arc) (OMT-39)

where domain-map is the mapping of sorts in the domain of the equivalent event signatures in c1

to the sorts of the domain of event signature in c2 as de�ned below (the function index is the index

of the sort symbol within a sequence { the domain-ident of the event)

domain-map(c1; c2) = f\a1 ! a2" j a1 2 e1:domain-ident^ a2 2 e2:domain-ident
^ index(a1; e1:domain-ident) = index(a2; e2:domain-ident)

^(e1 2 c1:Event ^ e2 2 c2:Event ^ e1:Name = e2:Name)g
(7.9)

and receives, sends, comp-receives, and comp-sends are functions that de�ne a set of classes who

send/receive a given event or who have components who send/receive a given event.

receives(e) = fc:Name j c 2 GOMT -DomainTheory:Class

^ t 2 c:Transition ^ e:Name = t:Nameg (7.10)

sends(e) = fc:Name j c 2 GOMT -DomainTheory:Class

^ t 2 c:Transition ^ a 2 t:Action ^ e:Name = a:Action:Nameg (7.11)

comp-receives(e) = fc:Name j x 2 receives(e)^ (x 2 components-of(c) _ x = c:Name)g
(7.12)

comp-sends(e) = fc:Name j x 2 sends(e)^ (x 2 components-of(c) _ x = c:Name)g (7.13)

The function components-of de�nes a set consisting of the names of all classes which are components

or sub-components of a given class as de�ned below.
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components-of(c) = fx:Name j x 2 c:Connection
_ (x 2 components-of(y:Name) ^ y 2 components-of(c))g

(7.14)

When there is more than a single class that receives an event, the computation of aggregate

nodes and arcs becomes more di�cult. As described in Section 6.6, a broadcast theory is de�ned to

send an event to multiple classes. Determining where to place this broadcast theory is the problem.

According to the Theory-Based Object Model, the broadcast theory should be placed in the lowest-

level aggregate in the domain theory that includes (possibly as components or subcomponents of

nodes in the aggregate) all of the sending classes and all of the receiving classes.

When the appropriate aggregate has been found, a broadcast theory is created as de�ned

in Section 6.6. The broadcast theory imports the appropriate event theory and creates a unique

event theory for each receiving class. An import arc is de�ned between each sending class and a

single event theory, which in turn has an import arc between it and the broadcast theory. While

the sending classes may share a single copy of an event theory speci�cation in order to link to the

broadcast theory, each receiving class must have a unique event theory speci�cation that is mapped

to the event in the broadcast theory for that particular receiving class. The transformations are

de�ned formally below. Rule OMT-40 de�nes the broadcast theory while Rule OMT-41 de�nes the

appropriate nodes and arcs in the aggregate.

7-18



e 2 O-Slang-DomainTheory:Event ^ size(receives(e))> 1

^ event 2 e:Event

^ (c 2 receives(e)) c 2 components-of(C A ))

^ (c 2 sends(e)) c 2 components-of(C A ))

^ :(9 (a) a 2 components-of(C A ) ^ defined?(a:Node)

^ (c 2 receives(e)) c 2 components-of(C A ))

^ (c 2 sends(e)) c 2 components-of(C A )))

) C E 2 O-Slang-DomainTheory

^ C E :Name = e:Name-MULT

^ C E :Class-Sort:Class-Sort-Id = e:Name-SORT

^ e:Name 2 C E :Import

^ (c 2 receives(e))

(he:Name; [c:Name] k domain(event); [c:Name]i 2 C E :Event

^ hc:Name-OBJ; [e:Name]; [c:Name]i 2 C E :Attribute

^ \c:Name-OBJ(e:Name(e:Class-Sort:Class-Sort-Id; domain(event))

= e:Name(C:Name-OBJ(e:Class-Sort:Class-Sort-Id); domain(event)))

2 C E :Axiom)) (OMT-40)

e 2 O-Slang-DomainTheory:Event ^ size(receives(e))> 1

^ emult 2 O-Slang-DomainTheory:Event ^ e:Name-MULT = emult:Name

^ (c 2 receives(e)) c 2 components-of(C A ))

^ (c 2 sends(e)) c 2 components-of(C A ))

^ :(9 (a) a 2 components-of(C A ) ^ defined?(a:Node)

^ (c 2 receives(e)) c 2 components-of(C A ))

^ (c 2 sends(e)) c 2 components-of(C A )))

) hemult:Name; emult:Namei 2 C A :Node

^ (c 2 (comp-receives(e)\ fn j hn; xi 2 C A :Nodeg)

^ ev 2 c:Event ^ ev:Name = e:Name

) (x = unique(e:Name) ^ hx; e:Namei 2 C A :Node

^ hhx; e:Namei; hc:Name; c:Namei; domain-map(e; c)i 2 C A :Arc

^ hhx; e:Namei; hemult:Name; emult:Namei; domain-map(e; emult)i

2 C A :Arc)) (OMT-41)

7.2.3.2 Domain Theory Aggregate. To ensure that all classes, associations, and

events are uni�ed in the domain theory, an overall domain theory aggregate is created that combines

all top-level classes into a single speci�cation. This is accomplished by creating a top-level aggregate

with all top-level classes as nodes. Then, Rules OMT-25 through OMT-41 add additional nodes

(associations, common imports, and event and broadcast theories) to the aggregate and compute
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the necessary arcs. The top-level classes are those classes that are not components of any other

class as de�ned by Equation 7.15. The function top-level takes a GOMT domain theory and returns

a set of nodes.

top-level(DT ) = fhc; ci j c 2 DT:Classg n fhc; ci j c:Name 2 k:Connection^ k 2 DT:Classg (7.15)

Thus, for each GOMT domain theory, a top-level aggregate is automatically created with an

initial set of top-level nodes as de�ned in Rule OMT-42.

9 (C A ) C A 2 O-Slang-DomainTheory

^ C A :Name = DOMAIN-THEORY

^ C A :Node = top-level(GOMT -DomainTheory) (OMT-42)

7.2.4 Association Translation. A GOMT association, A, consists of the following items

� name

� set of class connections

� set of attributes

� set of operation de�nitions

Each GOMT association, A, de�nes two O-Slang speci�cations, a link speci�cation, A L ,

and an association speci�cation A where the association speci�cation de�nes a set of link objects

similar to a class set speci�cation. The name of A de�nes the names and class sorts of A and A L .

The formal rules for this transformation are shown below.

A 2 GOMT -DomainTheory:Assoc) AL 2 O-Slang-DomainTheory

^ AL:Name = A:Name-LINK

^ AL:Class-Sort:ClassSort-Id = A:Name-LINK (OMT-43)

A 2 GOMT -DomainTheory:Assoc) A 2 O-Slang-DomainTheory

^ A :Name = A:Name

^ A :Class-Sort:ClassSort-Id = A:Name

^ A :Link-Class = A:Name-LINK (OMT-44)

The association speci�cation de�nes a set of links along with the association multiplicity

de�ned by the association connections. Associations do not have attributes or operations. GOMT
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operations and attributes are used to de�ne the link attributes and operations only. Therefore, the

de�nition of the association relies solely on its set of class connections. These connections have four

components.

� name

� quali�er (with a name and a datatype)

� role

� multiplicity

In order to reference sets of objects from the associated classes, each connection, c, in class

A de�nes a sort in A that is uni�ed with the class set sort of the associated class. The formal

transformation of a connection to a sort in an association is de�ned in Rule OMT-45.

c 2 A:Connection) c:Name-CLASS 2 A :Sort (OMT-45)

In order to constrain the multiplicity of the objects based the number of links in the as-

sociation, there must be a way to determine the number of links a given object participates in.

As de�ned in Section 6.4.1, this corresponds to the image operation. Assuming the association is

a simple (no quali�er) binary association, the signature for the two image operations de�ned by

components, c1 and c2, is shown below.

IMAGE : A:Name; c1:Name! c2:Name-CLASS

IMAGE : A:Name; c2:Name! c1:Name-CLASS

Both operations take an association object (a set of links) and an object from one of the two

associated classes and returns the set of objects that are associated with the input object by links

in the association. Assuming two classes c1 and c2 are in a simple binary association Assoc, the

image operation is de�ned as follows.

8(S : Assoc; x : c1:Name; y : c2:Name)

l 2 S ^ attr-name(c1)(l) = x ^ attr-name(c2)(l) = y)

, y 2 image(S; x)
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The formal translations are de�ned below

c1; c2 2 A:Connection^ undefined?(c1:Qualifier) ^ undefined?(c2:Qualifier))

^ hIMAGE; [A :Name; c1:Name]; [c2:Name-CLASS]i 2 A :Operation

hIMAGE; [A :Name; c2:Name]; [c1:Name-CLASS]i 2 A :Operation

^ \8(ASSOC : A :Name) (X 2 c1:Name ^ Y 2 c2:Name

^ LINK 2 ASSOC ^ attr-name(c1)(LINK) = X

^ attr-name(c2)(LINK) = Y )

, Y 2 IMAGE(ASSOC;X) ^X 2 IMAGE(ASSOC; Y )" 2 A :Axiom (OMT-46)

In order to reference objects from the associated classes, each connection, c, in class A de�nes

a sort in A L that is uni�ed with the class sort of the associated class. The formal transformation

of a connection to a sort in an association is de�ned in Rule OMT-47.

c 2 A:Connection) c:Name 2 AL:Sort (OMT-47)

A connection quali�er is used to discriminate between links in an association. According

to Section 6.4.2, a quali�er becomes an attribute of the link class. This requirement is speci�ed

formally in Rule OMT-48.

c1; c2 2 A:Connection^ defined?(c1:Qualifier))

hc1:Qualifier:Name; [c2:Name]; [type(c1:Qualifier)]i 2 AL:Attribute (OMT-48)

This quali�ed attribute is used to de�ne a di�erent image operation in the association spec-

i�cation. In this image operation, the quali�er is used as an additional parameter. Assuming

component c1 had a quali�er attached to it (which becomes an attribute of component c2 by

Rule OMT-48), the following image operation would be generated.

IMAGE : A:Name; c1:Name; type(c1:Qualifier)! c2:Name-CLASS

This image operation is de�ned formally below.
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c1; c2 2 A:Connection^ defined?(c1:Qualifier) ^ undefined?(c2:Qualifier))

^ hIMAGE; [A :Name; c1:Name; type(c1:Qualifier)]; [c2:Name-CLASS]i 2 A :Operation

hIMAGE; [A :Name; c2:Name]; [c1:Name-CLASS]i 2 A :Operation

^ \8(ASSOC : A :Name)(X 2 c1:Name ^ Y 2 c2:Name ^ Z 2 type(c1:Qualifier)

(^ LINK 2 ASSOC ^ attr-name(c1)(LINK) = X

^ attr-name(c2)(LINK) = Y ) ^ c1:Qualifier:Name(LINK) = Z

, Y 2 IMAGE(ASSOC;X; Z) ^X 2 IMAGE(ASSOC; Y )" 2 A :Axiom (OMT-49)

The multiplicity of a component de�nes how many of each component may be referred to by

links in the association class A and thus generates multiplicity axioms over the image operations

de�ned above. These multiplicity axioms are very similar to the aggregate multiplicity axioms

de�ned in Section 7.2.1. According to the Theory-Based Object Model, for binary associations

there are �ve types of multiplicities: one, many, optional, plus, or numerically speci�ed. The

axioms generated by these multiplicities for simple binary associations are shown below.

One 7! SIZE(IMAGE(A; O)) = 1

Many 7! SIZE(IMAGE(A; O)) � 0

Plus 7! SIZE(IMAGE(A; O)) � c:P lus:integer

Optional 7! SIZE(IMAGE(A; O)) = 0 _ SIZE(IMAGE(A;O)) = 1

Specified 7! SIZE(IMAGE(A; O)) = c:Specified:Spec-Range:value1

Specified 7! SIZE(IMAGE(A; O)) � c:Specified:Spec-Range:value1

^ SIZE(IMAGE(A;O)) � c:Specified:Spec-Range:value2

The formal association multiplicity transformations for simple associations are de�ned below.
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c 2 A:Connection^ undefined?(c:Qualifier) ^ c:Mult = One

) \X 2 c:Name) SIZE(IMAGE(A;X)) = 1" 2 A :Axiom (OMT-50)

c 2 A:Connection^ undefined?(c:Qualifier) ^ c:Mult =Many

) \X 2 c:Name) SIZE(IMAGE(A;X)) � 0" 2 A :Axiom (OMT-51)

c 2 A:Connection^ undefined?(c:Qualifier) ^ c:Mult = Plus )

\X 2 c:Name) SIZE(IMAGE(A;X)) � c:P lus:integer" 2 A :Axiom (OMT-52)

c 2 A:Connection^ undefined?(c:Qualifier) ^ c:Mult = Optional )

\X 2 c:Name

) (SIZE(IMAGE(A;X)) = 0 _ SIZE(IMAGE(A;X)) = 1)" 2 A :Axiom (OMT-53)

c 2 A:Connection^ undefined?(c:Qualifier) ^ c:Mult = Specified)

OR(fax j s 2 c:Mult ^

(defined?(s:value2)) ax = \X 2 c:Name) (SIZE(IMAGE(A;X)) � s:value1

^ SIZE(IMAGE(A;X)) � s:value2)")

^ (undefined?(s:value2)

) ax = \X 2 c:Name) SIZE(IMAGE(A;X)) = s:value1")g)

2 A :Axiom (OMT-54)

The formal association multiplicity transformations for quali�ed associations are de�ned below.
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c 2 A:Connection^ defined?(c:Qualifier)^ c:Mult = One

) \8 (X : c:Name; Z : type(c:Qualifier)) SIZE(IMAGE(A;X; Z)) = 1"

2 A :Axiom (OMT-55)

c 2 A:Connection^ defined?(c:Qualifier)^ c:Mult =Many

) \8 (X : c:Name; Z : type(c:Qualifier)) SIZE(IMAGE(A;X; Z)) � 0"

2 A :Axiom (OMT-56)

c 2 A:Connection^ defined?(c:Qualifier)^ c:Mult = Plus )

\8 (X : c:Name; Z : type(c:Qualifier))

SIZE(IMAGE(A;X; Z)) � c:P lus:integer" 2 A :Axiom (OMT-57)

c 2 A:Connection^ defined?(c:Qualifier)^ c:Mult = Optional )

\8 (X : c:Name; Z : type(c:Qualifier))

SIZE(IMAGE(A;X; Z)) = 0 _ SIZE(IMAGE(A;X; Z)) = 1" 2 A :Axiom (OMT-58)

c 2 A:Connection^ defined?(c:Qualifier)^ c:Mult = Specified)

\8 (X : c:Name; Z : type(c:Qualifier))" k OR(fax j s 2 c:Mult

^ (defined?(s:value2)) ax =

\SIZE(IMAGE(A;X; Z)) � s:value1 ^ SIZE(IMAGE(A;X; Z)) � s:value2")

^ (undefined?(s:value2)) ax =

\SIZE(IMAGE(A;X; Z)) = s:value1")g) 2 A :Axiom (OMT-59)

where OR is a function that returns the logical disjunction of all axioms in the input set.

Section 6.4 requires each association to de�ne a new event to create a new association. There

is no create method in an association since an association has no attributes. Because the class sort

of an association is a set, the new event returns an empty set. This requirement is captured by

de�ning a new event

NEW -A :Name : ! A :Name

with the axiom de�ning a new class set to be empty.

NEW -A :Name() = EMPTY -SET

Formally, these de�nitions are captured by the following transformation rule.
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A 2 O-Slang-DomainTheory

hNEW -A :Name; []; [A :Name]i 2 A :Event

^ \NEW -A :Name() = EMPTY -SET" 2 A :Axiom (OMT-60)

7.2.4.1 Link Classes. A link class, A L , de�nes an object with object valued at-

tributes referencing each object in a given link. A link may also contain additional attributes,

operations, methods, and events. The formal transformation for each item in A is de�ned below.

Connections. Because an association relates two or more classes, A must have

at least two connections. These connections de�ne which classes belong to the association. A

connection consists of the following items:

� name

� quali�er (with a name and a datatype)

� role

� multiplicity

The multiplicity of a component de�nes axioms in the association class A and are not used

in the link class de�nition. To reference objects from the associated classes, each connection, c, in

class A de�nes an object valued attribute in A L that takes the class sort of A L as input and returns

the reference to an object from class c:Name. This attribute declaration is generally of the form:

c:Name-OBJ : AL:Name! c:Name

However, if the user has de�ned a role name for the connection, the role name is used as the

attribute name as shown below.

c:role : AL:Name! c:Name

Using the attr-name function de�ned in Equation 7.1, the formal transformation of a connec-

tion to an object valued attribute in a link is de�ned in Rule OMT-61.

� 2 A:Connection) hattr-name(�); [A:Name-LINK]; [�]i 2 A L:Attribute) (OMT-61)
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Attributes. Additional link attributes may be entered directly into the object

model and are transformed exactly like class attributes as de�ned in Rules OMT-13 and OMT-14

except that C 7! A and C 7! A L .

Operations. User-de�ned link operations may also be entered directly into the

object model. These operations are transformed exactly like class operations as de�ned in Section

7.5 (Rules OMT-89 { OMT-91) except that C 7! A and C 7! A L .

Create Method/New Event. The only method created automatically for a link

is the create method similar to the create method de�ned for classes in Rule OMT-16. However,

to create a link, all object references must be provided to the create method. Therefore, the link

create method has the signature

CREATE-linkname : component1; :::; componentn ! linkname

while the new event has a similar signature.

NEW -linkname : component1; :::; componentn ! linkname

Then, for each component in the link, an axiom of the form

componenti(CREATE-linkname(x1; :::; xn)) = xi

is added to the axiom block of the link class, while the axiom causing the new event to invoke the

create method

ATTR-EQUAL(NEW -A:Name(x1:::xn); CREATE-A:Name(x1:::xn)

is also generated and placed in the link class attribute block. The formal de�nition of the link create

operation and new event is shown below, followed by the de�nition for the attr-equal operation.

7-27



A 2 GOMT -DomainTheory )

hCREATE-C:Name; link-domain; [A:Name]i 2 AL:Method

^ hNEW -C:Name; link-domain; [A:Name]i 2 AL:Event (OMT-62)

A 2 GOMT -DomainTheory )

\ATTR-EQUAL(CREATE-C:Name(link-domain);CREATE-C:Name(link-domain))"

2 AL:Axiom (OMT-63)

A 2 GOMT -DomainTheory )

hATTR-EQUAL; [A:Name;A:Name]; [Boolean]i 2 AL:Operation

^ \ATTR-EQUAL(O1; O2) = link-compare(A)" 2 AL:Axiom (OMT-64)

where link-domain is de�ned as the sequence of parameters

link-domain(c) = [d j c 2 A:Connection
^ (defined?(c:role)) d = c:role)

^ (undefined?(c:role)) d = c:name)]

(7.16)

and link-compare is de�ned as the pairwise comparison of all link attributes and component at-

tributes of A L as shown below.

link-compare(C) = AND(f\�(O1) = �(O2)" j � 2 C:NormAttrg
[ f\attr-name(c)(O1) = attr-name(c)(O2)" j c 2 C:Connectiong)

(7.17)

The axiom that de�nes a link create method is simple since object references for each com-

ponent must be provided. This axiom takes the form

attr-name(xi)(CREATE-A:Name(x1; :::xn)) = xi

where xi represents a parameter in the parameter string of create and attr-name(xi) is the object

valued attribute name in the link class corresponding to that component. Formally, the creation of

the set of axioms is given by Rule OMT-65.

c 2 A:Connection^ index(create-domain(C); z) = index(A:Connection;c:Name)

) \c:Name(CREATE-C:Name(link-create-domain(C))) = z" 2 C :Axiom (OMT-65)

The function index is the index of a symbol within a sequence (the domain-ident of the event) and

the function link-create-domain is de�ned as
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create-domain(a) = [unique(x:Name) j x 2 a:Connection] (7.18)

and unique is a function that returns a unique symbol name based on the input symbol.

7.3 Dynamic Model Translations

The dynamic model of a GOMT Class C de�nes the dynamic behavior of a class in the form

of a statechart. The dynamic model de�nes the allowable states that an object may be in and its

behavior while in that state. Objects transition from one state to the next based on the receipt

of events from external objects. After receiving an event, an object may react by changing state,

invoking a method, or sending additional events. The dynamic model consists of the following

items in the GOMT AST.

� set of states

� set of transitions

The dynamic model may or may not exist for a given class. The transformations de�ned in the

dynamic model are assumed to occur after C is converted to an O-Slang speci�cation, C , based

on the object model. The transformations for states and transitions are de�ned below.

7.3.1 States. Each state in C has three possible attributes:

� name

� invariant axioms

� set of substates

If the dynamic model is de�ned in a class C then four types of declarations are added to C . However,

before adding these declarations, the set of states must be partitioned into n partitions such that

1) there is exactly one initial state in each partition, 2) each state is reachable from the start state,

and 3) there are no transitions between partitions. If n > 2 then there are n distinct concurrent

subdiagrams for class C.

1. First, for each partition i 2 1:::n, a sort declaration as shown below is created.
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C:Name-STATE-i

2. Second a state attribute of the form

C:Name-STATE-i : C:Name! C:Name-STATE-i

is created for each partition i 2 1:::n.

3. Then, each state in partition i 2 1:::n, � generates a nullary operation (constant) in the states
block of C of the form

�:Name :! C:Name-STATE-i

4. Finally, for each pair of states in partition i 2 1:::n, �1 and �2, the axiom

�1:Name 6= �2:Name

is added to the axioms of C.

Each state, �, may also contain substates. If a state contains substates then four additional

declarations, similar to the ones de�ned above, are generated for state �. Again however, before the

declarations can be added, the concurrent state partitions for the subdiagram must be computed.

To determine these concurrent partitions, the set of substates of � is separated into n partitions

such that 1) there is exactly one initial state each each partition, 2) each state is reachable from

the start state, and 3) there are no transitions between partitions. Again, n > 2 indicates that

there are n distinct concurrent substate diagrams for state �.

1. First, for each partition i 2 1:::n, a sort declaration as shown below is created.

�:Name-SUBSTATE-i

2. Second, for each partition i 2 1:::n, a state attribute of the form

�:Name-SUBSTATE-i : C:Name! �:Name-SUBSTATE-i

is created.

3. Then, each state  , in each partition i 2 1:::n of state �, generates a nullary operation
(constant) in the states block of C .

 :Name :! �:Name-SUBSTATE-i
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4. Finally, for each pair of states in partition i 2 1:::n,  1 and  2, the axiom

 1:Name 6=  2:Name

is added to the axioms of C.

Formal de�nition of these transformations starts with the computation of the set of concurrent

state partitions. For a given state, s, its partition of concurrent state sets, �s, is given by the

following recursive de�nition.

base(s) = fhs1; s2i j (9 (�; s1; s2) � 2 C:T ransition ^ (s = s1 _ s = s2) ^ �:fromstate = s1

^�:fromstate 6= Initial-State-Marker ^ �:ToState = s2)

_ (hs1; smi 2 base ^ hsm; s2i 2 base)g
�s = fs j hs; smi 2 base _ hsm; si 2 baseg

(7.19)

Then the set of all partitions, �C , is de�ned as below. Since �C is de�ned as a set, there is only

one partition, �C for each partition of concurrent states in C . (� is also computable on states that

have substates.)

�C = f�s j s 2 C:Stateg (7.20)

Once the partitioning of states is complete, the four O-Slang declarations described above

are de�ned. The �rst transformations create declarations for a sort and state attribute for each

partition as shown in Rule OMT-66 and OMT-67.

i 2 �C ) C:Name-STATE-i 2 C :Sort (OMT-66)

i 2 �C ) hC:Name-STATE-i; [C:Name]; [C:Name-STATE-i]i 2 C :StateAttr (OMT-67)

The third transformation creates a nullary operation declaration for each state in the partition

as shown in Rule OMT-68.

i 2 �C ) (s 2 �i ) hs:Name; []; [C:Name-STATE-i]i 2 C :State) (OMT-68)

And �nally, to ensure each state created by Rule OMT-68 is unique, Rule OMT-69 de�nes

the appropriate state uniqueness axioms.

7-31



i 2 �C ^ s1; s2 2 �i ^ s1 6= s2 ) \s1 6= s2" 2 C :Axiom (OMT-69)

Once a class's base states are de�ned, the substates, as discussed above, can be translated.

Therefore, for any given superstate, �, with �� as de�ned in Equation 7.20, the following rules

translate the substates of �.

� 2 states(C) ^ (9 (s) s 2 �:State))

i 2 �� )

�:Name-SUBSTATE-i 2 C :Sort (OMT-70)

^ h�:Name-SUBSTATE-i; [C:Name]; [�:Name-SUBSTATE-i]i 2 C :StateAttr (OMT-71)

^ s 2 �i ) hs:Name; []; [�:Name-SUBSTATE-i]i 2 C :State (OMT-72)

^ s1; s2 2 �i ^ s1 6= s2 ) \s1 6= s2" 2 C :Axiom (OMT-73)

where states is the set of all states of C as de�ned below.

states(C) = fs j s 2 C:State _ (s 2 s1:State ^ s1 2 states(C))g (7.21)

7.3.2 Transitions. In the dynamic model, transitions are used to represent incoming

events and actions taken by the object. Transitions translate into events, methods, axioms, and

event theories in the O-Slang AST and consist of six components.

� name

� set of parameters (name and datatype)

� set of guard conditions de�ned via axioms

� set of actions

� from-state

� to-state

As de�ned in Section 6.2.3, actions are used to specify methods or events sent to other objects.

In the GOMT AST, actions are decomposed into three components.

� name

� sequence of parameters (each with a name and datatype)
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� set of actions

If the action name is SEND the object is to send the parameterized event speci�ed by the sub-

action. This is the only valid use of sub-actions. If the action name is not SEND then the action

de�nes a method in C . Therefore, a transition de�nes a receive event along with possibly multiple

methods and send events. The relationship between these events and methods are de�ned by a

transition axiom.

Each transition, � , in class C de�nes an incoming event signature in the event block of C .

Each parameter, p, in � .parameter becomes a parameter in the event as de�ned below.

�:Name : C:Name; p1:::pn ! C:Name

The translation into the O-Slang AST is

� 2 C:T ransition) h�:Name; [C:Name] k domain(�); [C:Name]i 2 C :Event (OMT-74)

where domain is de�ned as in Equation 7.4.

Each non-SEND action, s, in � de�nes a signature in the method block of C and each param-

eter, p, in s:parameter becomes a parameter of the method as shown below.

s:Name : C:Name; p1:::pn ! C:Name

This transformation is captured formally in Rule OMT-75.

� 2 C:T ransition ^ s 2 �:Action ^ �:Name 6= SEND

) hs:Name; [C:Name] k domain(s:Parameter); [C:Name]i 2 C :Method (OMT-75)

Each subaction, s, in � de�nes an outgoing event in C as well as an event theory speci�cation

that is used later in an aggregate speci�cation to unify C with the receiving object's class speci-

�cation. The event theory de�nes an event sort and signature and is imported into C ; therefore,

instead of creating a signature for the outgoing event, the event theory name (which is the event

name, s.Name) is added to the import block of C . An event theory is shown below
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event s:Action:Name is

class-sort s:Action:Name-SORT

sorts p1; :::; pn

events s:Action:Name : s:Action:Name-SORT; p1:::pn! s:Action:Name-SORT

end-event

where p1:::pn denote the parameters of the outgoing event. Formally, this transformation is

� 2 C:T ransition ^ s 2 �:Action ^ s:Name = SEND

) C E 2 O-Slang-DomainTheory (OMT-76)

^ C E :Name = s:Action:Name (OMT-77)

^ C E :Classsort:Class-Sort-Id = s:Action:Name-SORT (OMT-78)

^ hs:Action:Name; [s:Action:Name-SORT ] k domain(s:Action:Parameter);

[s:Action:Name-SORT ]i 2 C E :Event (OMT-79)

^ s:Action:Name 2 C :Import (OMT-80)

where domain is again de�ned in Equation 7.4.

Before sending an event, the sending object must know where to send it. Section 6.6 requires

each event have an object-valued attribute of the form

s:Name-OBJ : C:Name! s:Name-SORT

to de�ne where an event is sent. This declaration is generated and placed in the attribute block of

C . Formally, this translation is shown in Rule OMT-81 (the sort s.Name-SORT is de�ned in the

imported event theory in Rule OMT-78 above).

� 2 C:T ransition ^ s 2 �:Action ^ s:Name = SEND

) hs:Action:Name-OBJ; [C:Name]; [s:Action:Name-SORT ]i 2 C :Attribute (OMT-81)

Each transition de�nes an axiom that causes the object, upon receipt of an incoming event in

the appropriate state, to state change as well as invoke methods and send events. This axiom has
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�ve parts: current state, guard condition, new state, method invocations, and sending of events.

These parts are merged into a single axiom of the form:

old-state ^ guard-condition) new-state ^method-invocations ^ event-sends

Using functions to de�ne the individual aspects of the axiom (i.e., old-state, guard-condition, new-

state, method-invocations, and event-sends), Rule OMT-82 de�nes the axiom for each event except

the initial new event.

� 2 C:T ransition ^ �:FromState 6= Initial-State-Marker

) \old-state(�:FromState) ^ guard-condition(�)) new-state(�)

^ method-invocations(�)^ event-sends(�)" 2 C :Axiom (OMT-82)

� 2 C:T ransition ^ �:FromState = Initial-State-Marker ) \new-state(� )

^ method-invocations(�)^ event-sends(�)" 2 C :Axiom (OMT-83)

The functions old-state, guard-condition, new-state, method-invocations and event-sends are

de�ned below.

Old-State Because the from-state is a mandatory part of a transition, an old-state is always

generated. If the �:from-state is a top-level state then the old-state part of the axiom is

simply

C:Name-STATE(o) = �:from-state

However, if the from-state is a substate of another state then the superstate must be in the

correct state as well, as shown below.

C:Name-STATE(o) = superstate(�; from-state)

^ superstate(�; from-state)-SUBSTATE(o) = �:from-state

In this example, superstate is a function that determines the superstate of a substate. Obvi-

ously, there can be many levels of substates so that an arbitrary number of superstates may

be included in the old state part of the axiom.
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Formally, the de�nition of the old-state function is shown in Rule 7.22. The de�nition of

old-state is recursive and relies on the partitioning of states de�ned above in Equation 7.19.

(9 (s; s1) s 2 states(C) ^ � = s1:Name ^ s1 2 s:State) ^ � 2 �i
) old-state(�) = \old-state(s) ^ s:Name-SUBSTATE-i(C:Name) = �"

(s 2 states(C)) � = s1:Name ^ s1 =2 s:State) ^ � 2 �i
) old-state(�) = C:Name-STATE(C:Name) = �"

(7.22)

where states is de�ned in Equation 7.21 above.

Guard-Condition The guard condition part of the transition axiom is optional. If the guard

condition does exists, it is assumed that the guard condition is an axiom written in O-Slang

syntax based on the object's attribute values and incoming parameter values only. Thus if

the guard condition exists, it requires no translation.

defined?(�:Axiom)) guard-condition(�) = �:Axiom

undefined?(�:Axiom)) guard-condition(�) = \true"
(7.23)

New-State Because a transition always has a to-state, the new state part of the transition axiom

is de�ned by �:to-state and takes the form

C:Name-STATE(�:Name(o; p1:::pn)) = �:tostate

or, if the state is a substate,

superstate(�; tostate)-SUBSTATE(�:Name(o; p1:::pn)) = �:tostate

where p1:::pn denote the parameters of the incoming event. If the transition occurs in a

substate diagram, the values of superstate attributes do not change. Formally, the de�nition

of new-state is

(9 (s; s1) s 2 states(C) ^ �:ToState = s1:Name ^ s1 2 s:State) ^ �:ToState 2 �i
) new-state(�) = \s:Name-SUBSTATE-i(�:Name(C:Name; domain(�)) = �:ToState"

(s 2 states(C)) �:ToState = s1:Name ^ s1 =2 s:State) ^ �:ToState 2 �i
) new-state(�) = C:Name-STATE(C:Name; domain(�)) = �:ToState"

(7.24)

where domain is de�ned in Equation 7.4.
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Method-Invocations A non-SEND action, a, speci�es that a method is invoked as the result of

the event receipt. As de�ned in the Section 6.2.5, the form used to specify method invocation

is

attr-equal(�:Name(o; p1:::pn); �:Action:Name(o; pa1:::pa2))

where p1:::pn denote the parameters of the incoming event and pa1:::pa2 denote the parameters

of the method. The formal de�nition of the method-invocations function is shown below.

method-invocations(�) = AND(finv j s 2 �:Action ^ s:Name 6= SEND

^ inv = \ATTR-EQUAL(�:Name(C:Name; domain(� ));
s:Name(C:Name; domain(s)))"g [ f\true"g)

(7.25)

The AND function in Equation 7.25 denotes the logical conjunction of all axioms in the input

set. The true axiom ensures that there is at least one axiom returned frommethod-invocations

thus ensuring that Rule OMT-82 is well formed.

Event-Sends SEND actions represent the sending of a subaction event to the object whose ref-

erence is stored in the appropriate object-valued attribute. Therefore, a SEND action with

sub-action, s, generates the axiom

s:Name-OBJ(�:Name(o; p1:::pn)) = s:Name(s:Name-OBJ(o); ps1:::ps2)

where p1:::pn denote the parameters of the incoming event and pa1:::pa2 denote the parameters

of the outgoing event. Event-Sends is formally de�ned in Equation 7.26.

event-sends(�) = AND(fsnd j s 2 �:Action ^ s:Name = SEND

^ snd = \s:Action:Name-OBJ(�:Name(C:Name; domain(�))) =
s:Action:Name(s:Action:Name-OBJ(X); domain(s:Action)))"g

[ f\true"g)

(7.26)

Once the valid transitions have been transformed and all incoming events and states de�ned

in C , invalid transitions can be computed. Because the theory-based object model assumes there

is no reaction to an event that occurs in a state with no explicitly de�ned transition for that event,

axioms explicitly stating this assumption must be generated. These axioms are of the form

old-state) same-state

which is formally generated by Rule OMT-84.
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s 2 C :State ^ e 2 C :Event

^ :(9 (�) � 2 C:T ransition ^ �:Name = e:Name ^ �:FromState = s:Name)

) \old-state(�)) same-state(e; s)" 2 C :Axiom (OMT-84)

where old-state is de�ned as before in Equation 7.22 and same-state is de�ned below in Equa-

tion 7.27.

(9 (s; s1) s 2 states(C) ^ � = s1:Name ^ s1 2 s:State) ^ � 2 �i
) same-state(e; �) = \s:Name-SUBSTATE-i(e:Name(event-domain(e)) = �"

(s 2 states(C)! � = s1:Name ^ s1 =2 s:State) ^ � 2 �i
) same-state(e; �) = C:Name-STATE(event-domain(e)) = �"

(7.27)

and event-domain is de�ned as

event-domain(e) = [unique(x) j x 2 e:Domain-Ident]

and unique is a function that returns a unique symbol name.

7.4 Functional Model Translation

The OMT functional model is depicted as a basic data
ow diagram and de�nes a set of

processes and the data
ow between them. In the GOMT AST, a class C functional model consists

of the following components.

� set of processes (with subprocesses)

� set of data
ows

� set of datastores

The functional model may or may not exist in a given class. If it does, it is assumed that the

following transformations are performed after C is converted to an O-Slang speci�cation, C , based

on the object model. The translation of each of the above components is discussed below.

7.4.1 Processes. As de�ned in the GOMT AST, processes have the following components.

� name

� set of input data 
ows (name and datatype)

� set of output data 
ows (name and datatype)
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� set of subprocesses

As interpretted by the theory-based object model, processes de�ne purely functional methods

or operations that take data of the type de�ned by the input data
ows and produce data of the

type of de�ned by the output data 
ows as de�ned in Section 5.5. If the output data
ow, o, of a

process, p, or any of its subprocesses, is to a datastore, then the process modi�es the object, or

subobjects, of which it is a part and de�nes a method. If a data
ow is to/from a datastore, the

name of the object-valued attribute referencing the datastore becomes the parameter name (i.e.,

the datastore is input to the method) instead of the data
ow datatype. If any subprocesses of p

have data
ows that are input from datastores, those datastores must be also be part of the method

input parameters. A method signature for a process p is de�ned as

p:Name : C:Name; flowtype(i1):::flowtype(in)! C:Name

where i1:::in are the input data
ows and 
owtype is a function that returns the datastore object-

valued attribute or data
ow type depending on whether the data
ow is from a datastore. Formally,

the transformation of processes that represent methods is de�ned in Rule OMT-85.

(p 2 processes(C)^ size(datastores-modified(C; p)) > 1

) hp:Name; [C:Name] k dataflow-domain(p); [C:Name]i 2 C :Method)

^ (p 2 processes(C)^ size(datastores-modified(C; p)) = 1

) hp:Name; [datastore-sort(C; p)] k dataflow-domain(p);

[datastore-sort(C; p)]i 2 C :Method) (OMT-85)

where processes is de�ned in Equation 7.6 and the function datastores-modi�ed de�nes the set of

all datastores modi�ed by a process and is de�ned as

p 2 processes(C)
) datastores-modified(C; p)

= fd j d 2 C:Datastore ^ f 2 d:InF lows ^ o 2 all-outflows(p) ^ f = og
(7.28)

where all-out
ows is a function that produces the set of all output data
ows from p or any of its

subprocesses
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all-outflows(p) = ff jf 2 p:OutF lowsg [ fall-outflows(p1)jp1 2 processes(p)g (7.29)

and data
ow-domain is a function that returns the sequence of input data
ow types as de�ne below.

dataflow-domain(p) = [flowtype(f) j f 2 p:InF lows] (7.30)

The function 
owtype used in Equation 7.30 returns the datastore name or the data
ow type as

de�ned below.

(d 2 C:Datastore ^ f1 2 d:InF lows ^ f1 = f ) flowtype(f) = d:Name)

^ ((:9 (d; f; f1) d 2 C:Datastore ^ f1 2 d:InF lows ^ f1 = f))
(defined?(f:type)) flowtype(f) = f:type

^ undefined?(f:type)) type(f) = f:Name))

(7.31)

The function datastores-sort returns either the class sort of C , the name of the datastore accessed

by p, or an empty string if no datastores are accessed as de�ned below.

(size(datastores-modified(C; p)) = 1 ^ d 2 datastores-modified(C; p)
) datastore-sort(C; p) = d:Name)

^ (size(datastores-modified(C; p)) > 1

) datastore-sort(C; p) = C:Name)
^ (size(datastores-modified(C; p)) = 0)

(size(datastores-accessed(C; p)) > 1

) datastore-sort(C; p) = C:Name)
^ (size(datastores-accessed(C; p)) = 1 ^ d 2 datastores-accessed(C; p)

) datastore-sort(C; p) = d:Name)

^ (size(datastores-accessed(C; p)) = 0) datastore-sort(C; p) =\"))

(7.32)

where datastores-accessed is a function that returns all datastores accessed by a process and is

de�ned as

p 2 processes(C))
datastores-accessed(C; p)

= fd j d 2 C:Datastore ^ f 2 d:OutF lows ^ o 2 all-inflows(p) ^ f = og
(7.33)

where the function all-in
ows is de�ned in Equation 7.34.

all-inflows(p) = ff jf 2 p:InF lows _ (f 2 all-inflows(p1) ^ p1 2 processes(p))g (7.34)

If there are no output data
ows from process p or its subprocesses that are sent to datastores,

then process p de�nes an operation signature. Again, if any input data
ows of any subprocesses
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of p is from a datastore, that datastore must also be included in the operation input parameters.

If there are multiple subprocess data
ow that access datastores, then the format of the operation

signature is shown below.

p:Name : C:Name; type(i1):::type(in)! o1:type:::om:type

If there is only one subprocess data
ow, osub that accesses a datastore then the following operation

signature is used.

p:Name : datasore-sort(C; p); type(i1):::type(in)! o1:type:::om:type

where datastore-sort is de�ned in Equation 7.32 and o1:type:::om:type are the output data
ow

datatypes. The formal transformation is shown below.

p 2 processes(C) ^ size(datastores-modified(C; p)) = 0

) hp:Name; [datastore-sort(C; p)] k dataflow-domain(p); [C:Name]i

2 C :Operation (OMT-86)

If a process has subprocesses, then those subprocesses and their associated data
ows de�ne

the composition of the process. This composition is de�ned axiomatically for each process, p, with

subprocesses the following axiom is created.

p:Name(proc-domain(p)) = proc-range(p) ^ implementing-axioms(p)

where proc-domain(p) and proc-range(p) are functions de�ning domain and range variables while

implementing-axioms(p) is a function that creates a sub-axiom for each subprocess, p1, of p as

shown below.

proc-range(p1) = p:Name(proc-domain(p))

The functions proc-domain(p) and proc-range(p) generate signatures that are compatible with

the operation and method signatures de�ned above; however, they insert variable names instead of

datatypes according to the following rules.
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(size(datastores-modified(C;p)) > 0) proc-domain(p) = C:Name; i1:Name:::in:Name)
^ (size(datastores-modified(C; p)) = 0)

(size(datastores-accessed(C; p)) > 1) proc-domain(p) = C:Name; i1:Name:::in:Name)
^ (size(datastores-accessed(C; p)) = 1

) proc-domain(p) = datasore-sort(C; p); i1:Name:::in:Name))
(7.35)

where i1:::in is the set of all input 
ow names in p:InF lows.

(size(datastores-modified(C; p)) = 1) proc-range(p) = datastore-sort(C; p))
^ (size(datastores-modified(C; p)) > 0) proc-range(p) = C:Name)
^ (size(datastores-modified(C; p)) = 0) proc-range(p) = o1:Name:::on:Name)

(7.36)

where o1:::on is the set of all input 
ow names in p:OutF lows.

Therefore, The formal transformation of the axiomatic de�nition of a process p with subpro-

cesses is

p 2 processes(C) ^ defined?(p:Process)

) \p:Name(proc-domain(C; p)) = proc-range(C; p) ^ implementing-axioms(p)"

2 C :Axiom (OMT-87)

where implementing-axioms is de�ned as

implementing-axioms(p) = AND(f\proc-range(p1) = p1:Name(proc-domain(p1))"

j p1 2 processes(p)g
(7.37)

where AND denotes the logical conjunction of all input axioms.

7.4.2 Data
ows. Data
ows are not translated directly into components of an O-Slang

speci�cation. They are used in de�ning the method/operation signature and subprocess axioms for

GOMT processes. Data
ows correspond to the inputs and outputs of methods and operations.

7.4.3 Datastores. Datastores are not translated directly into components of an O-Slang

speci�cation. They are used in de�ning the method/operation signature and subprocess axioms

for GOMT processes. Datastores represent object classes and associations within an aggregate

speci�cation and are accessed via object-valued attributes referencing those classes and associations.
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7.5 Additional Translations

Additional information may supplied as part of the GOMT Class, C. In this research this

additional information consists of the following items:

� set of axiomatic constraints

� set of operation de�nitions

Each of these items may or may not exist in a given class. These transformations are performed

after C is converted to an O-Slang speci�cation, C , based on the object model, functional model,

and dynamic model.

7.5.1 Constraints. Constraints are user supplied O-Slang axioms that constrain the

behavior of various components of the class. Therefore, each constraint in C is translated directly

to axioms in the axiom block of C as shown below.

c 2 C:Axiom) c 2 C :Axiom (OMT-88)

7.5.2 Operations. Operations in the GOMT AST can represent three di�erent O-Slang

constructs: 1) a newly de�ned O-Slang method, 2) a newly de�nedO-Slang operation, or 3) the

method de�nition of an action in the dynamic model. A GOMT Operation consists of the following

items.

� name

� set of parameters (with a name and datatype)

� result

� de�nition

� boolean denoting whether it is abstract

An operation result is its output datatype. If the operation has no de�ned result, the operation

is a method and the output datatype is the class sort of C . Each GOMT operation, o, de�nes a

signature. If the result is the class sort of C or result is not de�ned, then the operation de�nes a

method signature, as shown below, which is added to the method block of C .
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o:Name : C:Name; p1:::pn ! C:Name

where p1:::pn are parameter datatypes from the parameter set of o. The formal de�nition of these

translations is given in Rule OMT-89 below.

o 2 C:GOMT -Op ^ (undefined?(o:Result) _ o:Result = C:Name)

) ho:Name; [C:Name] k domain(o); [C:Name]i 2 C :Method (OMT-89)

where domain is de�ned in Equation 7.4.

If the result of o is a datatype other than the class sort of C then o de�nes an operation whose

signature is placed in the operations block of C .

o:Name : C:Name; p1:::pn ! o:result

This translation is shown formally in Rule OMT-90.

o 2 C:GOMT -Op ^ defined?(o:Result) ^ o:Result 6= C:Name

) ho:Name; [C:Name] k domain(o); [o:Result]i 2 C :Operation (OMT-90)

The de�nition of an operation, o, is a set of user supplied axioms in O-Slang syntax. It is

assumed that the axioms are syntactically valid and correctly de�ne the operation. The axioms in

the de�nition of o translate directly into axioms in the axiom block of C as shown below.

c 2 C:GOMT -Op:Definition) c 2 C :Axiom (OMT-91)

7.5.3 Imports. The speci�cation import statements are used to include external spec-

i�cations in the de�nition of the current speci�cation. These imported speci�cations may either

be aggregate speci�cations, superclass speci�cations, or speci�cations de�ning the sorts used for

attributes, parameters, quali�ers, or operation results. The following rule de�nes exactly which

speci�cations must be included in a class speci�cation.
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C 2 O-Slang-DomainTheory )

C :Import = C :Import [ (class-imports(C ) n imports(C )) (OMT-92)

where class-imports is a function that collects the references to all external speci�cations within

C . The function imports determines which speci�cations are already imported into C through

speci�cations already in C :Import by Rules OMT-3, OMT-7, OMT-20, and OMT-80. Therefore,

the set di�erence between class-imports(C ) and imports(C ) is a set of speci�cation names that

must be included in C :Import. The de�nition of class-imports and imports are given below in

Equations 7.38 and 7.8.

class-imports(c) = fs j s 2 c:Operation:Domain � Ident

k c:Operation:Range-Ident
k c:Attribute:Range-Ident
k c:Method:Domain-Ident

k c:Method:Range-Ident

k c:Event:Domain-Ident
k c:Event:Range-Identg

(7.38)

7.6 Translation Correctness

In this section, I show that the translation of the object, functional, and dynamic models as

de�ned in Section 7.2, Section 7.3, and Section 7.4 are correct with respect to the formal semantics

de�ned in Chapter V. I prove this by showing that the diagram in Figure 7.1 composes. That is

that for each OMT model, the mapping de�ned by the formal semantics, ', is equivalent to the

composition of the translation of the GOMT model to O-Slang by � followed by the mapping

from O-Slang to the formal semantics, ! as de�ned in Equation 7.39.

8(D : GOMT -DomainTheory) '(D) = !(�(D)) (7.39)

A second useful property to prove about � would be to show that the inverse transformation

�
�1, results in a domain theory equivalent to the original (i.e. D � �

�1(�(D))). While this would
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Figure 7.1 OMT Translation Composition

not help prove correctness, it would show the bijective nature of � as well as its completeness.

Unfortunately, the early design decision to have only a single axiom block perO-Slang speci�cation

eliminates this possibility. Because a user may enter free-form axioms to de�ne operations and

class constraints, the ability to determine where O-Slang axioms were generated (i.e., manually

or automatically from the functional or dynamic model) is impaired. A fairly simple modi�cation

to the O-Slang syntax and AST (along with the associated transformations) could solve this

problem allowing � to be bijective. However, due to time constraints, these modi�cations were not

implemented in this research.

7.6.1 Object Model Correctness. In this section, I show that the translation of the GOMT

object model as de�ned in Section 7.2 is correct with respect to the object model semantics de�ned

in Section 5.3.3. I start by de�ning a mapping ' from the GOMT object model to the formal

semantics of the restricted OMT object model as de�ned in Section 5.3.

Given the formal semantics de�ned in Section 5.3, an object model O consists of a set of

speci�cations, S where a speci�cation may consist of �ve items:

1. Name. The name of S { a single symbol.
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2. Imports. The imports of S are a set of speci�cation names.

3. Sorts. The sorts of S are a set of symbols.

4. Operations. Operations of S are de�ned as a tuple, hname; domain; rangei, where domain

and range are a sequence of sorts.

5. Axioms. The axioms are a set of �rst-order logical statements de�ned over the sorts and

operations de�ned in S, or in the speci�cations imported by S. I assume all axioms are in

O-Slang syntax.

For the de�nition of ', � , and !, I assume that only the object model is de�ned and that

no methods or operations are de�ned manually by the user. I also assume that all associations

are binary and that there are no quali�ed associations or aggregates. The binary association

assumption is made to simplify the mappings and proofs although the results can be extended to

include higher-order association as well. Quali�ed associations and aggregations are not included

since they were not included in the object model semantics as de�ned by Bourdeau and Cheng (14)

and, while interesting, add little to the semantics. Finally, I assume that all attributes are de�ned

with explicit datatypes. While not necessary, it simpli�es the mapping de�nitions and the proof.

De�nition 7.6.1 '. The mapping ' from the object model of a class, C, in a GOMT domain

theory to an object model, OM , is de�ned in Equations 7.40 through 7.55. In these equations the

function comp-pred (Equation 7.56) de�nes the the predicate name by returning either HAS-PART

or c:Role depending on whether c:Role is de�ned and mult-subaxiom (Equation 7.57) de�nes the

sub-axioms of each range in a Speci�ed multiplicity.

C 2 GOMT -DomainTheory:GOMT -Class ^ C:Name = n

, SC 2 OM ^ SC :Name = n ^ n 2 SC :Sorts
(7.40)

a 2 C:Attribute ,
ha:Name; [C:Name]; [a:datatype]i 2 SC :Operations ^ a:datatype 2 SC :Imports

(7.41)

c 2 C:Connection, hcomp-pred(c); [C:Name; c:Name]; [Boolean]i 2 SC :Operations (7.42)
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c 2 C:Connection ^ c:Mult = One ,
\X 2 c:Name) SIZE(fY j comp-pred(c)(X; Y )g) = 1" 2 SC :Axioms)

(7.43)

c 2 C:Connection ^ c:Mult =Many ,
\X 2 c:Name) SIZE(fY j comp-pred(c)(X; Y )g) � 0" 2 SC :Axioms)

(7.44)

c 2 C:Connection ^ c:Mult = Plus ,
\X 2 c:Name) SIZE(fY j comp-pred(c)(X; Y )g) � c:P lus:integer" 2 SC :Axioms)

(7.45)

c 2 C:Connection ^ c:Mult = Optional ,
\X 2 c:Name) (SIZE(fY j comp-pred(c)(X;Y )g) = 0

_ SIZE(fY j comp-pred(c)(X;Y )g) = 1)" 2 SC :Axioms)
(7.46)

c 2 C:Connection ^ c:Mult = Specified ^ sort = c:Name ^ pred = comp-pred(c)

^ s 2 c:Mult ^ v1 = s:value1 ^ v2 = s:value2,
(ax 2 SC :Axioms ^ mult-subaxiom(sort; pred; v1; v2) @ ax

^ ax = OR(fmult-subaxiom(sort; pred; x1; x2) j c 2 C:Connection
^ c:Mult = Specified ^ sort = c:Name ^ pred = comp-pred(c)

^ s 2 c:Mult ^ v1 = s:value1 ^ v2 = s:value2

(7.47)

c 2 C:Superclass, hsimulates; [C:Name]; [c]i 2 SC :Operations ^ c 2 SC :Imports (7.48)

A 2 GOMT -DomainTheory:Assoc ^ A:Name = n,
SA 2 OM ^ SA:Name = n ^ n 2 SA:Sorts

(7.49)

dom = [c:Name j c 2 A:Connection],
(hC:Name; dom; [Boolean]i 2 SA:Operations ^ c 2 dom) c 2 SA:Imports)

(7.50)

c 2 A:Connection ^ c:Mult = One,
\X 2 c:Name) SIZE(fY j SA:Name(X; Y )g) = 1" 2 SA:Axioms

(7.51)

c 2 A:Connection ^ c:Mult =Many ,
\X 2 c:Name) SIZE(fY j SA:Name(X; Y )g) � 0" 2 SA:Axioms

(7.52)

c 2 A:Connection ^ c:Mult = Plus,
\X 2 c:Name) SIZE(fY j SA:Name(X; Y )g) � c:P lus:integer" 2 SA:Axioms

(7.53)

c 2 A:Connection ^ c:Mult = Optional,
\X 2 c:Name) (SIZE(fY j SA:Name(X; Y )g) = 0

_ SIZE(fY j SA:Name(X; Y )g) = 1)" 2 SA:Axioms
(7.54)

c 2 C:Connection ^ c:Mult = Specified ^ sort = c:Name ^ pred = C:Name
^ s 2 c:Mult ^ v1 = s:value1 ^ v2 = s:value2,
(ax 2 SC :Axioms ^ mult-subaxiom(sort; predv1; v2) @ ax

^ ax = OR(fmult-subaxiom(sort; pred; x1; x2) j c 2 C:Connection
^ c:Mult = Specified ^ sort = c:Name ^ pred = C:Name
^ s 2 c:Mult ^ v1 = s:value1 ^ v2 = s:value2

(7.55)

defined?(c:Role)) comp-pred(c) = c:Role

undefined?(c:Role)) comp-pred(c) = HAS-PART
(7.56)

mult-subaxiom(sort; pred; v1; v2) = ax

^ (defined?(v2), ax = \X 2 sort) (SIZE(fY j pred(X;Y )g) � v1

^ SIZE(fT j pred(X; Y )g) � v2)")

^ (undefined?(v2), ax = \X 2 sort) (SIZE(fY j pred(X; Y )g) = v1)")

(7.57)
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De�nition 7.6.2 !. The mapping ! from an O-Slang class, C , to an object model, OM 0, is

de�ned in Equations 7.58 through 7.74. In these equations the function om-pred (Equation 7.75)

converts the component attribute name in O-Slang to the appropriate predicate name in OM and

the function sort-of (Equation 7.76) �nds the class sort of the class referenced by an object-valued

attribute.

C 2 O-Slang-DomainTheory:Class ^ C :Name = n,
SC 2 OM 0 ^ SC :Name = n ^ n 2 SC :Sorts

(7.58)

a 2 C :Attribute ^ a:Range-Ident(1) 6= x-CLASS ^ a:Range-Ident(1) 6= x-ASSOC ,
a 2 SC :Operations ^ a:Range-Ident(1) 2 SC :Imports

(7.59)

a 2 C :Operation ^ a:Range-Ident = [C :Name] ^ a:Name 6= ATTR-EQUAL,
a 2 SC :Operations ^ (i 2 a:Range-Ident) i 2 SC :Imports)

(7.60)

c 2 C :attribute ^ c:Range-Ident = [name-CLASS],
hom-pred(c:Name); [C :Name; name]; [Boolean]i 2 SC :Operations

(7.61)

\SIZE(name(X)) = 1" 2 C :Axiom ,
\X 2 sort-of(name)) SIZE(fY j om-pred(name)(X;Y )g) = 1" 2 SC :Axioms)

(7.62)

\SIZE(name(X)) � 0" 2 C :Axiom ,
\X 2 sort-of(name)) SIZE(fY j om-pred(name)(X;Y )g) � 0" 2 SC :Axioms)

(7.63)

\SIZE(name(X)) � x" 2 C :Axiom ^ x 6= 0,
\X 2 sort-of(name)) SIZE(fY j om-pred(name)(X;Y )g) � x" 2 SC :Axioms)

(7.64)

\SIZE(name(X)) = 1 _ SIZE(name(X)) = 0" 2 C :Axiom ,
\X 2 sort-of(name)) \(SIZE(fY j om-pred(name)(X; Y )g) = 0

_ SIZE(fY j om-pred(name)(X;Y )g) = 1)" 2 SC :Axioms)
(7.65)

a 2 A :Axioms

^ (\(SIZE(name(X)) � n ^ SIZE(name(X)) � m)" @ a

_ (\SIZE(name(X)) = n" @ a ^ n > 1))

, (ax 2 SA:Axioms
^ ((\(SIZE(name(X)) � n ^ SIZE(name(X)) � m)" @ a)

, (\X 2 sort-of(name)) (SIZE(fY j om-pred(name)(X;Y )g) � n

^ SIZE(fY j om-pred(name)(X;Y )g) � m)" @ ax))

^ (\SIZE(name(X)) = n" @ a)

, \X 2 sort-of(name)
) (SIZE(fY j om-pred(name)(X;Y )g)) = n" @ ax)) 2 SA:Axioms

(7.66)

c 2 C :Class-Sort:Inherited-Sort-Id

, hsimulates; [C :Name]; [c]i 2 SC :Operations ^ c 2 SC :Imports
(7.67)

A 2 O-Slang-DomainTheory:Association ^ A :Name = n,
SA 2 OM ^ SA:Name = n ^ n 2 SA:Sorts

(7.68)

dom = [a:Domain-Ident(2) j a 2 A :Operation ^ a:Name = IMAGE] ,
(hC :Name; dom; [Boolean]i 2 SA:Operations ^ c 2 dom) c 2 SA:Imports)

(7.69)

\X 2 sort) SIZE(IMAGE(A;X)) = 1" 2 A :Axioms ,
\X 2 sort) SIZE(fY j SA:Name(X; Y )g) = 1" 2 SA:Axioms

(7.70)
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\X 2 sort) SIZE(IMAGE(A;X)) � 0" 2 A :Axioms ,
\X 2 sort) SIZE(fY j SA:Name(X; Y )g) � 0" 2 SA:Axioms

(7.71)

\X 2 sort) SIZE(IMAGE(A;X)) � x" 2 A :Axioms ,
\X 2 sort) SIZE(fY j SA:Name(X; Y )g) � x" 2 SA:Axioms

(7.72)

\X 2 sort) (SIZE(IMAGE(A;X)) = 0 _ SIZE(IMAGE(A;X)) = 1)" 2 A :Axioms ,
\X 2 sort) (SIZE(fY j SA:Name(X; Y )g) = 0

_ SIZE(fY j SA:Name(X; Y )g) = 1)" 2 SA:Axioms
(7.73)

a 2 A :Axioms

^ (\X 2 sort ^ (SIZE(IMAGE(A;X)) � n ^ SIZE(IMAGE(A;X)) � m)" @ a

_ (\X 2 sort ^ SIZE(IMAGE(A;X)) = n" @ a ^ n > 1))

, (ax 2 SA:Axioms
^ ((\X 2 sort ^ (SIZE(IMAGE(A;X)) � n ^ SIZE(IMAGE(A;X)) � m)" @ a)

, (\X 2 sort ^ (SIZE(fY j SA:Name(X; Y )g) � n

^ SIZE(fY j SA:Name(X; Y )g) � m)" @ ax))

^ (\X 2 sort ^ (SIZE(IMAGE(A;X)) = n" @ a)

, \X 2 sort ^ (SIZE(fY j SA:Name(X; Y )g)) = n" @ ax)) 2 SA:Axioms

(7.74)

The function om-pred is de�ned in Equation 7.75 below. Basically, if the component attribute

name has a -OBJ ending, there was no role name assigned to the component and thus the default

HAS-PART predicate name is used. If the attribute name does not have an -OBJ ending, then the

attribute name is the role name and no transformation is made.

c = component-OBJ , om-pred(c) = HAS-PART

c 6= component-OBJ , om-pred(c) = c (7.75)

The function sort-of �nds the class sort of the class referenced by an object-valued attribute

since by OMT-5, aggregate components in a GOMT class generate object-valued attributes that

are named either by the class name or role. The de�nition of sort-of is given in Equation 7.76.

a 2 C :Attribute ^ a:Name = c ^ [sort-CLASS] = a:Range-Ident) sort-of(c) = sort (7.76)

7.6.2 Object Model Correctness Theorem. In this section, Theorem VII.1 establishes the

correctness of the object model translation with respect to the object model semantics established

in Section 5.3.3.
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Theorem VII.1 Given a valid GOMT domain theory class C with a well de�ned object model, the

translation to O-Slang as de�ned by � in Section 7.2 preserves the semantics of the object model

as de�ned in De�nition 5.3.1.

Proof. See Appendix F

7.6.3 Dynamic Model Correctness. In this section, I show that the translation of the

GOMT dynamic model as de�ned in Section 7.3 is correct with respect to the dynamic model

semantics de�ned in Section 5.4. I start by de�ning a mapping ' from the GOMT dynamic model

to the formal semantics of the restricted OMT dynamic model.

For the de�nition of ', � , and !, I assume that substates and concurrent states have already

been translated into this simple automata as discussed in Section 5.4.4. With this assumption, '

is de�ned as

De�nition 7.6.3 '. The mapping ' from the dynamic model of a class, C, in a GOMT domain

theory to a statechart, M = (Q;�;�; �; �; q0) is de�ned as

Q = fs:Name j s 2 C:Stateg

� = ft:Name j t 2 C:T ransitiong

� = fmsig(t:Action) j t 2 C:T ransition ^ t:Action:Name 6= SENDg

[ fesig(t:Action:Action) j t 2 C:T ransition ^ t:Action:Name = SENDg

�(q; �) =

8<
:

t:T oState if 9 (t 2 C:T ransition) such that t:F romState = q

^ t:Name = � ^ t:Axiom holds

q otherwise

�(q; �) =

8>><
>>:

sig(t:Action) if 9 (t 2 C:T ransition) such that defined?(t:Action)
^ t:Name = � ^ t:Axiom holds

^ ^ t:F romState = q

fg otherwise

q0 = Initial-State
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where the function msig de�nes the functional signature of a method action as de�ned in Equa-

tion 7.77.

msig(a) = ha:Name; [C:Name] k domain(a:Parameter); [C:Name]i (7.77)

The function esig de�nes the functional signature of an event send action as de�ned in Equation 7.78.

esig(a) = ha:Name; [a:Name-SORT ] k domain(a:Parameter); [a:Name-SORT ]i (7.78)

The function sig de�nes the signature of each method or event send action as de�ned in Equa-

tion 7.78.

sig(a) = fs j t 2 a ^ undefined?(t:Action)) s = msig(t)

^ defined?(t:Action)) s = esig(t:Action)g (7.79)

De�nition 7.6.4 !. The mapping ! from an O-Slang class, C , to a statechart, M
0 =

(Q0;�0;�0
; �
0
; �
0
; q
0
0) is de�ned as

Q
0 = fs:Name j s 2 C :Stateg [ fInitial-State-Markerg

�0 = fe:Name j e 2 C :Eventg

�0 = fm j m 2 C :Method ^ e 2 C :Event ^ a 2 C :Axiom

^ a = \C :Name-STATE(x) = q::: ) C :Name-STATE(�(:::)) = q2 :::"

^ \ATTR-EQUAL(e:Name(:::);m:Name(:::))" @ ag

[ fe j e:Name 2 C :Import ^ C E 2 O-Slang-DomainTheory

^ C E :Name = e:Name ^ e 2 C E :Eventg
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�
0(q; �) =

8>>>>>>>>>><
>>>>>>>>>>:

q2 if ax 2 C :Axiom

^ ax = \C :Name-STATE(x) = q ^ guard

) C :Name-STATE(�(:::)) = q2 :::"

^ guard holds

q2 if q = Initial-State-Marker ^ ax 2 C :Axiom

^ ax = \C :Name-STATE(NEW -C :Name(:::)) = q2 :::"

^ guard holds

q otherwise

�
0(q; �) =

8>>>>>>>>>><
>>>>>>>>>>:

action-set(ax) if ax 2 C :Axiom

^ ax = \C :Name-STATE(x) = q

^ guard) C :Name-STATE(�(:::)) = q2 :::"

^ guard holds

action-set(ax) if q = Initial-State-Marker ^ ax 2 C :Axiom

^ ax = \C :Name-STATE(NEW -C :Name(:::)) = q2 :::"

^ guard holds

fg otherwise

q
0
0 = Initial-State

where @ is the boolean-valued subsequence operator and ::: matches zero or more characters in

axiom.

action-set(a) = fm j m 2 C :Method ^ \ATTR-EQUAL(�(:::);m:Name(:::))" @ ag

[ fe j e:Name 2 C :Import ^ C E 2 O-Slang-DomainTheory

^ C E :Name = e:Name ^ e 2 C E :Eventg

\e:Name-OBJ(�(:::)) = e:Name(e:Name-OBJ(x):::)" @ ag (7.80)

7.6.4 Dynamic Model Correctness Theorem. In this section, Theorem VII.2 establishes

the correctness of the dynamic model translation with respect to the dynamic model semantics

established in Section 5.4.4.

Theorem VII.2 Given a valid GOMT domain theory class C with a de�ned dynamic model, the

translation to O-Slang as de�ned by � in Section 7.3 preserves the semantics of the dynamic model

as de�ned in De�nition 5.4.2.

Proof. See Appendix F
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7.6.5 Functional Model Correctness. In this section, I show that the translation of the

GOMT functional model, as de�ned in Section 7.4, is correct with respect to the functional model

semantics de�ned in Section 5.5.4. I start by de�ning a mapping ' from the GOMT functional

model to the formal semantics of the restricted OMT functional model.

For the de�nition of ', � , and !, I assume that all methods and operations are de�ned either

as 1) actions from the GOMT dynamic model, or 2) processes from the OMT functional model.

Furthermore, I assume that all actions de�ned in the dynamic model have a process de�nition in the

functional model and that derived attributes (which result in operations) are not de�ned. While

these assumptions are not critical to the result of the proof, it eliminates clutter caused by the

de�nition of \default" functional models for methods and operations without explicit functional

models. These assumptions imply that the required object \create" process is included as part of

the functional model and is not created automatically by the default rule OMT-16.

De�nition 7.6.5 '. The mapping ' from the functional model of a class, C, in a GOMT domain

theory to a data
ow diagram, D = (C;F;K;R) is de�ned as

C = fc:Name j c 2 (proc(C) [ C:DataStore [ fExterng)g

F = dfmerge(C:DataF low)

K = fc:Name j c 2 (proc(C) [ C:DataStore)g

R = fhx; yi j (x; y 2 dfmerge(C:DataF low) ^ x:Target = y:Source ^ x:Target 6= Extern)

_ (hx; zi 2 R ^ hz; yi 2 R)g

where the function proc de�nes the set of all processes and subprocesses within the class C as de�ned

below.

proc(c) = fp j p 2 c:P rocess_ (p1 2 proc(c)^ p 2 p1:P rocess)g (7.81)
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and the function dfmerge modi�es all subprocess data
ows where it appears in the subdiagram

that the source or target of the data
ow is external, when in fact the source or target is a process

from a higher level diagram. In the functional model of Figure 7.2 the output c from process P14

de�nes a data
ow with an external target; however, in actuality, P14 produces output c for the

higher-level process P1 whose target is process P3. The function dfmerge is de�ned below.

a

a

c = <C, C, P1, P3>

d

b

a e

f

g

h

c = <C, C, P14, Exern>

P1

P2

P3

P11 P12 P14

P13

Figure 7.2 Data
ow De�nitions

d1 2 d^ d1:Target 6= Extern ^ d1:Source 6= Extern) d1 2 dfmerge(d)

d1 2 d^ d1:Target = Extern ^ :(9 (d2) d2 2 d ^ hd1:Name; d1:Typei = hd2:Name; d2:Typei

^ d2:Target 6= Extern)) d1 2 dfmerge(d)

d1 2 d^ d1:Source = Extern ^ :(9 (d2) d2 2 d ^ hd1:Name; d1:Typei = hd2:Name; d2:Typei

^ d2:Source 6= Extern)) d1 2 dfmerge(d)

d1; d2 2 d ^ hd1:Name; d1:Typei = hd2:Name; d2:Typei ^ d1:Source = Extern ^ d2:Source 6= Extern

) hd1:Name; d1:Type; d2:Source; d1:Targeti 2 dfmerge(d)

d1; d2 2 d ^ hd1:Name; d1:Typei = hd2:Name; d2:Typei ^ d1:Target = Extern ^ d2:Target 6= Extern

) hd1:Name; d1:Type; d1:Source; d2:Targeti 2 dfmerge(d) (7.82)

De�nition 7.6.6 !. The mapping ! from an O-Slang class, C , to a data
ow diagram, D0 =

(C 0; F 0;K 0
; R

0) is de�ned as
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C
0
= fc:Name j c 2 C :Method _ c:Name 2 datastores(C )

_ (c 2 C :Operation ^ c:Name 6= IMAGE ^ c:Name 6= ATTR-EQUAL)g

[ fExterng

F
0
= dfmerge(ff j f 2 dataflows-of(a) ^ a 2 C :Axiomg)

K
0
= C

0 n fExterng

R
0
= fhx; yi j (x; y 2 dfmerge(ff j a 2 C :Axiom ^ f 2 dataflows-of(a)g)

^ x:Target = y:Source ^ x:Target 6= Extern)

_ (hx; zi 2 R0 ^ hz; yi 2 R0
)g

datastores(c) = fd j ax 2 c:Axiom

^ (ax = \m(x; :::) = x1 ^ :::d(x1) = m2(d(x); :::):::"

_ ax = \m(d(x); :::) = d(x1) ^ :::d(x1) = m2(d(x); :::):::"

_ ax = \m(d(x); :::) = ::: ^ ::: = o(d(x); :::):::")g (7.83)

The function data
ows-of de�nes the seven valid mappings from O-Slang functional axioms

generated by Rule OMT-87 as shown in Table 7.1. In the comment region of Table 7.1, illegal

means that a data
ow from the listed source to the listed target is illegal in standard data
ow

diagrams. The comment constrained means that the particular combination of source and target

are illegal by restriction of the functional model as described in Section 5.5.3.

dataflows-of(a) =

fa 6= \m(i1:::im) = o1:::on::: ^ r1:::rn = sp(d1:::dn):::") dataflows-of(a) = fg

a = \m(i1:::im) = o1:::on::: ^ r1:::rn = sp(d1:::dn):::") dataflows-of(a) =

fx j t 2 top-level(a) ^ op1; op2 2 operations(a)

^ p1 2 op1:dom ^ p2 2 op2:dom ^ o 2 op1:ran

^ (p3 2 t:dom) x = hp3; itype(p3; t); Extern; t:Namei)

^ (p3 2 t:ran ) x = hp3; otype(p3; t); t:Name; Externi)

^ (p1=2 datastores(C ) ^ p1 2 t:dom) x = hp1; itype(p1; op1); Extern; op1:Namei)

^ (p1=2 datastores(C ) ^ p1 2 p2:ran) x = hp1; itype(p1; op1); op2:Name; op1:Namei)

^ (o =2 datastores(C ) ^ o 2 t:ran ) x = ho; otype(o; op1); op1:Name;Externi)

^ (p1 2 datastores(C ) ) x = hdsname(p1); dstype(p1); p1; op1:Namei)

^ (o 2 datastores(C ) ) x = hdstype(o); dstype(o); op1:Name; oi)g (7.84)
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Table 7.1 Valid Data
ows

Source Target Comment

1 Extern Top Level Process

2 Extern Subprocess

3 Extern Datastore Illegal

4 Extern Extern Illegal

5 Top Level Process Top Level Process Illegal

6 Top Level Process Subprocess Illegal

7 Top Level Process Datastore Constrained

8 Top Level Process Extern

9 Subprocess Top Level Process Illegal

10 Subprocess Subprocess

11 Subprocess Datastore

12 Subprocess Extern

13 Datastore Top Level Process Constrained

14 Datastore Subprocess

15 Datastore Datastore Illegal

16 Datastore Extern Illegal

where the functions top-level and operations return the tuple hname; dom; rani for each method

or operation used in the axiom. The function top-level returns only the signature of the method

being de�ned while the function operations returns a set consisting of the signature of each of the

methods/operations used to de�ne the \top-level" operation.

The function itype takes an input parameter and operation/method name and returns the

appropriate domain sort from the operation or method signature de�ned in C . The otype function

provides the same functionality for an output parameter.

(9 (op) op 2 (C :Operation [ C :Method) ^ op:Name = f:Name

^ x = op:Domain-Ident(index(p1; f:dom)))

, itype(p1; f) = x (7.85)

(9 (op) op 2 (C :Operation [ C :Method) ^ op:Name = f:Name

^ y = op:Range-Ident(index(p2; f:ran)))

, otype(p2; f) = y (7.86)

The function dsname returns the name of the class or association associated with the data-

store. It is performed by �nding the appropriate object-valued attribute declaration that references

the class set or association as de�ned below.
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(9 (a) a 2 C :Attribute ^ a:Name = d

^ (a:Range-Ident(1) = name-CLASS _ a:Range-Ident(1)-ASSOC = name))

, dsname(d) = name (7.87)

The function dstype returns the class set or association class sort. It is performed by �nding

the appropriate object-valued attribute declaration that references the class set or association as

de�ned below.

(9 (a) a 2 C :Attribute ^ a:Name = d ^ type = a:Range-Ident(1)

^ (type = x-CLASS _ type-ASSOC = a:Name))

, dstype(d) = type (7.88)

7.6.6 Functional Model Correctness Theorem. In this section, Theorem VII.3 establishes

the correctness of the functional model translation with respect to the functional model semantics

established in Section 5.5.4.

Theorem VII.3 Given a valid GOMT domain theory class C with a de�ned functional model, the

translation to O-Slang as de�ned by � in Section 7.4 preserves the semantics of the functional

model as de�ned in De�nition 5.5.1.

Proof. See Appendix F

7.6.7 Communication Correctness Theorem. In this section, Theorem VII.4 establishes

the correctness of the use of event theories and broadcast theories to establish the global broad-

cast communications model used by Rumbaugh. In essence, the broadcast communications model

assumes that all events are broadcast to the system and are received by all objects whose dynamic

model have the capability of receiving that event. Events are distinguished by their names. If class

A sends an event E and class B receives an event E, by de�nition, there must be a communications

path from A to B for event E.
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Section 6.6 describes the use of event and broadcast theories to implement the global broadcast

communications used in OMT. These theories are created by Rules OMT-40, OMT-76, OMT-77,

OMT-78, and OMT-79 while their integration into aggregate diagrams is de�ned by Rules OMT-41

and OMT-80. The validity of these transformations with respect to the global broadcast commu-

nications model is shown in Theorem VII.4.

Theorem VII.4 For each event E in a GOMT domain theory, there exists a valid communication

path from each sending class A to each receiving class B in the O-Slang domain theory aggregate.

Proof. To be a valid communications path from class A to class B for event E, there must be

an operation eA in A and eB in B such that eA and eB are in the same equivalence class in the

domain theory aggregate which implies that the associated sorts in the domain and range of eA

and eB are also in equivalence classes. These requirements are satis�ed by unifying the operation

signatures and sorts via the aggregate colimit operation. There are two unique cases to consider:

a single receiving class and multiple receiving classes. Each of these will be handled separately.

� If a set of classes A1 ::: An sends event E to a class B then Rules OMT-76 { OMT-79 create

an event theory ET which is imported into each class A 2 A1 ::: An by Rule OMT-80. This

importation of ET de�nes an identity morphism mapping each operation and sort of ET into

A (n1 in Rule OMT-39). If there is only one sending class (i.e., n = 1) then the morphism

from ET to B (n2 in Rule OMT-39), as de�ned by Rule OMT-39, causes the operations and

sorts in ET , A, and B to be uni�ed via the colimit operation in the aggregate class.

If, however, there are more than a single sending class (i.e., n > 1), then by the de�nition of

comp-sends and comp-receives in Equations 7.12 and 7.13, Rule OMT-39 de�nes morphisms

from ET to each object in the aggregate that sends (A1 ::: An) or receives (B), or whose

components sends or receives, event E. Since these morphisms are formed at each appropriate

level of aggregation, the required uni�cation of the event operation and sorts is accomplished

as described above in some aggregate. In addition, since Rule OMT-42 creates a top-level
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domain theory aggregate for each domain, the events in all sending classes of E are eventually

uni�ed with the appropriate operations and sorts of all other sending and receiving classes in

the domain theory.

� If a set of classes A1 ::: An sends event E to a set of classes B1 ::: Bm then Rules OMT-

76 { OMT-79 create an event theory ET which is imported into each class A 2 A1 ::: An

by Rule OMT-80. When the lowest-level aggregate class is found whose components or

subcomponents contain all sending and receiving classes (i.e., A1 ::: An plus B1 ::: Bm),

Rule OMT-40 creates a broadcast theory BT and Rule OMT-41 de�nes the appropriate

morphisms in the aggregate diagram such that the E event signatures in sending classes B1

::: Bm are mapped to the appropriate operation in BT and all receive event signatures in

receiving classes A1 ::: An are mapped to their unique event in BT de�ned by Rule OMT-

40. Then the axioms de�ned in the broadcast theory ensure any that event received from a

sending class Bi is translated into events received by each receiving class A1 ::: An. Finally,

the colimit operation creates operation and sort equivalence classes based on the de�ned

morphisms completing the uni�cation process.

�

7.7 Summary

This chapter presented the transformation rules necessary to translate a GOMT AST into a

valid O-Slang AST. The rules were speci�ed in accordance with the various OMT models: the

object model, the dynamic model, and the functional model. Theorems were presented that show

that the transformation rules de�ned in this chapter preserve the semantics of the restricted OMT

models as de�ned in Chapter V. These rules are the basis of an automated transformation system

described in Appendix D and are used in the next chapter to transform two graphically-based OMT

speci�cations into formal theory-based domain models.
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VIII. Feasibility Demonstration

8.1 Overview

This chapter demonstrates the feasibility of automatically translating graphically-based

object-oriented speci�cations into theory-based domain speci�cations. The theories in this chapter

were generated automatically by the prototype demonstration system described in Appendix D.

An overview of each speci�cation is given, followed by a description of its translation into theories.

8.2 Pump Domain

The Pump domain de�nes a speci�cation for a simple gasoline pump and is a modi�ed version

of the case study found in (21). Each pump may have multiple hand guns, pump motors, and

displays. Since I am modeling a domain, and not a system speci�cation, the exact number of each

item is not important. The domain object model is presented in Section 8.2.1, the dynamic model

is discussed in Section 8.2.2, and the additional textual input is described in Section 8.2.3. There

is no functional model in the pump domain. The complete O-Slang speci�cation of the domain

model is shown in Appendix G.

8.2.1 Pump Domain Object Model. The Pump domain object model is shown in Fig-

ure 8.1. Basically, the speci�cation models a type of pump, or more precisely, two types of pumps

{ sophisticated and regular { that are subtypes of a basic pump class. Each object in a pump

class has a Pump-ID attribute and consists of zero or more Gun-Holster-Assemblies, Clutch-Motor-

Assemblies, and Displays. Each Gun-Holster-Assembly object consists of a Gun object and a Holster

object. While both the Gun and Holster classes appear to be simple classes with no attributes, a

peek forward at their dynamic models (Figures 8.5 and 8.6) shows that their dynamic models are

non-trivial and thus they are valid objects in the domain (i.e., they have state attributes). Likewise,

a Clutch-Motor-Assembly object has exactly two components, Motor and Clutch, which also are

de�ned by their dynamic models.
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Figure 8.1 Pump Domain Object Model

The Display class has a more typical appearance than the Gun, Holster, Motor, or Clutch

classes in that it has four attributes: cost, volume, ppg, and grade. The underscore in front of the

ppg attribute denotes that it is a derived attribute (the usual derived attribute character \=" could

not be captured appropriately by the tool) and its value for a given object is equal to the object's

cost attribute value divided by the object's volume attribute value.

Each class in the object model generates a class and class set speci�cation. Since this trans-

lation is the same for each class, I only present one such translation in detail, the Display class.

The O-Slang translations for the remainder of the classes are shown in Appendix G. The Display

class speci�cation, as generated strictly from the object model, is shown below. The speci�cation

itself, along with the class sort, is created by Rule OMT-1. The normal attributes cost, volume,

and grade are translated into functions over the class sort as de�ned by Rule OMT-13 while the

derived attribute ppg is de�ned by the user supplied axiom and is generated by Rule OMT-14. Since
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there are normal attributes de�ned for the Display class, Rule OMT-15 requires that an attr-equal

operation be de�ned. The axiom is also automatically generated based on the normal attributes of

the speci�cation. Finally, the speci�cation names grade, amount, and volume are included in the

imports block of the speci�cation by Rule OMT-92.

class DISPLAY is

class-sort DISPLAY

import GRADE; AMOUNT; V OLUME

operations ATTR-EQUAL : DISPLAY; DISPLAY ! BOOLEAN

attributes

COST : DISPLAY ! AMOUNT

V OLUME : DISPLAY ! V OLUME

PPG : DISPLAY ! AMOUNT

GRADE : DISPLAY ! GRADE

axioms

ATTR-EQUAL(D1; D2) <=> (GRADE(D1) = GRADE(D2)

& V OLUME(D1) = V OLUME(D2)

& COST (D1) = COST (D2));

PPG(D) = COST (D)=V OLUME(D)

end-class

Rule OMT-19 requires there be a class set speci�cation for each class speci�cation in a domain

theory. The class set for the Display class is shown below. The class name, class sort name, and

contained class name are all de�ned by Rule OMT-19 based on the Display class. Although not

de�ned in the object model, Rule OMT-21 requires that each event de�ned in the basic class be

de�ned in the class set over the class set sort. This class set event distributes the event to all

objects in the class set as de�ned by the axiom generated by Rule OMT-22. Since the class set is

simply a set of objects, the new event is de�ned by Rule OMT-23 to be simply an empty set.

class DISPLAY -CLASS is

class-sort DISPLAY -CLASS

contained-class DISPLAY

events

RESET -DISPLAY : DISPLAY -CLASS ! DISPLAY -CLASS

PULSE : DISPLAY -CLASS ! DISPLAY -CLASS

NEW -DISPLAY -CLASS : ! DISPLAY -CLASS

axioms

NEW -DISPLAY -CLASS() = EMPTY -SET ;

fa (D : DISPLAY; DC : DISPLAY -CLASS) in(D;DC) <=> in(PULSE(D); PULSE(DC));

fa (D : DISPLAY; DC : DISPLAY -CLASS) in(D;DC)

<=> in(RESET -DISPLAY (D); RESET -DISPLAY (DC));

end-class
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The Pump, Clutch-Motor-Assembly, and Gun-Holster-Assembly classes are aggregate classes,

and as such have a slightly di�erent translation. Again I only show the translation details of one

class, the Gun-Holster-Assembly aggregate class, while the rest are documented in Appendix G.

Because the Gun-Holster-Assembly class is an aggregate class, Rule OMT-24 requires the creation

of an \aggregate" speci�cation which de�nes a diagram in the category Spec. This diagram

speci�cation, Gun-Holster-Assembly-Aggregate, consists of a set of nodes (speci�cations) de�ned

by Rules OMT-25 through OMT-39. In this case, the nodes consist of the event theories sent

or received by components of the Gun-Holster-Assembly as well as the component speci�cations

themselves. The arcs are based on the nodes in the diagram and are de�ned by Rules OMT-32

through OMT-38.

aggregate GUN-HOLSTER-ASSEMBLY -AGGREGATE is

nodes RELEASE-HOLSTER-SWITCH; FREE-CLUTCH; ENGAGE-CLUTCH;

CLOSE-HOLSTER-SWITCH; DISABLE-PUMP; START -TIMER; GUN-CLASS;

GUN;HOLSTER-CLASS; HOLSTER

arcs RELEASE-HOLSTER-SWITCH ! HOLSTER :

fRELEASE-HOLSTER-SWITCH-SORT ! HOLSTERg;

CLOSE-HOLSTER-SWITCH ! HOLSTER :

fCLOSE-HOLSTER-SWITCH-SORT ! HOLSTERg;

GUN ! GUN-CLASS : fg;

HOLSTER ! HOLSTER-CLASS : fg;

RELEASE-HOLSTER-SWITCH ! GUN : fg;

FREE-CLUTCH ! GUN : fg;

ENGAGE-CLUTCH ! GUN : fg;

CLOSE-HOLSTER-SWITCH ! GUN : fg;

DISABLE-PUMP ! GUN : fg;

START -TIMER ! GUN : fg

end-aggregate

Once the aggregate speci�cation is complete, it is imported into the Gun-Holster-Assembly

speci�cation as de�ned by Rule OMT-7. This e�ectively imports every speci�cation that is part of

the diagram de�ned by the aggregate speci�cation into the Gun-Holster-Assembly. This speci�ca-

tion is the same as a normal class speci�cation as de�ned above for the Display class with a couple

of extensions. First, in order to reference its components, an object-valued attribute is created for

each aggregate component (or set of components) as de�ned by Rule OMT-5. These object-valued

attributes are the Gun-Obj and Holster-Obj attributes. Second, the multiplicities of the component

8-4



must be axiomatized as de�ned by Rules OMT-8 through OMT-12. In this case, there is exactly

one of each component and thus the axiom is of the form SIZE(HOLSTER-OBJ(G)) = 1.

class GUN-HOLSTER-ASSEMBLY is

class-sort GUN-HOLSTER-ASSEMBLY

import GUN-HOLSTER-ASSEMBLY -AGGREGATE

attributes

GUN-OBJ : GUN-HOLSTER-ASSEMBLY ! GUN-CLASS

HOLSTER-OBJ : GUN-HOLSTER-ASSEMBLY ! HOLSTER-CLASS

methodsCREATE-GUN-HOLSTER-ASSEMBLY : ! GUN-HOLSTER-ASSEMBLY

eventsNEW -GUN-HOLSTER-ASSEMBLY : ! GUN-HOLSTER-ASSEMBLY

axioms

ATTR-EQUAL(G1; G2) <=> (HOLSTER-OBJ(G1) = HOLSTER-OBJ(G2)

& GUN-OBJ(G1) = GUN-OBJ(G2));

ATTR-EQUAL(NEW -GUN-HOLSTER-ASSEMBLY (); CREATE-GUN-HOLSTER-ASSEMBLY ());

SIZE(HOLSTER-OBJ(G)) = 1;

SIZE(GUN-OBJ(G)) = 1

end-class

There are two cases of inheritance in the Pump domain object model. I concentrate on the

Sophisticated pump class as it is the most interesting. The Sophisticated pump class speci�cation is

shown below and looks exactly like a typical class speci�cation with a couple of extensions. First,

the subclass speci�cation (Sophisticated) imports the superclass speci�cation (Pump) as de�ned

by Rule OMT-3 while the class sort of the subclass (Sophisticate) is de�ned as a subsort of the

superclass class sort as de�ned by Rule OMT-4.

class SOPHISTICATED is

class-sort SOPHISTICATED < PUMP

import PUMP

operations ATTR-EQUAL : SOPHISTICATED; SOPHISTICATED ! BOOLEAN

attributes

V OLUME-SELECT : SOPHISTICATED ! V OLUME

AMOUNT -SELECT : SOPHISTICATED ! AMOUNT

methods

CREATE-SOPHISTICATED : ! SOPHISTICATED

events

NEW -SOPHISTICATED : ! SOPHISTICATED

axioms

ATTR-EQUAL(S1; S2) <=> (PUMP:ATTR-EQUAL(S1; S2)

& AMOUNT -SELECT (S1) = AMOUNT -SELECT (S2)

& V OLUME-SELECT (S1) = V OLUME-SELECT (S2));

AMOUNT -SELECT (CREATE-SOPHISTICATED(S)) = 0;

V OLUME-SELECT (CREATE-SOPHISTICATED(S)) = 0;

ATTR-EQUAL(NEW -SOPHISTICATED(); CREATE-SOPHISTICATED())

end-class
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The only other extension required for a subclass is that its class set must import the class set

of the superclass as de�ned by Rule OMT-20 as shown below.

class SOPHISTICATED-CLASS is

class-sort SOPHISTICATED-CLASS

contained-class SOPHISTICATED

import PUMP -CLASS

events NEW -SOPHISTICATED-CLASS : ! SOPHISTICATED-CLASS

axioms NEW -SOPHISTICATED-CLASS() = EMPTY -SET

end-class

8.2.2 Pump Domain Dynamic Model. The unique aspects of the dynamic model for

each class are described below, starting with those of the Display class as shown in Figure 8.2.

Besides the initial state, there are exactly two states: zero-display and increment-display. The

transition new-display/create-display corresponds to the \new" event and \create"methoddiscussed

in Section 6.2.4. The transitions between states are relatively simple and each consists of an event

with an associated action.

Figure 8.2 Display Class Dynamic Model

The axioms derived from the Display class dynamic model are shown below.
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ZERO-DISPLAY <> INCREMENT -DISPLAY ; (8.1)

(DISPLAY -STATE(NEW -DISPLAY (D)) = ZERO-DISPLAY

& ATTR-EQUAL(NEW -DISPLAY (D); CREATE-DISPLAY (D))); (8.2)

(DISPLAY -STATE(D) = ZERO-DISPLAY ) =>

(DISPLAY -STATE(PULSE(D)) = INCREMENT -DISPLAY

& ATTR-EQUAL(PULSE(D); UPDATE-DISPLAY (D))); (8.3)

(DISPLAY -STATE(D) = INCREMENT -DISPLAY ) =>

(DISPLAY -STATE(RESET -DISPLAY (D)) = ZERO-DISPLAY

& ATTR-EQUAL(RESET -DISPLAY (D); ZERO-OUT -DISPLAY (D))); (8.4)

(DISPLAY -STATE(D) = INCREMENT -DISPLAY ) =>

(DISPLAY -STATE(PULSE(D)) = INCREMENT -DISPLAY

& ATTR-EQUAL(PULSE(D); UPDATE-DISPLAY (D))); (8.5)

DISPLAY -STATE(D) = ZERO-DISPLAY =>

DISPLAY -STATE(RESET -DISPLAY (D)) = ZERO-DISPLAY ; (8.6)

DISPLAY -STATE(D) = ZERO-DISPLAY =>

DISPLAY -STATE(PULSE(D)) = ZERO-DISPLAY ; (8.7)

DISPLAY -STATE(D) = INCREMENT -DISPLAY =>

DISPLAY -STATE(PULSE(D)) = INCREMENT -DISPLAY ; (8.8)

Equation 8.1 ensures that the two states de�ned in Figure 8.2 are unique, and is created by

Rule OMT-69. Equations 8.3, 8.4, and 8.5 are de�ned by the three transition arrows in the graphical

representation of the dynamic model as shown in Figure 8.2. These three axioms are created by

Rule OMT-82 where the guard-condition and event-sends parts of the axiom are trivially true since

they are not de�ned in Figure 8.2. The �nal three axioms, Equations 8.6, 8.7, and 8.8 are created

by Rule OMT-84 that ensures no other transitions may be added to the model.

The Clutch dynamic model is shown in Figure 8.3. The creation of the O-Slang axioms that

de�ne Clutch dynamic model is very similar to the Display dynamic model with the exception of

a send action on the transition from clutch-free to clutch-engaged. The axiom generated by this

transition is shown in Equation 8.9 while the full de�nition of the Clutch dynamic model is shown

in Appendix G.

(CLUTCH-STATE(C) = CLUTCH-FREE) =>

(CLUTCH-STATE(ENGAGE-CLUTCH(C)) = CLUTCH-ENGAGED

& START -FUEL-OBJ(ENGAGE-CLUTCH(C))

= START -FUEL(START -FUEL-OBJ(C))); (8.9)
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Figure 8.3 Clutch Class Dynamic Model

Equation 8.9 uses the start-fuel-obj object-valued attribute and start-fuel event de�ned by

Rules OMT-81 and OMT-77 through OMT-80 to \send" the event engage-clutch.

The Motor class dynamic model is shown in Figure 8.4. Its translation is similar to that of

the Clutch class above and its O-Slang representation is shown in Appendix G.

The Gun dynamic model is shown in Figure 8.5. It is similar to the dynamic model presented

above except for the replace-gun transition from state gun-enabled to gun-disabled that sends three

di�erent events. The axioms generated by the replace-gun transition are shown in below.

(GUN-STATE(G) = GUN-ENABLED) =>

(GUN-STATE(REPLACE-GUN(G)) = GUN-DISABLED

& START -TIMER-OBJ(REPLACE-GUN(G))

= START -TIMER(START -TIMER-OBJ(G))

& DISABLE-PUMP -OBJ(REPLACE-GUN(G))

= DISABLE-PUMP (DISABLE-PUMP -OBJ(G))

& CLOSE-HOLSTER-SWITCH-OBJ(REPLACE-GUN(G))

= CLOSE-HOLSTER-SWITCH(CLOSE-HOLSTER-SWITCH-OBJ(G))); (8.10)
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Figure 8.4 Motor Class Dynamic Model

Figure 8.5 Gun Class Dynamic Model

8-9



This example shows clearly the use of a separate object-valued attribute for each event sent, even

though those events might actually be sent to the same object. This ambiguity is acceptable since

O-Slang is only representing a domain model at this point.

The Holster class dynamic model shown in Figure 8.6 is relatively simple and similar to the dy-

namic models discussed above. No further clari�cation of its translation (as shown in Appendix G)

is required.

Figure 8.6 Holster Class Dynamic Model

The Pump dynamic model (Figure 8.7) introduces two new transition features: parameters

and guards. Actually, both of these features are incorporated into the enable-pump transition

from state pump-disabled to pump-enabled. The parameter x of type pump-id is received by the

pump object with the enable-pump event. If the pump is in the disabled-pump state and the guard

condition x = pump-id is true, then the transition takes place. Again, this transition is converted

to O-Slang by Rule OMT-82 and is shown below.
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Figure 8.7 Pump Class Dynamic Model

(PUMP -STATE(P ) = PUMP -DISABLED & (X = PUMP -ID(P )))

=> (PUMP -STATE(ENABLE-PUMP (P; X)) = PUMP -ENABLED

& RESET -DISPLAY -OBJ(ENABLE-PUMP (P; X))

= RESET -DISPLAY (RESET -DISPLAY -OBJ(P ))

& START -PUMP -MOTOR-OBJ(ENABLE-PUMP (P; X))

= START -PUMP -MOTOR(START -PUMP -MOTOR-OBJ(P ))); (8.11)

Equation 8.11 inserts the guard condition (X = PUMP -ID(P )) before the implication to en-

sure the condition holds before forcing the events start-pump-motor and reset-display to be sent.

As de�ned by Assumption V.4, the user is responsible for ensuring the completeness and consis-

tency of guard conditions used in a dynamic model; therefore, the enable-pump transition from

pump-disabled to pump-disabled with a guard condition of (X <> PUMP -ID(P )) is added. The

transition is shown below in O-Slang syntax.

(PUMP -STATE(P ) = PUMP -DISABLED & (X <> PUMP -ID(P )))

=> (PUMP -STATE(ENABLE-PUMP (P; X)) = PUMP -DISABLED (8.12)
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class-constraints: Display

display-state(d) = zero-display => cost(d) = 0 & volume(d) = 0;

display-state(d) = increment-display => cost(d) >= 0 & volume(d) >= 0;

cost(d) >= 0;

volume(d) >= 0

end class-constraints.

definition: update-display class = display;

grade(update-display(d)) = grade(d);

cost(update-display(d)) = cost(d) + 1;

volume(update-display(d)) = volume(d) + 1

end definition.

definition: zero-out-display class = display;

grade(zero-out-display(d)) = grade(d);

cost(zero-out-display(d)) = 0;

volume(zero-out-display(d)) = 0

end definition.

Figure 8.8 Pump MANUAL.TEXT File

8.2.3 Pump MANUAL.TEXT. The MANUAL.TEXT �le as shown in Figure 8.8 is used

in the Pump domain model to de�ne constraints on the Display class and to add the semantics

for two display operations: update-display and zero-out-display. Basically, the body of these three

declarations are O-Slang axioms which are incorporated directly into the axiom block of the

Display class as shown in Appendix G.

8.3 Faculty Student Database Domain

The Faculty Student Database domain de�nes a speci�cation for a simple school database.

The database consists of a set of records for students, faculty, courses, classes, sections and quarters

and are related by a set of associations. The domain object model is presented in Section 8.3.1,

the functional model is discussed in Section 8.3.2, and the additional textual input is de�ned in

Section 8.3.3. There is no dynamic model in the faculty student database domain. The O-Slang

speci�cation of the domain model is shown in Appendix G.
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8.3.1 Faculty Student Database Domain Object Model. Figure 8.9 shows the object model

for the faculty student database domain model. Since the classes in the object model are relatively

straightforward, I do not discuss them in detail as they are translated exactly like the classes

of the Pump domain in Section 8.2.1. Their O-Slang speci�cations are shown in Appendix G.

Instead I concentrate on the associations de�ned in the domain object model: member-of, advises,

teaching, taught-as, o�ering, scheduled-in, and teaches. The �rst six associations listed are basically

identical in that they are simple binary associations between two classes. The only di�erence in

their de�nitions is the multiplicity axioms used. The last association, teaches, is unique in that

it has two link attributes de�ned: times-taught and average-size. I �rst discuss the member-of

association as an example of the six simple binary relations followed by a detailed description of

the teaches relation.

Figure 8.9 Faculty-Student Database Object Model

As described in Section 6.4, the theory-based object model de�nes two speci�cations for each

association: a link speci�cation and an association speci�cation. The link speci�cation de�nes
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a class of objects with attribute-valued objects that reference particular objects involved in a

relationship as well as any link attributes or operations. The association speci�cation, on the other

hand, is analogous to a class set speci�cation and is used to the de�ne the set of links and any

multiplicity constraints. The link speci�cation for the member-of association is shown below.

link MEMBER-OF -LINK is

class-sort MEMBER-OF -LINK

sort STUDENT; A-CLASS

operations ATTR-EQUAL :MEMBER-OF -LINK; MEMBER-OF -LINK ! BOOLEAN

attributes

A-CLASS-OBJ :MEMBER-OF -LINK ! A-CLASS

STUDENT -OBJ :MEMBER-OF -LINK ! STUDENT

methods CREATE-MEMBER-OF -LINK : A-CLASS; STUDENT ! MEMBER-OF -LINK

events NEW -MEMBER-OF -LINK : A-CLASS; STUDENT ! MEMBER-OF -LINK

axioms

ATTR-EQUAL(M1; M2) <=> (STUDENT -OBJ(M1) = STUDENT -OBJ(M2)

& A-CLASS-OBJ(M1) = A-CLASS-OBJ(M2));

STUDENT -OBJ(CREATE-MEMBER-OF -LINK(M; S;A)) = S;

A-CLASS-OBJ(CREATE-MEMBER-OF -LINK(M; S;A)) = A;

ATTR-EQUAL(NEW -MEMBER-OF -LINK(M; S;A); (CREATE-MEMBER-OF -LINK(M; S; A)))

end-link

Rule OMT-43 actually creates the speci�cation and the class sort. The sorts student and a-class

are uni�ed with the class sort of the associated classes in the appropriate aggregate layer and are

de�ned by Rule OMT-47. The attributes a-class-obj and student-obj are object-valued attributes

that reference objects from their respective classes and are de�ned by Rule OMT-61. The attr-equal,

create, and new operations are de�ned the same as for simple classes in the object model.

The association speci�cation for member-of is shown below. The basic speci�cation, class

sort, and link class are de�ned in Rule OMT-44. The sorts student-class and a-class-class are to

be uni�ed with the class set sorts of the associated classes and are de�ned by Rule OMT-45.

association MEMBER-OF is

class-sort MEMBER-OF

link-class MEMBER-OF -LINK

sort STUDENT -CLASS; A-CLASS-CLASS

operations

IMAGE :MEMBER-OF; STUDENT ! A-CLASS-CLASS

IMAGE :MEMBER-OF; A-CLASS ! STUDENT -CLASS

eventsNEW -MEMBER-OF :!MEMBER-OF

axioms

NEW -MEMBER-OF () = EMPTY -SET ;

fa (M :MEMBER-OF; S : STUDENT )SIZE(IMAGE(M; S)) = 1;

fa (M :MEMBER�OF; A : A�CLASS)SIZE(IMAGE(A; X)) >= 0
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fa (S :MEMBER-OF; M : STUDENT; B : A-CLASS)

(ex(A :MEMBER-OF -LINK)in(A; S)

& MEMBER-OF -OBJ(A) = M & MEMBER-OF -OBJ(A) = B)

<=> in(B; image(S;M));

fa (S :MEMBER-OF; M : STUDENT; B : A-CLASS)

(ex(A :MEMBER-OF -LINK)in(A; S)

& MEMBER-OF -OBJ(A) = B & MEMBER-OF -OBJ(A) = M)

<=> in(M; image(S; B))

end-association

In order to constrain the multiplicities of objects in the association, an image operation is created

for each class in the association. Therefore, in the member-of association, Rule OMT-46 requires

the de�nition of two image operations, each returning the set of objects associated with a given

object as shown below.

fa (M :MEMBER-OF; S : STUDENT )SIZE(IMAGE(M; S)) = 1

fa (M :MEMBER-OF; A : A-CLASS)SIZE(IMAGE(A; X)) >= 0

The second multiplicity axiom shown is not actually included in the automatically generated O-

Slang in Appendix G since by de�nition, the size of any set is always greater than or equal to

zero.

8.3.2 Faculty Student Database Domain Functional Model. There are actually two func-

tional models for the Faculty Student Database domain. The �rst is the Faculty Workload functional

model found in Section G.2. The second, the Update-Teaches model, is shown in Figure 8.10 and

is further re�ned in Figure 8.11. Both models are translated into O-Slang in the same manner;

however, since the Update-Teaches function has fewer subprocesses while incorporating more as-

pects of the OMT functional model, I discuss its functional model translation in detail here. The

O-Slang for the Faculty-Workload function is de�ned in Appendix G.

The top-level diagram for the Update-Teaches function is shown in Figure 8.10. There are

three explicit inputs to the function: name, type, and num; however, by Rule OMT-85, the object

upon which the function works is also an input. Because, as shown in Figure 8.11, a subprocess of
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Figure 8.10 Update-Teaches Functional Model

Figure 8.11 Update-Teaches Functional Model Level 2
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Update-Teaches (modify-teaches) modi�es the Teaches association, Update-Teaches is a method as

shown below by its signature.

UPDATE-TEACHES : FACULTY -WORKLOAD;NUM; NAME; TY PE ! FACULTY -WORKLOAD

Update-Teaches is a method in the Faculty Workload class since the process modify-teaches,

a subprocess of Faculty Workload, modi�es the Teaches association as shown in Figure 8.11. The

remaining operation signatures as de�ned by Rule OMT-85 or Rule OMT-86 are shown below.

GET -FACULTY : FACULTY -CLASS;NAME ! FACULTY

GET -COURSE : COURSE-CLASS; NUM; TY PE ! COURSE

GET -SECTIONS-TAUGHT : SECTION-CLASS; FACULTY ! SECTION-CLASS

GET -SECTIONS-OFFERED : SECTION-CLASS; COURSE ! SECTION-CLASS

COMPUTE-SECTION-UNION : SECTION-CLASS; SECTION-CLASS ! TIMES-TAUGHT

COUNT -TIMES-TAUGHT : SECTION-CLASS; COURSE; FACULTY ! TIMES-TAUGHT

GET -TEACHES : TEACHES; FACULTY; COURSE ! TEACHES-LINK

MODIFY -TEACHES : TEACHES; TIMES-TAUGHT; TEACHES-LINK ! TEACHES

The implementing axiom for the method Update-Teaches as de�ned by Rule OMT-87 is

shown below. The parameters come directly from the functional model diagram with the exception

of the datastores (classes and associations). Datastore names are translated to their object-valued

attribute names. The operationCount-Times-Taught has a similar de�nition based on its functional

model as shown in Figure 8.12. The O-Slang translation of the implementing axioms for Count-

Times-Taught is shown in Appendix G.

UPDATE-TEACHES(F; NUM;NAME; TY PE) = F1

& TEACHES-OBJ(F1)

= MODIFY -TEACHES(TEACHES-OBJ(F ); T IMES-TAUGHT; TEACHES-LINK)

& TEACHES-LINK = GET -TEACHES(TEACHES-OBJ(F ); FACULTY; COURSE)

& TIMES-TAUGHT = COUNT -TIMES-TAUGHT (SECTION-OBJ(F ); COURSE; FACULTY )

& COURSE = GET -COURSE(COURSE-OBJ(F ); NUM; TY PE)

& FACULTY = GET -FACULTY (FACULTY -OBJ(F ); NAME);

8.3.3 Faculty Student Database MANUAL.TEXT. The Faculty Student DatabaseMAN-

UAL.TEXT �le (Figure 8.13) is used to de�ne super/subprocess relationships. In this example, the

\leaf" processes semantics are not included for simplicity; however, the process de�nitions would

be similar to update-display and zero-out-display shown in Figure 8.8.
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Figure 8.12 Count-Times-Taught Functional Model

subprocess get-faculty < process calculate-faculty-workload.

subprocess calculate-course-load < process calculate-faculty-workload.

subprocess calculate-student-load < process calculate-faculty-workload.

subprocess calculate-workload < process calculate-faculty-workload.

subprocess get-sections < process calculate-course-load.

subprocess compute-credits < process calculate-course-load.

subprocess get-students-advised < process calculate-student-load.

subprocess count-students < process calculate-student-load.

subprocess get-faculty < process update-teaches.

subprocess get-course < process update-teaches.

subprocess count-times-taught < process update-teaches.

subprocess get-teaches < process update-teaches.

subprocess modify-teaches < process update-teaches.

subprocess get-sections-taught < process count-times-taught.

subprocess get-sections-offered < process count-times-taught.

subprocess compute-section-union < process count-times-taught.

Figure 8.13 Faculty Student Database MANUAL.TEXT File
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8.4 Summary

This chapter presented two examples of the automated translation of graphically-based do-

main model speci�cations into O-Slang using the translations de�ned in Chapter VII. The �rst

example, the Pump domain, was almost exclusively dynamic in nature and showed the feasibility

of automatically translating dynamic models into valid theory-based speci�cations. The second

example, the Student Faculty Database domain, was almost purely functional in nature and showed

the automatic translation of the restricted functional model for both methods and operations. This

section concentrated on instructive features from both domains; however, the complete O-Slang

domain model is contained in Appendix G.
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IX. Conclusions and Recommendations

The purpose of this research was to investigate the feasibility of a parallel re�nement approach

to the acquisition of formal speci�cations based on graphically-based, object-oriented concepts and

theory-based algebraic speci�cations. This investigation focused on two main areas: a formal

mathematical framework of object-oriented concepts using theories within the category Spec, and

the automatic translation of graphically-based, object-oriented diagrams into this theory-based

framework.

The �rst phase in this investigation focused on establishing the formal mathematical frame-

work for the object-oriented paradigm within a categorical setting. First, classes were de�ned as

theory presentations or speci�cations within the category Spec while their models were equated

with an implementation of the class. The theoretical concept of an object instance was de�ned and

used to show the desired e�ect of inheritance. Both single and multiple inheritance were formally

de�ned using category theory operations on classes. This formal de�nition of inheritance was then

shown to preserve the \Substitution Property", a commonly proposed notion of what valid inher-

itance should be. Next, a theory-based object model de�ning concepts from Rumbaugh's OMT

notation in the formal mathematical framework was developed. Because OMT is a semi-formal

technique, a formal semantics for each OMT model was �rst de�ned.

Provably correct translations, with respect to the previously de�ned formal semantics, from

the restricted OMT models to a theory-based speci�cation were then de�ned. These translations

map each concept in OMT into a speci�c representation withinO-Slang. To show the feasibility of

automating these translations, a proof of concept system was developed which took OMT models

created with a commercially available, graphically-based OMT drawing tool and automatically

translated them into a generic abstract syntax tree representation and then into O-Slang.
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9.1 Summary of Contributions

This section summarizes the contributions of this research as enumerated in Chapter I. The

�rst contribution is the formalization of basic object-oriented concepts using algebraic and category

theory constructs. While there has been prior work on the formalization of the individual aspects

of object-orientation (12, 14, 23, 38, 69, 94), this research is the �rst e�ort to formally de�ne all

the important aspects of object-orientation (i.e., classes, inheritance, aggregation, association, and

communication) in a cohesive, computationally tractable framework that is applicable to semi-

automatic software synthesis (55, 86, 87).

The second contribution of this work is the formalization of a generally accepted notion of

class inheritance, the Substitution Property. While other attempts have been made to formalize

inheritance (12, 39), the use of category theory constructs to de�ne valid inheritance leads naturally

to a computationally tractable su�ciency criteria for proving adherence to that formalization. In

fact, adherence to this formalization of inheritance, along with aggregation and association, provides

techniques for ensuring the consistency of object-oriented speci�cations based on the composition

process itself.

The next contribution of this e�ort is the formalization of the semantics of the object, dy-

namic, and functional OMT models. While Harel (45) de�ned the semantics of statecharts based on

traditional automata theory, formalization of communications paths within a domain speci�cation

along with the object model and the functional models have seen little work. While the concept of

global, event-based communications is relatively simple, its formalization is not. However, use of

category theory concepts allows the speci�cation of the capability of a class to communicate with

other classes. Building on the work of Bourdeau and Cheng (14), formalization of the object model

semantics was accomplished using speci�cations to de�ne classes and boolean-valued predicates to

de�ne the relationships between classes. The informal semantics of the functional model required

major restrictions before it could be automatically translated into a formal representation. The
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work of Tao and Kung (92) on standard data 
ow diagrams was tailored to my restricted functional

model in order to complete the formalization of the OMT semantics.

The advances described above made possible the major contribution of this work, which is

de�ning, formalizing, and automating the translation of graphically-based, object-oriented speci�-

cations into algebraic speci�cations. This formalization and automation of speci�cation translation

increases the level of abstraction at which formal speci�cations may be developed and thus holds

the potential to dramatically increase the acceptance of formal speci�cations and methods. With-

out raising the level of abstraction at which formal speci�cations can be developed, speci�cation of

large, complex systems will remain too di�cult for the average software developer, and the potential

of formal methods (e.g., automated software synthesis, etc.) will never be realized.

9.2 Conclusions and Results

Several speci�c conclusions can be drawn from this investigation.

1. The category Spec provides a formal foundation for the rigorous de�nition of object-oriented

concepts. Classes and associations are de�ned as theories. Single and multiple inheritance

can be formally modeled and correctly constructed using speci�cation morphisms. Aggregate

objects may be e�ectively modeled and correctly constructed using colimits of component

classes and speci�cation morphisms.

2. The semantics of the OMT models were formalized by restricting the informal and semi-

formal notation allowed in OMT. Formalization of these semantics allows the models to be

automatically translated into theories in the category Spec.

3. Translations from graphically-based OMT object, dynamic, and functional models were de-

veloped using a theory-based model of object-orientation. These translations were shown to

correctly translate the models into O-Slang based on their restricted formal semantics.
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4. A category theory-based algebraic speci�cation language, O-Slang, was developed based

on the functional algebraic speci�cation language Slang. O-Slang allows object-oriented

models to be captured naturally using algebraic speci�cations. O-Slang incorporates basic

object-oriented concepts such as classes, associations, and aggregates as well as basic category-

theory operations of speci�cation morphisms, diagrams, and colimits.

5. The feasibility of creating an automated translation system was established through the de-

velopment of a proof-of-concept system using a commercial front-end graphics tool. This

proof-of-concept tool was used to automatically translate non-trivial dynamically and func-

tionally based OMT domain models into algebraic theories.

9.3 Future Work

This investigation has laid the foundation for the Speci�cation Acquisition Mechanism de�ned

in Chapter II and shown again in Figure 9.1. However, to complete this vision, the results of this

investigation must be extended. Several areas requiring additional research are identi�ed and

summarized below.

1. The generic OMT AST developed to capture object-oriented concepts from the three basic

OMT models should be analyzed to determine its capability to capture object-oriented con-

cepts using other object-oriented modeling methodologies and techniques. A single generic

AST would allow any number of methodologies to be incorporated into an automated tool

such as the proof-of-concept tool developed in this investigation. While the generic OMT

AST was not developed with this more general purpose in mind, some object-oriented tech-

niques appear to be similar enough to OMT to allow their incorporation into the generic AST

(13, 19, 21, 84).

2. Investigation of the transformations required to develop problem-speci�c system speci�cations

from O-Slang domain models should be undertaken. This is the Speci�cation Generation
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phase shown in Figure 9.1. There has been some work in this area (49). Some possible

transformations might include the following.

(a) parameter instantiation

(b) specialization selection

(c) multiplicity restriction

(d) initialization de�nition

(e) communication path de�nition

(f) constraint restriction

3. Domain modeling literature often refers to providing a domain-speci�c language for developing

problem-speci�c system speci�cations. In this research, I assumed the transformations would

be accomplished using a generic object-oriented representation. However, domain-speci�c

graphically-based languages should be a topic for further research. Given a theory-based

domain model, the domain engineer should be able to de�ne graphically-based icons for classes

of objects and associations within the domain that a user could then use to build a problem-
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speci�c speci�cation. Such a domain-speci�c language might even implicitly incorporate some

of the domain to problem-speci�c transformations discussed above. Some work has been done

in this area (56).

4. Matching theory-based, problem-speci�c functional speci�cations to architecture theories in

the Speci�cation Structuring phase of Figure 9.1 requires additional research. While theory-

based architecture theories have been addressed (32), many problems associated with auto-

matically matching them to system speci�cations need further research. One such problem

closely associated with the object-oriented paradigm is the dynamic creation of objects, which

requires the ability to specify dynamically modi�able architectures.

5. The formal, automated translation of O-Slang to Slang should be developed. Assuming

the ability of Specware or some other suitable transformation system to transform Slang

to executable code, this would be the �nal link between graphically-based object-oriented

speci�cations and executable code.

6. The de�nition of a graphically-based object-oriented methodology or technique designed

speci�cally for formal transformation should be investigated. While many graphically-based

object-oriented methodologies have been proposed (13, 15, 19, 20, 21, 72, 73, 84), they all

have some degree of informality or ambiguity associated with them. Research starting from

the theory-based object model and attempting to develop graphically-based mechanisms for

de�ning those critical theory-based concepts might yield some unique, possibly more e�cient

graphically-based speci�cation techniques.

7. A graphically-based tool to work directly with the generic OMT AST should be developed.

Such a tool could enforce the assumptions made about the OMT model usage and would

simplify tool development. Also, such a tool would aid in the investigation of the generic

OMT AST as well as an object-oriented methodology/technique designed speci�cally for

translation to algebraic theories.
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8. O-Slang should be extended to add the necessary structuring devices to ensure a two-way

transformation from the GOMT AST to O-Slang and back again. While it should not be

di�cult to implement, it is critical to the 
exibility of the Parallel Successive Re�nement

Approach.

9.4 Re
ections on the Parallel Successive Re�nement Approach

A Parallel Successive Re�nementApproach to speci�cation acquisition was presented in Chap-

ter I and a Speci�cation Acquisition Mechanism based on such an approach was introduced in

Chapter II. In a true parallel re�nement approach, two versions of the speci�cation are kept and

re�ned in parallel. In my Speci�cation Acquisition Mechanism I proposed that two versions of the

same speci�cation need not be kept assuming the speci�cation representation could be automati-

cally generated. Upon completion of my research, I �nd I was correct. (Even though the two-way

translation is not yet complete, it appears clear that it is possible). Maintaining one speci�cation,

with multiple representations, is much simpler than maintaining two speci�cations and ensures

consistency. Therefore, a better name for the methodology represented by the system in Figure 9.1

is a Multiple Representation Approach.

The Multiple Representation system proposed in Figure 9.1 shows speci�cations being stored

in \theory" form; however, the best long-term storage format has not been ascertained, if, in fact,

it makes a signi�cant di�erence. While it appears evident that modi�cations to domain theories

should be made via the graphical user interface (which argues for storing domain theories in a

graphical format), the development of elicitor-harvester technology to help in selecting appropriate

domain theories from Theory Library might be more tractable if domain theories are stored in a

theory-based format. It is also possible that some intermediate format such as the GOMT AST

might also be the best choice.
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In conclusion, it is my conviction that formal methods will never reach their true potential

unless a straightforward, cost-e�ective capability for developing large-scale system speci�cations

can be found. From the experience gained in this investigation, I believe a Multiple Representation

Approach is a viable, if not the best, approach to providing such a capability in the near future.

9.5 Summary

Given the results, contributions and conclusions presented in this and previous chapters, it

is obvious that the objectives of this investigation were successfully accomplished. Speci�cally, a

formal mathematical framework of object-oriented concepts within the category Spec was de�ned

and the automatic translation of graphically-based, object-oriented diagrams into this theory-based

framework was demonstrated. Additionally, several areas of future research were identi�ed.
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Appendix A. Generic OMT Abstract Syntax Tree

A.1 Introduction

This Appendix de�nes the generic model of object-orientation based on Rumbaugh's OMT

(83) that is used in my research. Section A.2 de�nes the features of OMT that are translated to

O-Slang using a generic OMT (GOMT) AST representation. Section A.3 discusses the GOMT

AST objects derived from class de�ntions in the OMT object model, including attributes and oper-

ations, while Section A.4 de�nes the AST objects associated with OMT object model associations.

Section A.5 presents the objects of the GOMT AST derived from the OMT dynamic model while

Section A.6 discusses the GOMT AST objects de�ned from the OMT functional model. Complete-

ness of the GOMT in terms of Rumbaugh's OMT representation is discussed in Section A.7.

A GOMT AST is used to store domain models speci�ed using OMT notation. In this research,

this speci�cation, translation, and storage is performed using the demonstration tool described in

Appendix D. Using this tool, once a domain model is stored as a GOMT speci�cation it can be

automatically translated into O-Slang as de�ned in Chapter VII.

The notation used to present the GOMT AST structure follows the conventions of the OMT

object model with two extensions. First, rectangles represent classes of AST objects (which may

or may not have subobjects or attributes) while rectangles with rounded corners represent symbols

or numbers that de�ne speci�c attributes associated with their parent AST objects. Second, AST

subobjects with multiplicities greater than one may either represent a set of AST subobjects or a

sequence of AST subobjects. Sets are denoted by braces (f g) surrounding the AST object name

while sequences are denoted by brackets ([ ]).

A.2 Object Modeling Technique Representation Assumptions

An OMT speci�cation has three basic components: an object model, a dynamic model, and a

functional model. However, these three models do not operate independently, although Rumbaugh
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does not rigorously de�ne their precise interaction. The OMT object model de�nes the structure

of a domain in terms of the object classes in the domain and the relationships between them. Each

object class is de�ned in terms of its attributes and operations while the relationships between them

are captured via associations, inheritance, and aggregation. The dynamic model captures the state-

based behavior of a class and is generally de�ned at the class level. The functional model describes

how a domain transforms data and is not concerned with the objects involved or transformation

timing.

Rumbaugh does not tie the three models together tightly; therefore, I made some assumptions

about the how the OMT models are used.

1. Assumption A.1 The object model is developed �rst and de�nes all object classes and as-

sociations present in a domain. Attributes are de�ned for each object class.

2. Assumption A.2 There is an implied domain-level aggregate class for each object model.

This domain-level object class is an aggregate composed of each object class and association

de�ned in the object model.

3. Assumption A.3 There is a dynamic model for each object class. This dynamic model de-

�nes the states, events, actions, and communications for each object class. A purely functional

object class has one state and a unique event for each operation de�ned.

4. Assumption A.4 The dynamic model is represented as a Mealy state machine where all

actions occur on transitions between states. Non-state attributes values are not modi�ed

simply by receiving an event; a speci�c action must be speci�ed in response to a state transition

in order to modify an object's non-state attribute values.

5. Assumption A.5 Events not included in a dynamic model are assumed to have no a�ect on

the object.
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6. Assumption A.6 Events with common names represent the same event between all dynamic

models in a given domain.

7. Assumption A.7 There is a functional model for each aggregate object class in the domain.

Aggregate functional models are used to de�ne the e�ect of actions speci�ed in the aggregate

dynamic model across all components of the aggregate. They may not de�ne the e�ect of

aggregate actions on components outside the aggregate.

8. Assumption A.8 All primitive actions (those not de�ned by a functional model) are de�ned

axiomatically using �rst order logic in O-Slang syntax. These de�nitions completely de�ne

the e�ect of the operation on each object attribute.

Although OMT has three distinct models, it basically models object classes and their rela-

tionships. The dynamic and functional OMT models (making the above assumptions) serve only

to de�ne the behavior of those object classes. Therefore, the GOMT AST de�ned in this Appendix

is based on a set of object classes and a set of associations between them. Figure A.1 shows the

top-level of the GOMT AST. Other relationships such as aggregation and inheritance are captured

naturally in the object class de�nitions.

{GOMT-Class}

GOMT-DomainTheory

{Assoc}

1+

Figure A.1 Top Level GOMT Abstract Syntax Tree

A.3 Class Objects

The OMT object model captures the structure of a domain model by de�ning the classes of

objects in the domain model in terms of their attributes and operations, as well as relationships
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between object classes. Each class describes a group of objects with similar attributes and behavior.

Class relationship constructs include inheritance and aggregation as well as associations that may

exist between classes. As stated above, due to my assumptions about how OMT is used to de�ne

domain models, an OMT class consists of object model class constructs as well as dynamic and

functional components. Figure A.2 shows the AST for the GOMT \Class". Basic attributes such

as the class name, attributes, and operation de�nitions are captured directly in the AST. Each of

the subobjects in the class AST is discussed below.

{Transition}

GOMT-Class

{Attribute}[Connection] {State}name   [Axiom]{Gomt-Op}

{Process}

{superclass}

{DataFlow} {DataStore}

Figure A.2 GOMT Class Abstract Syntax Tree

The name attribute is simply a symbol that stores the name of the class. Inheritance is

captured in the superclass attribute. The superclass attribute is just a set of symbols representing

the names of all superclasses.

Aggregation is captured by a set of connection objects as shown in Figure A.3. Connec-

tion objects are used to represent aggregates as well as associations (as discussed below). Each

connection links the current class to a component class. The name attribute is the name of the

component class. The quali�er subobject de�nes aggregate (or association) quali�ers and has an

associated name and a datatype. Each connection may also have a role name associated with it

as de�ned by the role attribute. The role is simply a name placed on one end of an aggregate or

association. Finally, the multiplicity of the component (or association) connection is de�ned by a

mult subobject. Each connection has a multiplicity and this multiplicity can be either one, many,
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many ordered, one-or-more, optional (zero or one) or speci�ed by a subset of non-negative integers.

These options are captured in a mult object. Subtypes of the multiplicity object { one, many, plus,

optional, and speci�ed { capture these possibilities. The subtypes one, optional, and many have no

attributes. Their object type alone uniquely identi�es the multiplicity. The plus subtype actually

captures more than the basic one-or-more multiplicity as de�ned by Rumbaugh and allows a more

general \n or more" multiplicity by allowing the user to insert any non-negative integer as the int

attribute. The speci�ed multiplicity object is also very 
exible. Each speci�ed object has a set of

ranges de�ned by the value attributes. Each spec-range object may have either one or two values.

If only one value is speci�ed, then exactly that value is taken as a valid multiplicity. If two values

are speci�ed then the entire range between value1 and value2 (inclusive) is a valid range.

MultQualifier

Connection

SpecifiedPlus Many One

[Spec-Range]

Optional

1+

name

 name datatype

integer

value1 value2

   role

Figure A.3 Connection Abstract Syntax Tree

Class-level constraints are captured via the class object's constraints subobject. This con-

straint object is actually a set of axiom objects de�ned below. In my research, the axiom objects

are �rst-order algebraic axioms; however, in general, the axiom object de�nition may be replaced

by any axiom notational style. Therefore, other notations such as Z's set-based syntax, could be

inserted as well.
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Each class dynamic model is captured by the states and transitions objects. Each of these

objects are sets of subobjects that de�ne the state or transition. Both state objects and transi-

tion objects are discussed in Section A.5. The class functional model is captured by the process,

datastore, and data
ow Each these objects are discussed in detail in A.6.

A.3.1 Attribute Objects. The AST for the GOMT Attribute object is shown in Figure A.4.

There are two types of attributes as de�ned by Rumbaugh: normal and derived. Normal attributes

are those attributes that have a name and a datatype and may take on any values in the datatype.

Unless constrained via class-level constraints, these attribute values are generally independent of

other attribute values. Derived attributes, on the other hand, derive their value from values of the

other class attributes. Therefore, there are two subtypes of an attribute object: derived-attr and

normal-attr. Although both have a similar structure{name, a set of axioms, and a datatype{the

interpretation of that structure is di�erent. Actually, the name and the datatype attributes have

the same interpretation. It is in the set of axioms where the di�erence lies. The axioms of a derived

attribute de�ne the value of the derived attribute based on other class attributes. In a normal

attribute, the axioms de�ne only the initial value associated with the attribute. This set of axioms

may be a single value such as \12.3" or it may be a complex set of axioms based on other attribute

values set during object initialization.

[Axiom][Axiom]

NormalAttrDerivedAttr

Attribute

name datatype name datatype

Figure A.4 GOMT Attribute Abstract Syntax Tree
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A.3.2 Operation Objects. Figure A.5 shows the AST for the GOMT-Op object. An

operation object can fully de�ne a class operation. The operation signature is de�ned by the name

attribute, parameter subobjects, and the result subobject. The parameter subobject is a set of

parameter objects with name and datatype attributes. The result subobject de�nes the datatype

returned by the operation (if required). The de�nition subobject is a set of axiom objects that

de�ne the semantics of the operation. Finally, is-abstract is a boolean-valued attribute that states

whether the operation is fully de�ned or not.

GOMT-Op

[Axiom]

DefinitionResult[Parameter]name

name datatype

datatype

is-abstract

Figure A.5 GOMT Operation Abstract Syntax Tree

A.4 Association Objects

The AST for an Assoc (association) object is shown in Figure A.6. Every association has a

name and at least two connections (object classes). The connection object is the same as de�ned

above in Section A.3 and de�nes the classes, roles, quali�ers, and multiplicities of each class in the

association. Associations may also have link attributes and link operations. These are the same

attributes and operations as de�ned in Sections A.3.1 and A.3.2.
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{GOMT-Op}{Attribute}{Connection}

Assoc-

2+
name

Figure A.6 GOMT Association Abstract Syntax Tree

A.5 Dynamic Model Objects

The OMT dynamic model captures the temporal behavior of object classes de�ned in the

object model. The basic concepts of the dynamic model include events, actions, and states. An

event is a one-way transmission from one object to another and may pass additional information.

An action is an operation performed by an object. This operation may modify the object state

or generate an event. A state is de�ned as an abstraction of attribute values of an object. The

dynamic model is represented using state charts and event 
ow diagrams. A statechart models

the transitions between states of a given object class. In the dynamic model, these transitions are

caused by the reception of a given event and result in an action being taken. In the dynamic model,

OMT allows actions to occur in a state or on transitions (i.e., a combined Mealy-Moore machine);

however, to simplify the translation process in this research, I have restricted the dynamic model

to a Mealy machine representation where all actions occur on transitions. This does not represent

a semantic restriction since the equivalence of Mealy and Moore machines is well known (47:44).

Guards (boolean expressions) may be added to transitions to prevent them from occurring unless

certain conditions are met. If the guard is true and the event for that transition is received, the

transition takes place. If the guard is false, then the transition does not take place even though

the required event is received.

For a given class, the dynamic model is captured as a set of states and transitions between

states. The ASTs for the state and transition objects are shown in Figures A.7 and A.8. Each state
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object has a name attribute, possibly a set of axiom objects de�ning state invariants, and a set of

substate objects. Actually, Rumbaugh allows two special types of states: concurrent and substates.

Concurrent states are de�ned implicitly in a set of states. Concurrent states are partitions of a

set of states where there are no transitions from one partition to the other. The second special

type of state is a substate. Substates are a set of states that further de�ne transitions while within

some other, higher-level state. Substates are de�ned by a set of state objects internal another state.

Thus states in a class AST are arranged hierarchically. That is, the state objects of a class may

not contain all the states and substates for the class. It only directly contains the top-level states.

Each substate is actually stored under its superstate object.

{State}

[Axiom]name

Figure A.7 GOMT State Abstract Syntax Tree

While states are stored hierarchically, transition objects are stored as a single set under the

class object. This forces all states in a class to have unique names. A transition de�nes an arc from

one state to another based on the receipt of an event. The transition name attribute is the name

of the incoming event while the from-state and to-state attributes are the names of the two states

involved. Each transition may have parameters, a guard condition, and a set of actions that are

performed upon receipt of the named event. The parameter objects are a sequence of parameters

as de�ned in Section A.3.2, the guard condition is de�ned by a single axiom, and the actions are a

sequence of action objects de�ning the actions performed by the object upon receipt of the event.

Each action object has a name attribute, a sequence of parameter objects, and possibly another

action object. These subaction objects are only used when its parent action is a \send" action. A
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\send" action is the OMT syntax for broadcasting an event, de�ned in the subaction object, to the

system. Subaction objects are only used with a \send" action.

Transition

[Action][Parameter] Axiomname

name datatype name

name datatype

from-state to-state

[Parameter]

Figure A.8 GOMT Transition Abstract Syntax Tree

A.6 Functional Model Objects

In OMT, the functional model is represented by a data 
ow diagram that shows how an

aggregate-level class implements functions using component events and methods within the aggre-

gate. Basically, there are three components in the restricted OMT functional model: processes,

data 
ows, and data stores. Processes translate data and may use subprocesses to accomplish their

function. Such higher-level processes are generally decomposed into subprocesses using nested data


ow diagrams. Data 
ows show how data is passed between processes and datastores. Besides

passing data from the output of one process to the input of the next process, data 
ows may be

(1) duplicated and passed to many processes, (2) decomposed into multiple components, or (3)

composed from a number of components into a single aggregate value. Data stores are passive
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objects that store data for later use. Obvious data stores are the object class sets and associations.

A data store allows a process to create, update, and store data for later use.

The ASTs for the three functional components are shown in Figure A.9. The process and

datastore objects are very similar. Each has a name attribute and two sets of 
ow objects: data-


ows-in and data-
ows-out. A 
ow object simply stores the name and type attributes of data
ow

object de�ned below. The process object is slightly di�erent from the datastore object in that

the process object may also have subprocess process objects. This set of subprocesses de�ne the

implementation of the process as de�ned in Section 5.5.

The third functional object is a data
ow object. A data
ow object has four attributes: name,

type, source, and target. The name of the data
ow object is the name of a data
ow arc between

two entities (processes or datastores) in the functional model while the type attribute represents

the datatype of the data
ow. The source and target attributes store the name of the process or

datastore where the data
ow originates and terminates. A data
ow with a blank source or target

attribute denotes an o�-page connector. In the case of a top-level data
ow, an o�-page connector

represents an input or output external to the domain. The actual source/target of an o�-page

connector in a nested diagram is (or at least should be) the source/target of the \parent" data
ow

from the parent diagram.

Datastore

{Process}

{Flows}

Dataflow

name {Flows}  name   type  targetsource

{Flows}name {Flows}

data-flows-in data-flows-out

data-flows-in data-flows-out

Figure A.9 GOMT Functional Model Abstract Syntax Tree
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A.7 Generic OMT AST Completeness

This section discusses the completeness of the GOMT AST in terms of what it captures and

what it does not. Section A.7.1 discusses the completeness of the GOMT AST in terms of the

OMT object model, Section A.7.2 discusses the OMT dynamic model, and Section A.7.3 discusses

the OMT functional model.

A.7.1 Object Model. The GOMT AST has the capability to capture all the basic features

of the OMT object model. The GOMT AST directly models the classes (concrete and abstract),

attributes (normal and derived), and operations (concrete and abstract). The GOMT AST also

captures the relationships de�ned in an OMT object model including inheritance, aggregation, and

association. More subtle features of OMT relationships such as discriminators, multiplicities, and

link attributes and operations are also captured.

There are a few, non-critical, OMT object model items not directly captured by the GOMT

AST. The �rst of these is operator propagation; however, the inability to directly model operator

propagation does not restrict the domain designer since the e�ect of operator propagation may

be explicitly expressed through the axiomatic de�nition of the operation. Derived classes and

associations are also not captured in the GOMT AST. According to Rumbaugh (83:75) derived

classes and associations are redundant and are completely determined by other objects; the only

reason for derived classes and associations is to aid understandability. Therefore, since the lack

of derived classes and associations does not restrict the domain designer's modeling ability, they

are not included in the GOMT AST. General association constraints are also not modeled directly

in the GOMT AST; however, the domain designer may capture these constraints as class-level

constraints (via �rst-order axioms) in the aggregate containing the association.

A.7.2 Dynamic Model. The OMT dynamic model consists of set of states and transitions

based on a Mealy-Moore state machine. The GOMT AST directly captures the set of states and
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transitions between them; however, while the OMT dynamic model allows states to have internal

activities and actions, in the GOMT AST, I assume that all actions occur only on transitions

(i.e., a Mealy state machine). However a Mealy machine (where activities and actions occur only

on transitions) has been shown to be equivalent in expressive power to a Moore machine (where

activities and actions occur in a state). Thus any dynamic model captured in a Mealy-Moore

machine is translatable to a Mealy machine and may be captured by the GOMT AST. The OMT

dynamic model also allows for entry and exit actions that are performed on all transitions into or

out of a state. Although entry and exit actions simplify the diagram, they are easily placed on

appropriate incoming and outgoing transition with the same a�ect.

OMT also allows for substates and concurrent states. Substates are modeled directly in the

GOMT AST. Concurrent states are not explicitly denoted in the GOMT AST; however, the set of

concurrent states can be computed by partitioning all class states such that no states in distinct

partitions share a transition. Once again, although not captured directly in the GOMT AST, the

set of concurrent states are computable.

Two state transition features allowed in the OMT dynamic model that are not captured di-

rectly in the GOMT AST are control splitting and synchronization. In essence, control splitting

corresponds to transitioning to a state with concurrent substates, as shown in Figure A.10. Syn-

chronization of control corresponds to leaving a set of states after two or more events occur in any

order. In Figure A.10 event1 causes the state to change from state A to C, or more correctly to

the two concurrent states C1 and C2. When events event2 and event3 have both happened, in any

order, the state changes to state B. Without special split and synchronization operators, this same

control mechanism is implemented as shown in Figure A.11. The attributes synch2 and synch3

are used to determine when event 2 or 3 has been received. Then two separate transitions leave

state C guarded by the condition that the appropriate synchronization attribute has been set to

true. Simple enumeration of all possible combinations of state and synchronization variable values
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A

C

C1

C2

B
event1

event2

event3

Figure A.10 OMT Split/Synchronization

A

C

C1

C2

B

event1/synch2=false; 
            synch3=false event2[synch3=true]

event3[synch2=true]

event2/synch2=true

event3/synch3=true

Figure A.11 Generic OMT Split/Synchronization

shows that, although Figure A.10 is more aesthetically pleasing, both Figures A.10 and A.11 have

the same semantic result. Therefore, although the GOMT AST does not include transition splits

or synchronizations, their e�ect is realizable by the user.

A.7.3 Functional Model. The OMT functional model uses data 
ow diagrams consisting

of processes, data
ows, datastores, actors, and control 
ows. Actors and control 
ows are not

directly included in the GOMT AST. A functional model process transforms data and may be

further re�ned by subprocesses. Processes and subprocesses are stored directly in the GOMT AST.

Simple data
ows are also directly stored in the GOMT AST; however, the GOMT AST

does not capture some special data
ow notation included in OMT for convenience: duplication,

composition, and decomposition. Duplication allows the output of one process to 
ow into the

inputs of two or more processes. Composition takes multiple data
ows and composes their data into

an aggregate datatype. Decomposition accomplishes the inverse of composition{it allows aggregate

datatypes to broken into it component datatypes. Each of these operations can be modeled with

appropriately de�ned processes. Therefore, lack of direct inclusion in the GOMT AST does not

present modeling di�culties.
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According to Rumbaugh, datastores are passive objects that store data and are de�ned in the

object model. Thus datastores are classes or associations and are directly modeled in the GOMT

AST.

Actors are active objects that drive OMT functional models by producing and consuming

the data used in the corresponding data
ow diagram. However, since actors represent entities

interacting with the domain being modeled, they are external to the domain and are not required

in order to specify the domain model. Therefore, actors are not modeled in the GOMT AST.

The last items of interest in the OMT dynamic model are control 
ows. However, according

to Rumbaugh, control 
ows are duplicative. Therefore, omitting control 
ows from the GOMT

AST eliminates a source of inconsistency and does not restrict the domain designer.

A.8 Conclusions

This Appendix presents the generic OMT abstract syntax tree de�nition that is used in my

research as the starting point for the translation from OMT to my theory-based object model.

The GOMT captures the essential details of OMT based on assumptions of how OMT is used.

Because OMT has a rich set of duplicative features, some of the non-essential features are not

directly modeled in the GOMT AST; however, OMT's modeling power has not been decreased.

Any domain modeled in Rumbaugh's OMT representation may be modeled in the generic OMT

AST without semantic compromise.
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Appendix B. O-Slang

B.1 Introduction

This Appendix de�nes the syntax and semantics of the algebraic speci�cation language O-

Slang. O-Slang is an object-oriented extension of Slang (54) and like Slang incorporates

category theory operations directly and implicitly. The syntax of O-Slang is de�ned by the

grammar and the corresponding O-Slang AST as described in Section B.3. The semantics of

O-Slang is de�ned by its translation to Slang.

B.2 Background

O-Slang is an extension of the Slang speci�cation language used in Specware (54, 55).

Slang is based on �rst-order logic and category theory. A Slang speci�cation is a theory presen-

tation of a formal theory. Theories consist of a �nite set of sorts, operations, and a set of axioms

closed under logical entailment. A speci�cation is a set of sorts, operations, and a set of �nite

axioms. Under logical entailment, a speci�cation generates a theory that includes, as axioms, all

theorems that can be generated from the axioms in the speci�cation. Speci�cations and speci�ca-

tion morphisms de�ne the cocomplete category Spec. Diagrams in Spec consist of speci�cations

and speci�cation morphisms and are used to de�ne system structure. Slang uses the category

theory colimit operation to combine smaller speci�cations into larger, more complex speci�cations.

O-Slang uses the concepts from Slang to capture object-oriented system speci�cations.

Sorts and operations are used to describe various internal object class features while category

theory concepts and operations are used to de�ne the relationships between object classes.

B.3 O-Slang Syntax

O-Slang syntax is very similar to the core Slang syntax with some additional language con-

structs. The Re�ne O-Slang AST de�nition and grammar are shown in Section B.3.1. Whereas
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core Slang has only speci�cation and diagram constructs to de�ne a system, O-Slang has numer-

ous object-oriented constructs that map into speci�cations and diagrams. Also, O-Slang hides

much of the diagram construction except in the case of aggregation. A table of basic O-Slang

constructs and their Slang counterparts are shown in Table B.1.

O-Slang Slang

Class Diagram & Speci�cation

Abstract-Class Diagram & Speci�cation

Event Speci�cation

Link Speci�cation

Association Diagram & Speci�cation

Aggregate Diagram

Table B.1 O-Slang Constructs

The top level O-Slang abstract syntax tree is shown in Figure B.1. Figure B.1 de�nes

an O-Slang Domain Theory as consisting of one or more O-Slang speci�cations. O-Slang

speci�cations represent either classes, abstract classes, events, links, associations, or aggregates.

Classes, events, links, and associations are all similar in that they share a similar speci�cation

body.

Figure B.2 shows a further breakdown of classes, events, links, and associations. Actually

Figure B.2 is over generalized. While classes have all of the features shown, events, links, and

associations only have a subset of those as shown in Figure B.3.

Figure B.4 shows the abstract syntax tree for O-Slang axioms. Although both O-Slang

and Slang are based on �rst order logic, their axiom syntax is di�erent. Slang uses a hard to

read \Lisp-like" pre�x notation. To simplify use, O-Slang uses standard in�x notation. Although

they di�er in appearance, the two axiom formats are semantically equivalent.

B.3.1 O-Slang Grammar. This section de�nes the O-Slang grammar. Words in bold

typeface indicate language key words; brackets indicate optional items; a bar, j, represents the
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Theory
Domain  
O-Slang

Spec

1+

Object
O-Slang

O-Slang

Aggregate Class

1+

Event Link Association

Node

1+
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NodeMap

ClassBody EventBody LinkBody

Like named objects 
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choice operator; and the � and + operators indicate zero or one or more of the preceding items are

allowable.

O-Slang-DomainTheory! Spec
+

Spec ! class Class j abstract-class AbClass j event Event j link Link

j association Association j aggregate Aggregate

Class ! Id [ Parameter [, Parameter]
�
] is ClassBody

AbClass ! Id [ Parameter [, Parameter]
�
] ] is AbclassBody
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Event ! Id [ Parameter [, Parameter]
�
] ] is EventBody

Link ! Id [ Parameter [, Parameter]
�
] ] is LinkBody

Association! Id [ Parameter [, Parameter]
�
] ] is AssocBody

Aggregate! Id is nodes Node[;Node]
�
arcs Arc[;Arc]

�
end-aggregate

Node ! [Id : ] Id

Arc ! Node � > Node [ : f NodeMap[;NodeMap]
� g ]

NodeMap ! Node � > Node j ( OperationDecl ) � > ( OperationDecl ))

Parameters! Id : Id

ClassBody ! class-sort ClassSort

contained-class Id[;Id]
�

imports Id[;Id]
�

sorts Id[;Id]
�

sort-axioms SortAxiom[;SortAxiom]
�

operations OperationBlock

attributes AttributeBlock

state-attributes StateAttributeBlock

methods MethodBlock

states StateBlock

events EventBlock

axioms AxiomBlock

theorems TheoremBlock

end-class

AbClassBody ! class-sort ClassSort

contained-class Id[;Id]
�

imports Id[;Id]
�

sorts Id[;Id]
�

sort-axioms SortAxiom[;SortAxiom]
�

operations OperationBlock

attributes AttributeBlock

state-attributes StateAttributeBlock

methods MethodBlock

states StateBlock

events EventBlock

axioms AxiomBlock

theorems TheoremBlock

end-class
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EventBody ! class-sort ClassSort

imports Id[;Id]
�

sorts Id[;Id]
�

operations OperationBlock

attributes AttributeBlock

state-attributes StateAttributeBlock

methods MethodBlock

states StateBlock

events EventBlock

axioms AxiomBlock

theorems TheoremBlock

end-event

LinkBody ! class-sort ClassSort

imports Id[;Id]
�

sorts Id[;Id]
�

operations OperationBlock

attributes AttributeBlock

state-attributes StateAttributeBlock

methods MethodBlock

states StateBlock

events EventBlock

axioms AxiomBlock

theorems TheoremBlock

end-link

AssocBody ! class-sort ClassSort

link-class LinkClass

imports Id[;Id]
�

sorts Id[;Id]
�

sort-axioms SortAxiom[;SortAxiom]
�

operations OperationBlock

attributes AttributeBlock

state-attributes StateAttributeBlock

methods MethodBlock

states StateBlock

events EventBlock

axioms AxiomBlock

theorems TheoremBlock

end-association

ClassSort ! Id[;Id]
�

< Id[;Id]
�

SortAxiom! Id[=Id]
�
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OperationBlock! OperationDecl
�

AttributeBlock! OperationDecl
�

StateAttributeBlock! OperationDecl
�

MethodBlock ! OperationDecl
�

StateBlock! OperationDecl
�

EventBlock! OperationDecl
�

Constructor ! constructors f Id [, id]
� g construct Id

AxiomBlock! AxiomDef [;AxiomDef ]
�

Axiom-Def! Axiom j DefinitionBlock

TheoremsBlock! Axiom[;Axiom]
�

De�nitionBlock! de�nition of Id is Definition[;Definition]
�
end-de�nition

OperationDecl! Id : OpSig

OpSig ! Id[;Id]
� � > Id[;Id]

�

Axiom! Relation j LogicTerm

Relation! SimpleAxiom j RelTerm

SimpleAxiom! Primary j MathTerm

Primary! SimpId j Tuple j Id ( Axiom[;Axiom]
�
) j ( Axiom ))

SimpleId ! symbol

Tuple ! < SimpId
++

, >

LogicTerm! And-Term j Or-Term j Not-Term j Iff-Term

j Implies-Term j Uquant-Term j Equant-Term

And-Term ! Axiom & Relation

Or-Term ! Axiom j Relation
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Not-Term ! Relation

I�-Term ! Axiom <=> Relation

Implies-Term! Axiom => Relation

Uquant-Term ! 8 ( Relation[;Relation]� ) Relation

Equant-Term ! 9 ( Relation[;Relation]� ) Relation

RelTerm! Equals-Term j NotEquals-Term j User-Term

j LT -Term j LTE-Term j GT -Term j GTE-Term

Equals-Term! Relation = SimpleAxiom

NotEquals-Term! Relation <> SimpleAxiom

User-Term ! Relation Id SimpleAxiom

LT-Term ! Relation < SimpleAxiom

LTE-Term! Relation <= SimpleAxiom

GT-Term ! Relation > SimpleAxiom

GTE-Term ! Relation >= SimpleAxiom

MathTerm ! Add-Term j Sub-Term jMult-Term j Div-Term

Add-Term ! SimpleAxiom + Primary

Sub-Term ! SimpleAxiom � Primary

Mult-Term! SimpleAxiom � Primary

Div-Term! SimpleAxiom = Primary

SimpId ! integer j real j Id

Id ! [symbol . ] symbol
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B.4 O-Slang Semantics

The semantics of O-Slang speci�cations are de�ned by the underlying Slang translations.

Most of this translation is straightforward. Sorts in O-Slang map to sorts in Slang; operations,

attributes, methods, events, and statesmap to operations in Slang; and imports, theorems, axioms,

and de�nitions in O-Slang map to identical constructs in Slang. More complex translations are

required for container classes, associations, and inherited classes. Actually, the container classes

and associations use the Slang colimit operation and Set speci�cation to build sets of objects as

de�ned in Chapter VII.

B.4.1 Classes. An example of an O-Slang class is shown Figure B.5. The class sort,

sorts, operations, attributes, state-attributes, methods, states, and events de�ne the signature of the

underlying Slang speci�cation (Figure B.6). All O-Slang sorts, including the class sort, become

Slang sorts while O-Slang operations, attributes, state-attributes, methods, and events become

Slang operations. O-Slang states map to Slang constants, or nullary operations. Translation

of the axioms from O-Slang to Slang is a straight-forward rewriting exercise. The axioms are

translated from in�x notation to pre�x notation. The import mechanism works identically in both

O-slang and Slang and thus no translation is required. The sort axiom de�ned in Figure B.5

has no real purpose in this speci�cation except to illustrate its use. The O-Slang sort axiom only

allows the equivalencing of sorts and thus is a subset of the Slang sort axiom construct.

B.4.2 Class Sets. In O-Slang, whenever a class is de�ned, a \class set" class is automat-

ically created as shown in Figure B.7. Because the class set, denoted by a contained-class construct

in the class speci�cation, is a class whose class sort is a set of objects, the underlying Slang spec-

i�cation becomes more complicated. Figure B.8 shows the underlying Slang speci�cations that

are generated by an O-Slang class set speci�cation.
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class Acct is

import Amnt, Date

class sort Acct

sorts Acct-State

sort-axioms Amnt = Integer

operations

attr-equal : Acct, Acct ! Boolean

attributes

date : Acct ! Date

bal : Acct ! Amnt

state-attributes

acct-state : Acct ! Acct-State

methods

create-acct : Date ! Acct

credit, debit : Acct, Amnt ! Acct

states

ok, overdrawn : ! Acct-State

events

new-acct : Date ! Acct

deposit, withdrawal : Acct, Amnt ! Acct

axioms

% state uniqueness and invariant axioms

ok 6= overdrawn;

8 (a: Acct) acct-state(a) = ok ) bal(a) � 0;

8 (a: Acct) acct-state(a) = overdrawn ) bal(a) < 0;

% operation de�nitions

8 (a,a1: Acct) attr-equal(a, a1) ) date(a) = date(a1) ^ bal(a) = bal(a1);

% method de�nitions

8 (d: Date) date(create-acct(d)) = d ^ bal(create-acct(d)) = 0;

8 (a: Acct, x: Amnt) bal(credit(a,x)) = bal(a) + x

^ date(credit(a,x)) = date(a) ^ rate(credit(a,x)) = rate(a)

^ int-date(credit(a,x)) = int-date(a) ^ check-cost(credit(a,x)) = check-cost(a);

% event de�nitions

8 (d: Date) acct-state(new-acct(d))=ok ^ attr-equal(new-acct(d), create-acct(d))

8 (a: Acct, x: Amnt) acct-state(a)=ok

) acct-state(deposit(a,x))=ok ^ attr-equal(deposit(a,x), credit(a,x));

8 (a: Acct, x: Amnt) acct-state(a)=overdrawn ^ bal(a) + x � 0

) acct-state(deposit(a,x))=ok ^ attr-equal(deposit(a,x), credit(a,x));

8 (a: Acct, x: Amnt) acct-state(a)=overdrawn ^ bal(a) + x < 0

) acct-state(deposit(a,x))=overdrawn ^ attr-equal(deposit(a,x), credit(a,x));

8 (a: Acct, x: Amnt) acct-state(a)=ok ^ bal(a) � x

) acct-state(withdrawal(a,x))=ok ^ attr-equal(withdrawal(a,x), debit(a,x));

8 (a: Acct, x: Amnt) acct-state(a)=ok ^ bal(a) < x

) acct-state(withdrawal(a,x))=overdrawn ^ attr-equal(withdrawal(a,x), debit(a,x));

8 (a: Acct, x: Amnt) acct-state(a)=overdrawn

) acct-state(withdrawal(a,x))=overdrawn ^ attr-equal(withdrawal(a,x), a)

end-class

Figure B.5 Object Class

The Acct-Class-Colimit speci�cation creates a speci�cation with a set of Acct objects. The

Acct-Class-Set speci�cation simply renames the set to Acct-Class. This renamed speci�cation is

then included into the Acct-Class speci�cation where the class operation and axioms de�ned in

the O-Slang class speci�cation are translated into Slang operations and axioms. The colimit

and renaming speci�cation are automatically generated based on the class name speci�ed in the

contained-class construct on the O-Slang speci�cation.

B.4.3 Communication. An example of an O-Slang event theory is shown in Figure B.9.

This is translated as de�ned above for a class into a Slang speci�cation that de�nes a theory
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spec Acct is

import Amnt, Date

sorts Acct, Acct-State

sort-axiom Amnt = Integer

op attr-equal : Acct, Acct -> Boolean

op date : Acct -> Date

op bal : Acct -> Amnt

op acct-state : Acct -> Acct-State

op create-acct : Date -> Acct

op credit, debit : Acct, Amnt -> Acct

const ok, overdrawn : Acct-State

op new-acct : Date -> Acct

op deposit, withdrawal : Acct, Amnt -> Acct

% state uniqueness and invariant axioms

axiom (not (equal ok overdrawn))

axiom (fa (a: Acct) (implies (equal (acct-state a) ok) (greater-than-or-equal (bal a) zero)))

axiom (fa (a: Acct) (implies (equal (acct-state a) overdrawn) (less-than (bal a) zero)))

% operation de�nitions

axiom (fa (a a1: Acct) (implies (attr-equal a a1) (and (equal (date a) (date a1)) (equal (bal a) = (bal a1))))

% method de�nitions

axiom (fa (d: Date) (and (equal (date (create-acct d)) d) (equal (bal (create-acct d)) zero)))

axiom (fa (a: Acct x: Amnt) (and (and (equal (bal (credit a x)) (plus (bal a) x)) (date (credit a x)) = (date a))

(and (equal (rate (credit a x)) (rate a))

(and (equal (int-date (credit a x)) (int-date a)) (equal (check-cost (credit a x)) (check-cost a))))))

% event de�nitions

axiom (fa (d: Date) (and (equal (acct-state (new-acct d)) ok) (attr-equal (new-acct d) (create-acct d))))

axiom (fa (a: Acct x: Amnt) (implies (equal (acct-state a) ok)

(and (equal (acct-state (deposit a x)) ok) (attr-equal (deposit a x) (credit a x)))))

axiom (fa (a: Acct x: Amnt) (implies (and (equal (acct-state a) overdrawn)

(greater-than-or-equal (plus (bal a) x) zero))

(and (equal (acct-state (deposit a x)) ok) (attr-equal (deposit a x) (credit a x)))))

axiom (fa (a: Acct x: Amnt) (implies (and (equal (acct-state a) overdrawn) (less-than (plus (bal a) x) zero))

(and (equal (acct-state (deposit a x)) overdrawn) (attr-equal (deposit a x) (credit a x)))))

axiom (fa (a: Acct x: Amnt) (implies (and (equal (acct-state a) ok) (greater-than-or-equal (bal a) x))

(and (equal (acct-state (withdrawal a x)) ok) (attr-equal (withdrawal a x) (debit a x)))))

axiom (fa (a: Acct x: Amnt) (implies (and (equal (acct-state a) ok) (less-than (bal a) x))

(and (equal (acct-state (withdrawal a x)) overdrawn) (attr-equal (withdrawal a x) (debit a x)))))

axiom (fa (a: Acct x: Amnt) (implies (equal (acct-state a) overdrawn)

(and (equal (acct-state (withdrawal a x)) overdrawn) (attr-equal (withdrawal a x) a))))

end-spec

Figure B.6 Underlying Slang Speci�cation

signature. This signature is used in a colimit operation (via an aggregate de�nition) to unify an

event in one class with an event in a second class.

B.4.4 Links. A link is used to de�ne a general relationship between two classes. An

example of anO-Slang link is shown in Figure B.10 with the Slang equivalent speci�cation shown

in Figure B.11. Because a link is created without knowing the actual classes it is associating, the

sorts X and Y do not have meaning until they are uni�ed with a class sort in the aggregate colimit.

All sorts and operations are translated exactly like those of a class as described in Section B.4.1.

B.4.5 Associations. An association is a set of links and thus has a very similar translation

to that of a class set. However, instead of using just the class speci�cations related through the
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class Acct-Class is

contained-class ACCT

class sort Acct-Class

events

new-acct-class : ! Acct-Class

withdrawal : Acct-Class, Amnt ! Acct-Class

deposit : Acct-Class, Amnt ! Acct-Class

axioms

new-acct-class() = empty-set;

8 (a: Acct, ac: Acct-Class, x: Amnt) a 2 ac , deposit(a,x) 2 deposit(ac,x);

8 (a: Acct, ac: Acct-Class, x: Amnt) a 2 ac , withdrawal(a,x) 2 withdrawal(ac,x)

end-class

Figure B.7 O-Slang Class Set Speci�cation

spec Acct-Class-Colimit is

colimit of diagram

nodes TRIV, ACCT, SET

arcs TRIV -> ACCT : fE -> Acctg

TRIV -> SET : fg

end-diagram

spec Acct-Class-Set is

translate ACCT-CLASS-COLIMIT

by fSet -> Acct-Class, E -> Acctg

spec Acct-Class is

import ACCT-CLASS-SET

op new-acct-class : -> Acct-Class

op withdrawal : Acct-Class, Amnt -> Acct-Class

op deposit : Acct-Class, Amnt -> Acct-Class

axiom (equal (new-acct-class) empty-set)

axiom (fa (a: Acct ac: Acct-Class x: Amnt) (i� (in a ac) (in (deposit a x) (deposit ac,x))))

axiom (fa (a: Acct ac: Acct-Class x: Amnt) (i� (in a ac) (in (withdrawal a x) (withdrawal ac x))))

end-spec

Figure B.8 Slang Class Set Speci�cation

link speci�cation, the sets of the related classes must be used to allow for various OMT association

multiplicities (optional, many, ordered, etc.). This does not present a problem since every class

has an associated class set speci�cation already de�ned. An example of an O-Slang association

is shown in Figure B.12 with its Slang counterparts shown in Figure B.13.

B.4.6 Aggregates. Aggregates are a unique type of O-Slang speci�cation. Aggregates

de�ne a colimit operation over previously de�ned classes, associations, and events that make up

the aggregate speci�cation. An aggregate speci�cation does not have the ability to add attributes,

event Event is

class sort Event-Sort

sorts X, Y

events

event : Event-Sort, X, Y ! Event-Sort

end-class

Figure B.9 Event Theory
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link XY-Link is

class sort XY-Link

sorts X, Y

operations

attr-equal : XY-Link, XY-Link ! Boolean

attributes

x-obj : XY-Link ! X

y-obj : XY-Link ! Y

methods

create-xy-link : X, Y ! XY-Link

events

new-xy-link : X, Y ! XY-Link

axioms

% operation de�nition

8 (x1,x2: X) attr-equal(x1,x2) , x-obj(x1) = x-obj(x2) ^ y-obj(x1) = y-obj(x2);

% create method de�nition

8 (x: X, y: Y) x-obj(create-xy-link(x,y)) = x ^ y-obj(create-xy-link(x,y)) = y;

% new event de�nition

8 (x: X, y: Y) attr-equal(new-xy-link(x,y), create-xy-link(x,y))

end-link

Figure B.10 O-Slang Link Speci�cation

spec XY-Link is

sorts X, Y, XY-Link

op attr-equal : XY-Link, XY-Link -> Boolean

op x-obj : XY-Link -> X

op y-obj : XY-Link -> Y

op create-xy-link : X, Y -> XY-Link

op new-xy-link : X, Y -> XY-Link

axiom (fa (x1:X x2:X) (i� (attr-equal x1 x2) (and (equal (x-obj x1) (x-obj x2)) (equal (y-obj x1) (y-obj x2)))))

axiom (fa (x:X y:Y) (and (equal (x-obj (create-xy-link x y)) x) (equal (y-obj (create-xy-link x y)))))

axiom (fa (x:X y:Y) (attr-equal (new-xy-link x y) (create-xy-link x y)))

end-spec

Figure B.11 Slang Link Speci�cation

methods, events, constraints, etc. These additions are made through an extension of the aggregate

speci�cation using a class speci�cation that imports the aggregate. The nodes of an aggregate are

the classes, associations, and events included in the aggregate while the arcs are the speci�cation

morphisms between the nodes that de�ne the relationships between the nodes. Besides simply

combining a number of class and association speci�cations into a single aggregate speci�cation, the

colimit operation uni�es sorts and operations de�ned in separate classes and associations.

An example of an O-Slang aggregate is shown in Figure B.14. The diagram of the aggregate

is shown in Figure B.15. The Slang version of the aggregate is shown in Figure B.16.

Once the colimit speci�cation is speci�ed, new operations and axioms are added to an exten-

sion of colimit speci�cation. This extension is created by importing the colimit speci�cation into a

class speci�cation and adding new operations and axioms as de�ned in Section B.4.1.
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association XY-Assoc is

link-class XY-Link

class sort XY-Assoc

sorts X-Set, Y-Set

methods

image : XY-Assoc, Y ! X-Set

image : XY-Assoc, X ! Y-Set

events

new-xy-assoc : ! XY-Assoc

axioms

% multiplicity axioms

8 (l: XY-Assoc, y: Y) size(image(l, y)) � 1;

8 (l: XY-Assoc, x: X) size(image(l, x)) = 1;

% new event de�nition

new-xy-assoc() = empty-set;

% image de�nitions

8 (xy:XY-Assoc, l:XY-Link, y:Y) (l 2 xy & y-obj(l) = y) ) x-obj(l) 2 image(xy,y);

8 (xy:XY-Assoc, l:XY-Link, x:X) (l 2 xy & x-obj(l) = x) ) y-obj(l) 2 image(xy,x)

end-association

Figure B.12 O-Slang Association Speci�cation

spec XY-Assoc-Colimit is

colimit of diagram

nodes TRIV, XY-LINK, SET

arcs TRIV -> XY-LINK : fE -> XY-Linkg

TRIV -> SET : fg

end-diagram

spec XY-Assoc-Set is

translate XY-ASSOC-COLIMIT

by fSet -> XY-Assoc, E -> XY-Linkg

spec XY-Assoc is

import XY-ASSOC-SET, X-CLASS, Y-CLASS

op image : XY-Assoc, Y ! X-Class

op image : XY-Assoc, X ! Y-Class

op new-xy-assoc : ! XY-Assoc

axiom (fa (l:XY-Assoc y:Y) (greater-than-or-equal (size (image l y)) one))

axiom (fa (l:XY-Assoc x:X) (equal (size (image l x)) one))

axiom (equal (new-xy-assoc) empty-set)

axiom (fa (xy:XY-Assoc l:XY-Link y:Y) (i� (and (in l xy) (equal (y-obj l) y)) (in (x-obj l) (image xy y))))

axiom (fa (xy:XY-Assoc l:XY-Link x:X) (i� (and (in l xy) (equal (x-obj l) x)) (in (y-obj l) (image xy x))))

end-spec

Figure B.13 Slang Association Speci�cation

B.4.7 Inheritance. To this point, translation of O-Slang speci�cations to Slang speci-

�cations is relatively simple; however, inheritance is more complex. Because Slang has a limited

subsorting feature and makes no allowance for multiple subsorting, subsorting, as de�ned in O-

Slang, is simulated in Slang. This simulation requires de�ning a subsort predicate based on the

de�ned attributes and copying each superclass attribute and operation into each subclass.

B.4.7.1 Single Inheritance. A typical example of O-Slang single inheritance is

shown in Figures B.17 and B.18. Person is the supersort and Student is a subsort of Person. The

Student class de�nes only one new attribute, GPA. (For simplicity, no events have been de�ned for
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aggregate XY-Aggregate is

nodes INTEGER, SET-1: SET, SET-2: SET, SET-3: SET,

X-CLASS, Y-CLASS, XY-Assoc

arcs SET-1 ! X-CLASS : fE ! X, SET ! X-Classg,

SET-1 ! XY-Assoc : fE ! X SET ! X-Classg,

5 SET-2 ! Y-CLASS : fE ! Y, SET ! Y-Classg,

SET-2 ! XY-Assoc : fE ! Y, SET ! Y-Classg,

SET-3 ! XY-Assoc : fE ! XY-Link, SET ! XY-Assocg,

INTEGER ! SET-1 : fg,

INTEGER ! SET-2 : fg

INTEGER ! SET-3 : fg

end-aggregate

Figure B.14 O-Slang Aggregation Speci�cation

{E ➝ XY-Link,
 Set ➝ XY-Assoc}

X-Class Y-ClassXY-Assoc

XY-Aggregate

c c c

Set Set

{E ➝ X,
 Set ➝ X-Class}

{E ➝ X,
 Set ➝ X-Class}

{E ➝ Y,
 Set ➝ Y-Class}

{E ➝ Y,
 Set ➝ Y-Class}

Integer

Set

Figure B.15 Aggregation Composition

spec XY-Aggregate is

colimit of diagram

nodes INTEGER, SET-1: SET, SET-2: SET, SET-3: SET,

X-CLASS, Y-CLASS, XY-Assoc

arcs SET-1 ! X-CLASS : fE ! Xg,

SET-1 ! XY-Assoc : fE ! Xg,

SET-1 ! X-CLASS : fSET ! X-Classg,

SET-1 ! XY-Assoc : fSET ! X-Classg,

SET-2 ! Y-CLASS : fE ! Yg,

SET-2 ! XY-Assoc : fE ! Yg,

SET-2 ! Y-CLASS : fSET ! Y-Classg,

SET-2 ! XY-Assoc : fSET ! Y-Classg,

SET-3 ! XY-Assoc : fE ! XY-Link, SET ! XY-Assocg,

INTEGER ! SET-1 : fg,

INTEGER ! SET-2 : fg,

INTEGER ! SET-3 : fg

end-diagram

Figure B.16 Slang Aggregation Speci�cation
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the Person, Student, or Faculty classes de�ned below or in their Slang counterparts. These would

be de�ned as usual and translated the same as the methods shown below.)

class Person is

import Date, Sex

class sort Person

attributes

name : Person ! String

birthday : Person ! Date

ssan : Person ! Integer

sex : Person ! Sexuality

methods

create-person : String ! Person

change-name : Person, String ! Person

events

axioms

ssan(p) > 0;

% create-person

name(create-person(n)) = n;

birthday(create-person(n)) = default-date;

ssan(create-person(n)) = 0;

sex(create-person(n)) = male;

% change-name

name(change-name(p,n)) = n;

birthday(change-name(p,n)) = birthday(p);

ssan(change-name(p,n)) = ssan(p);

sex(change-name(p,n)) = sex(p)

end-class

Figure B.17 O-Slang Person Superclass

class Student is

import Person, Gpa

class sort Student < Person

attributes

gpa : Student ! Gpa

methods

create-student : String ! Student

axioms

% create-student

name(create-student(n)) = name(create-person(n));

birthday(create-student(n)) = birthday(create-person(n));

ssan(create-student(n)) = ssan(create-person(n));

sex(create-student(n)) = sex(create-person(n));

gpa(create-student(n)) = 0

end-class

Figure B.18 O-Slang Student Subclass

Inheritance, as de�ned in Section 4.4, requires that (1) all objects of a subclass be objects of

each of its superclasses, (2) that all operations de�ned on a superclass are de�ned on the subclass,

and (3) that the semantics of those operations are identical on attributes de�ned in the superclass.

In Slang, subsorting is accomplished via sort axioms as shown below.

sort-axiom subsort = supersort j predicate
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The sort axiom states that the subsort consists of all values from the supersort where the predicate

is true. Thus, given the right predicate de�nition, Slang sort axioms can directly de�ne simple

inheritance. Figures B.19 and B.20 show the Slang translations of the Person and Student classes

de�ned above.

spec PERSON is

import DATE, SEX

sort Person, String

op name : Person � > String

op birthday : Person � > date

op ssan : Person � > Integer

op sex : Person � > Sexuality

op create-person : String � > Person

op change-name : Person, String � > Person

axiom (greater-than (ssan p) zero)

axiom (equal (name (create-person n)) n)

axiom (equal (birthday (create-person n)) default-date)

axiom (equal (ssan (create-person n)) zero)

axiom (equal (sex (create-person n)) male)

axiom (equal (name (change-name p n)) n)

axiom (equal (birthday (change-name p n)) (birthday p))

axiom (equal (ssan (change-name p n)) (ssan p))

axiom (equal (sex (change-name p n)) (sex p))

end-spec

Figure B.19 Slang Person Superclass

The Person class translates to Slang as described in Section B.4.1. It is in the Student class

that the inheritance simulation takes place. Because Slang is very strongly typed, an operation

de�ned on a supersort is not automatically de�ned on its subsorts. Slang does provide a built-in

inclusion function, relax, that maps elements of the subsort to their corresponding elements of the

supersort. Thus the axiom

(equal (name s) (name ((relax student?) s)))

or,

name(s) = name(relax(student?)(s))

states the name of a student, s, is equal to the name of an equivalent person in the supersort

denoted by ((relax student?) s). Thus the relax operator maps s from the student subsort to the

Person supersort by relaxing the student? predicate. Therefore, for each operation de�ned in the

Person class, an equivalent operation must be de�ned on the Student class. Axioms are used (as

shown above) to ensure that the semantics of the operations on superclass attributes are equivalent.
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spec STUDENT is

import PERSON

sort Student, Gpa

sort-axiom Student = Person j student?

op name : Student � > String

op birthday : Student � > Date

op ssan : Student � > Integer

op sex : Student � > Sexuality

op gpa : Student � > Gpa

op create-student : String � > Student

op change-name : Student, String � > Student

op student? : Person � > Boolean

axiom (fa (p:person s:student)

(implies (equal p ((relax student?) s))

(equal (student? p)

(ex (r:gpa) (equal (gpa s) r)))))

axiom (equal (name s) (name ((relax student?) s)))

axiom (equal (birthday s) (birthday ((relax student?) s)))

axiom (equal (ssan s) (ssan ((relax student?) s)))

axiom (equal (sex s) (sex ((relax student?) s)))

axiom (equal (name (create-student n)) (name (create-person n)))

axiom (equal (birthday (create-student n))

(birthday (create-person n)))

axiom (equal (ssan (create-student n)) (ssan (create-person n)))

axiom (equal (sex (create-student n)) (sex (create-person n)))

axiom (equal (gpa (create-student n)) zero)

axiom (equal (name (change-name s n))

(name (change-name ((relax student?) s) n)))

axiom (equal (birthday (change-name s n))

(birthday (change-name ((relax student?) s) n)))

axiom (equal (ssan (change-name s n))

(ssan (change-name ((relax student?) s) n)))

axiom (equal (sex (change-name s n))

(sex (change-name ((relax student?) s) n)))

axiom (equal (gpa (change-name s n)) (gpa s))

end-spec

Figure B.20 Slang Student Subclass

The predicate student? is de�ned by the signature and axiom shown below.

op student? : Person � > Boolean
axiom (fa (p:person s:student)

(implies (equal p ((relax student?) s))
(equal (student? p)

(ex (r:gpa) (equal (gpa s) r)))))

In conventional notation this would be as follows.

8 (p:person s:student) p = relax(student?)(s)
) student?(p) = (9 (r:gpa) gpa(s) = r)

Basically, the student? predicate states that for an object to be in the Student class, the attribute,

gpa, must be de�ned on that object. In general, the subclass predicate is de�ned by requiring

all attributes of the class to be de�ned on its objects. Thus Slang allows us to determine if an

element of the supersort is a member of a subsort and to create an element of the supersort from

elements in the subsort; unfortunately, it does not provide a simple or elegant way to accomplish
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these operations. Therefore, when translating a subclass de�nition, not only must the superclass

speci�cation be imported, but an operation for each operation in the superclass must be created

and explicitly de�ned as equivalent to the superclass operation acting on a relaxed subsort element.

The translation of O-Slang single inheritance satis�es the three requirements for inheritance

described above. First, because Slang supports simple subsorting, all objects of a subclass are

objects of each of its superclasses, even though use of the relax operation is required. Second,

all operations of the superclass sort are de�ned on the subsort since they are explicitly rede�ned

(using the same names and parameters) on the subclass objects. Finally, the semantics of superclass

operations are identical on attributes de�ned in the superclass since the subclass operations are

equivalenced to the superclass operations over the superclass attributes. Therefore, the translation

described above fully speci�es the semantics of O-Slang single inheritance.

B.4.7.2 Multiple Inheritance. Now that I have de�ned the O-Slang to Slang

translation for single inheritance, I extend this translation to multiple inheritance. Unfortunately,

this extension is not straightforward. Slang does not allow a sort to be a subsort of more than

one supersort; therefore, this requirement must be simulated. The requirements that all superclass

operations be de�ned on the subclass and that the semantics of the operations are equivalent over

superclass attributes are translated the same way as for single inheritance. To set up an example,

assume a Faculty class is de�ned as a subclass of Person as shown in Figure B.21 and B.22.

class Faculty is < Person

import Person, Academic-Rank

class sort Faculty

attributes

academic-rank : Faculty ! Academic-Rank

methods

create-faculty : String ! Faculty

axioms

% create-faculty

name(create-faculty(n)) = name(create-person(n));

birthday(create-faculty(n)) = birthday(create-person(n));

ssan(create-faculty(n)) = ssan(create-person(n));

sex(create-faculty(n)) = sex(create-person(n));

academic-rank(create-faculty(n)) = instructor

end-class

Figure B.21 O-Slang Faculty Subclass
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spec FACULTY is

import PERSON, ACADEMIC-RANK

sort Faculty

sort-axiom Faculty = Person j faculty?

op name : Faculty � > String

op birthday : Faculty � > Date

op ssan : Faculty � > Integer

op sex : Faculty � > Sexuality

op academic-rank : Faculty � > Academic-Rank

op create-faculty : String � > Faculty

op change-name : Faculty, String � > Faculty

op faculty? : Person � > Boolean

axiom (fa (p:person f:faculty)

(implies (equal p ((relax faculty?) f))

(equal (faculty? p)

(ex (r:Academic-Rank) (equal (academic-rank f) r)))))

axiom (equal (name f) (name ((relax faculty?) f)))

axiom (equal (birthday f) (birthday ((relax faculty?) f)))

axiom (equal (ssan f) (ssan ((relax faculty?) f)))

axiom (equal (sex f) (sex ((relax faculty?) f)))

axiom (equal (name (create-faculty n)) (name (create-person n)))

axiom (equal (birthday (create-faculty n))

(birthday (create-person n)))

axiom (equal (ssan (create-faculty n)) (ssan (create-person n)))

axiom (equal (sex (create-faculty n)) (sex (create-person n)))

axiom (equal (academic-rank (create-faculty n)) instructor)

axiom (equal (name (change-name f n))

(name (change-name ((relax faculty?) f) n)))

axiom (equal (birthday (change-name f n))

(birthday (change-name ((relax faculty?) f) n)))

axiom (equal (ssan (change-name f n))

(ssan (change-name ((relax faculty?) f) n)))

axiom (equal (sex (change-name f n))

(sex (change-name ((relax faculty?) f) n)))

axiom (equal (academic-rank (change-name f n)) (academic-rank f))

end-spec

Figure B.22 Slang Faculty Subclass

What is desired is to create a teaching assistant class, TA, that is a subclass of both the

Student class and the Faculty class. The O-Slang for such a class is shown in Figure B.23. By

importing both Student and Faculty classes and requiring that the TA class sort be a subsort of

both the Student and Faculty class sorts, multiple inheritance is achieved. The operations have been

imported and de�ned over both Student and Faculty, and thus are automatically de�ned over TA

objects since the TA objects are a subset of both the Student and Faculty objects. A new operation,

create-ta, is de�ned in accordance with the appropriate Student and Faculty create operations.

The translation of TA to Slang is not quite as simple as for single inheritance. As de�ned

in the theory-based object model in Chapter VII, multiple inheritance is de�ned by the colimit of

the superclass speci�cations (with the shared part de�ned by common superclasses and any shared

data type speci�cations). Since both Student and Faculty are subclasses of the Person class, the
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class TA is

Student, Faculty

class sort TA < Student, Faculty

methods

create-ta : String ! TA

axioms

% create-ta

name(create-ta(n)) = name(create-person(n));

birthday(create-ta(n)) = birthday(create-person(n));

ssan(create-ta(n)) = ssan(create-person(n));

sex(create-ta(n)) = sex(create-person(n));

gpa(create-ta(n)) = gpa(create-student(n));

academic-rank(create-ta(n)) = academic-rank(create-faculty(n))

end-class

Figure B.23 O-Slang TA Subclass

diagram consisting of Person, Student, and Faculty (and the appropriate morphisms between them)

de�nes the colimit speci�cation used to create the TA speci�cation (Figure B.24).

Once the colimit speci�cation has been created, it is imported into the TA Slang speci�cation

where it is extended by adding the class sort, TA, and constructing the subsort equivalences.

Because Slang only supports a single subsort de�nition, the TA sort must be de�ned to be a

subsort of the lowest common supersort of all of the superclasses used to de�ne the subclass. In

this example, since Student and Faculty are both subclasses of Person, TA is de�ned to be a subclass

of Person as well. If some of the superclasses are not descendants of a common superclass, the

object-class sort (the sort which includes all object names) is used. This situation is not discussed

further except to state that all object class sorts are, by de�nition, subsorts of the object-class sort.

The fact that TA is a subsort of both Person and Faculty classes is captured by the de�nition

of a subsort predicate ta? as de�ned below.

axiom (fa (t:ta) (ex (f:faculty) (equal ((relax ta?) t)

((relax faculty?) f))))

axiom (fa (t:ta) (ex (s:student) (equal ((relax ta?) t)

((relax student?) s))))

The �rst axiom states that the predicate for every object in the TA class there is an object

in the Faculty class such that if the ta? predicate and faculty? predicates are relaxed, they are the

same underlying Person. The second axiom does the same for the Student class.
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The next set of axioms de�ne ta-faculty and ta-student operations that, in essence, relax a TA

object into a Faculty or Student object. The de�nitional axiom states that if a relaxed TA object

is equal to a relaxed Faculty/Student object then the result of the ta-faculty/ta-student operation

is the Faculty/Student object. These relaxation operations are used to de�ne the equivalence of

attributes de�ned in each of the superclasses respectively.

op ta-faculty : Ta � > Faculty

axiom (implies (equal ((relax ta?) t) ((relax faculty?) f))

(equal (ta-faculty t) f))

op ta-student : Ta � > Student

axiom (implies (equal ((relax ta?) t) ((relax student?) s))

(equal (ta-student t) s))

The operations are copied from the superclasses as de�ned for single inheritance. The only

di�erence is that the de�nition of the subclass operations must be based on where the operation

is originally de�ned. Thus if the operation is de�ned in Person, the relax operation is used in the

de�nitions whereas if the operation is de�ned in Faculty, the ta-faculty relaxation operation is used

in the de�nition.

The translation of O-Slang multiple inheritance satis�es the three requirements for inheri-

tance de�ned in Section B.4.7.1. First, by simulating multiple subsorting through the de�nition of

superclass relaxation operations, all objects of the subclass are objects of each of its superclasses.

Second, all operations of each superclass are de�ned on the subsort since they are explicitly rede�ned

(using the same names and parameters) on the subclass objects. Finally, the semantics of superclass

operations are identical on operations de�ned in the superclasses since the results of the subclass

operations are equivalenced to the superclass operations over the superclass attributes. Therefore,

the translation described above fully speci�es the semantics of O-Slang multiple inheritance.
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B.5 Summary

This Appendix de�ned the interpretation of O-Slang in Specware`s Slang, thus de�n-

ing the syntax and semantics of O-Slang. Although most O-Slang features translate simply,

almost trivially, into Slang, inheritance requires a slightly more untidy approach due to Slang's

restricted notion of subsorting. While the inheritance translation increases the level of translation

sophistication, the end results satisfy the requirements of the substitution property as de�ned in

Chapter IV.
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spec FACULTY-STUDENT-COLIMIT is

colimit of

diagram nodes FACULTY, STUDENT, PERSON

arcs PERSON � > FACULTY:

f(FEMALE: SEXUALITY) � > (FEMALE: SEXUALITY),

(MALE: SEXUALITY) � > (MALE: SEXUALITY),

SEXUALITY � > SEXUALITY,

(YEAR: DATE � > INTEGER) � > (YEAR: DATE � > INTEGER),

(MONTH: DATE � > INTEGER) � > (MONTH: DATE � > INTEGER),

(DAY: DATE � > INTEGER) � > (DAY: DATE � > INTEGER),

(DEFAULT-DATE: DATE) � > (DEFAULT-DATE: DATE), DATE � > DATE,

(MAX: INTEGER, INTEGER � > INTEGER)

� > (MAX: INTEGER, INTEGER � > INTEGER),

(MIN: INTEGER, INTEGER � > INTEGER)

� > (MIN: INTEGER, INTEGER � > INTEGER),

(TIMES: INTEGER, INTEGER � > INTEGER)

� > (TIMES: INTEGER, INTEGER � > INTEGER),

(MINUS: INTEGER, INTEGER � > INTEGER)

� > (MINUS: INTEGER, INTEGER � > INTEGER),

(IPLUS: INTEGER, INTEGER � > INTEGER)

� > (IPLUS: INTEGER, INTEGER � > INTEGER),

(GREATER-THAN-OR-EQUAL: INTEGER, INTEGER � > BOOLEAN)

� > (GREATER-THAN-OR-EQUAL: INTEGER, INTEGER � > BOOLEAN),

(LESS-THAN-OR-EQUAL: INTEGER, INTEGER � > BOOLEAN)

� > (LESS-THAN-OR-EQUAL: INTEGER, INTEGER � > BOOLEAN),

(GREATER-THAN: INTEGER, INTEGER � > BOOLEAN)

� > (GREATER-THAN: INTEGER, INTEGER � > BOOLEAN),

(LESS-THAN: INTEGER, INTEGER � > BOOLEAN)

� > (LESS-THAN: INTEGER, INTEGER � > BOOLEAN),

(TEN: INTEGER) � > (TEN: INTEGER),

(NINE: INTEGER) � > (NINE: INTEGER),

(EIGHT: INTEGER) � > (EIGHT: INTEGER),

(SEVEN: INTEGER) � > (SEVEN: INTEGER),

(SIX: INTEGER) � > (SIX: INTEGER),

(FIVE: INTEGER) � > (FIVE: INTEGER),

(FOUR: INTEGER) � > (FOUR: INTEGER),

(THREE: INTEGER) � > (THREE: INTEGER),

(TWO: INTEGER) � > (TWO: INTEGER),

(ONE: INTEGER) � > (ONE: INTEGER),

(ZERO: INTEGER) � > (ZERO: INTEGER), INTEGER � > INTEGER,

PERSON � > PERSON, STRING � > STRING,

(CREATE-PERSON: STRING � > PERSON)

� > (CREATE-PERSON: STRING � > PERSON),

(CHANGE-NAME: PERSON, STRING � > PERSON)

� > (CHANGE-NAME: PERSON, STRING � > PERSON),

(SEX: PERSON � > SEXUALITY) � > (SEX: PERSON � > SEXUALITY),

(SSAN: PERSON � > INTEGER) � > (SSAN: PERSON � > INTEGER),

(BIRTHDAY: PERSON � > DATE) � > (BIRTHDAY: PERSON � > DATE),

(NAME: PERSON � > STRING) � > (NAME: PERSON � > STRING)g,

PERSON � > STUDENT: import-morphism

end-diagram

Figure B.24 Slang Faculty Student Colimit
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spec TA is

import FACULTY-STUDENT-COLIMIT

sort Ta

sort-axiom Ta = Person j ta?

axiom (fa (t:ta) (ex (f:faculty) (equal ((relax ta?) t)

((relax faculty?) f))))

axiom (fa (t:ta) (ex (s:student) (equal ((relax ta?) t)

((relax student?) s))))

op ta-faculty : Ta � > Faculty

axiom (implies (equal ((relax ta?) t) ((relax faculty?) f))

(equal (ta-faculty t) f))

op ta-student : Ta � > Student

axiom (implies (equal ((relax ta?) t) ((relax student?) f))

(equal (ta-student t) f))

op name : Ta � > String

op birthday : Ta � > Date

op ssan : Ta � > Integer

op sex : Ta � > Sexuality

op academic-rank : Ta � > Academic-Rank

op gpa : Ta � > Gpa

op create-ta : String � > Ta

op change-name : TA, String � > TA

op ta? : Person � > Boolean

axiom (fa (p:person t:ta)

(implies (equal p ((relax ta?) t))

(equal (ta? p)

(and (faculty? p) (student? p)))))

axiom (fa (t:ta) (equal (name t) (name ((relax ta?) t))))

axiom (fa (t:ta) (equal (birthday t) (birthday ((relax ta?) t))))

axiom (fa (t:ta) (equal (ssan t) (ssan ((relax ta?) t))))

axiom (fa (t:ta) (equal (sex t) (sex ((relax ta?) t))))

axiom (fa (t:ta) (equal (academic-rank t)

(academic-rank (ta-faculty t))))

axiom (fa (t:ta) (equal (gpa t) (gpa (ta-student t))))

axiom (equal (name (create-ta n)) (name (create-person n)))

axiom (equal (birthday (create-ta n))

(birthday (create-person n)))

axiom (equal (ssan (create-ta n)) (ssan (create-person n)))

axiom (equal (sex (create-ta n)) (sex (create-person n)))

axiom (equal (gpa (create-ta n))

(gpa (create-student n)))

axiom (equal (academic-rank (create-ta n))

(academic-rank (create-faculty n)))

axiom (fa (t:ta) (equal (name (change-name t n))

(name (change-name ((relax ta?) t) n))))

axiom (fa (t:ta) (equal (birthday (change-name t n))

(birthday (change-name ((relax ta?) t) n))))

axiom (fa (t:ta) (equal (ssan (change-name t n))

(ssan (change-name ((relax ta?) t) n))))

axiom (fa (t:ta) (equal (sex (change-name t n))

(sex (change-name ((relax ta?) t) n))))

axiom (fa (t:ta) (equal (gpa (change-name t n))

(gpa (change-name (ta-student t) n))))

axiom (fa (t:ta) (equal academic-rank (change-name t n))

(academic-rank (change-name (ta-faculty t) n))))

end-spec

Figure B.25 Slang TA Subclass
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Appendix C. Generic OMT and O-Slang ASTs

C.1 Introduction

This appendix contains the de�nition of theO-Slang and GOMT abstract syntax trees. The

notation used is described in Table C.1.

Table C.1 Abstract Syntax Tree Notation

Notation Meaning

h:::i Tuple

f:::g Set

[:::] Sequence

j Logical OR

Mixed Case Object

Lower Case Low-level symbol/number

Generally, dot notation is used to traverse the tree. For example, if C is a class in a GOMT domain

theory, DT , then

C 2 DT :GOMT -Class

where DT :GOMT -Class is the set of all classes in the domain theory DT . Likewise, for some

connection c, by the GOMT AST de�nition below, c has four components. Assume c is de�ned as

shown below.

c:name = Pump

c:Qualifier = hPump-Number; integeri

c:role = unde�ned

c:Mult = Many

Then the connection c de�nes a connection to the Pump class that has the quali�er Pump-

Number which is an integer. There is no role name assigned for this particular connection and the

multiplicity is de�ned as Many (zero or more).
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C.2 Generic OMT Abstract Syntax Tree

GOMT-DomainTheory = <{GOMT-Class}, {Assoc}>

GOMT-Class = <name, {Superclass}, [Connection], {Attribute}, {State},

{Transition}, {Axiom}, {GOMT-Op}, {Functional-Obj}>

Assoc = <name, [Connection], {Attribute}, {GOMT-Op}>

Connection = <name, Qualifier, role, Mult>

Qualifier = <name, datatype>

Mult = One | Many | Plus | Optional | Specified

Plus = integer

Specified = {Spec-Range}

Spec-Range = <value1, value2>

Attribute = DerivedAttr | NormalAttr

DerivedAttr = <name, {Axiom}, datatype>

NormalAttr = <name, {Axiom}, datatype>

State = <name, {Axiom}, {State}>

Transition = <name, [Parameter], Axiom, {Action}, FromState, ToState>

FromState = name

ToState = name

Action = <name, [Parameter], {Action}>

GOMT-Op = <name, [Parameter], Result, Definition>

Result = datatype

Parameter = <name, datatype>

Definition = {Axiom}

Functional-Obj = Process | Datastore | Dataflow

Process = <name, [InFlows], [OutFlows], {Process}>

Datastore = <name, [InFlows], [OutFlows]>
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InFlow = <name, type>

OutFlow = <name, type>

Dataflow = <name, type, source, target>

SuperClass = superclass

SubClass = subclass

C.3 O-Slang Abstract Syntax Tree

O-Slang-DomainTheory = {Spec}

Spec = Class | AbClass| Event | Aggregate | Link | Association

Class = <name, ClassSort, {SortAxiom}, {Operation}, {Import}, {Sort},

{Attribute}, {Method}, {StateAttr}, {Event}, {State}, {Axiom},

contained-in>

AbClass = <name, ClassSort, {SortAxiom}, {Operation}, {Import}, {Sort},

{Attribute}, {Method}, {StateAttr}, {Event}, {State},

{Axiom}, contained-in>

Event = <name, ClassSort, {SortAxiom}, {Operation}, {Import}, {Sort},

{Attribute}, {Method}, {StateAttr}, {Event}, {State}, {Axiom}>

Association = <name, ClassSort, {SortAxiom}, {Operation}, {Import},

{Sort}, {Attribute}, {Method}, {StateAttr}, {Event},

{State}, {Axiom}, link-class>

Link = <name, ClassSort, {SortAxiom}, {Operation}, {Import}, {Sort},

{Attribute}, {Method}, {StateAttr}, {Event}, {State}, {Axiom}>

Aggregate = <name, {Node}, {Arc}>

ClassSort = <class-sort-id, {Inherited-Sort-Id}>

SortAxiom = sort-id

Import = class-ref

Sort = sort-id

Inherited-Sort-Id = sort-id

Operation = <name, [Domain-Ident], [Range-Ident]>

Attribute = <name, [Domain-Ident], [Range-Ident]>
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StateAttr = <name, [Domain-Ident], [Range-Ident]>

Method = <name, [Domain-Ident], [Range-Ident]>

Event = <name, [Domain-Ident], [Range-Ident]>

State = <name, [Domain-Ident], [Range-Ident]>

Node = <name, class-ref>

Arc = <arc-from-node, arc-to-node, {NodeMap}>

NodeMap = <map-from, map-to, FromOp, ToOp>

FromOp = <name, [Domain-Ident], [Range-Ident]>

ToOp = <name, [Domain-Ident], [Range-Ident]>

Domain-Ident = sort-id

Range-Ident = sort-id
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Appendix D. Demonstration System

D.1 Introduction

This Appendix documents the implementation of a graphical, object-oriented user interface

used in the proof-of-concept demonstration of a parallel re�nement speci�cation acquisition system.

The goal of this demonstration is to show that Rumbaugh's Object Modeling Technique (OMT)

diagrams (83) can be automatically transformed into theory-based speci�cations consistent with

the original diagrams, not to demonstrate a complete parallel re�nement environment. This Ap-

pendix informally presents the method used to obtain a generic OMT abstract syntax tree (AST)

representation.

To simplify implementation of the demonstration software, a commercially available object-

oriented drawing package, ObjectMaker1, was used to implement the user interface. A diagram

of the demonstration system is shown in Figure D.1. Rumbaugh OMT diagrams are developed in

ObjectMaker and exported to external .TXT �les. A .TEXT �le allows the user to overcome some

shortcomings of ObjectMaker by manually entering data not handled properly by ObjectMaker.

These �les are converted to a di�erent format, via the program read.c, and merged into a single

OMT speci�cation. This speci�cation is parsed into a Re�ne2 AST using a parser developed in

Dialect3. Once in Re�ne, a rule-based conversion program transforms the ObjectMaker OMT AST

into the Generic OMT (GOMT) AST as de�ned in Appendix A.

A brief overview of ObjectMaker is presented in Section D.2 followed by a description of the

ObjectMaker speci�c OMT parser in Section D.3. Finally, the ObjectMaker OMT AST to GOMT

AST transformation program is discussed in section D.4.

1ObjectMaker is a registered trademark of Mark V Systems Limited Encino California
2Re�ne is a trademark of Reasoning Systems Inc. Palo Alto California
3Dialect is a trademark of Reasoning Systems Inc. Palo Alto California
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Figure D.1 ObjectMaker to GOMT Transformation System

D.2 ObjectMaker

ObjectMaker is a commercially available object-oriented drawing, code generation, and re-

engineering tool. It supports many object-oriented design techniques including Rumbaugh's OMT.

An example of an ObjectMaker window is shown in Figure D.2.

In ObjectMaker, OMT diagrams are created and stored in project repositories. Actually,

diagrams are stored separately; however, the information contained on the diagrams is stored in

repositories. Rumbaugh diagrams supported by ObjectMaker include the Dynamic Model, Event

Flow diagram, Event Trace diagram, Functional Model, and Object Model. With a few exceptions,

ObjectMaker allows the user to draw diagrams as described by Rumbaugh. Speci�c problems with

ObjectMaker are enumerated below.

1. Does not allow aggregate quali�ers.

2. Lacks an adequate device for inserting constraints at the class level.

3. Lacks the ability to de�ne operation semantics.

4. Does not capture substate{superstate relationships.

5. Does not capture subprocess{superprocess relationships.
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Figure D.2 ObjectMaker Window

6. Does not provide links between classes and their dynamic and functional diagrams.

7. Intermittent problems in mapping diagrams to their repositories and exporting repositories

to text �les.

The �rst �ve problems with ObjectMaker listed above involved the inability of ObjectMaker

to capture the entire Rumbaugh model. These problems were alleviated by using manual data entry

as described in Section D.2.1. Item six, lack of a link between object classes and their dynamic

and functional models, was overcome through a naming convention. Because ObjectMaker does

store the diagram on which particular dynamic and functional concepts reside, I required the �rst

word in the diagram name to be the name of the associated object class. This work around solved

the problem. The last item listed above, intermittent problems mapping and exporting data, is a

nuisance but not a fatal 
aw. Inconsistencies between the diagrams and the repository occur quite
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often, with no messages or explanations from ObjectMaker, requiring the user to completely rebuild

the repositories from scratch. Then, once the repository and the diagrams do match, exporting the

repositories is often incomplete due to errors; however, ObjectMaker does report these errors to

the user. Exiting ObjectMaker and re-exporting generally solves the problem.

D.2.1 Manual Text File. As stated above, to workaround the inability of ObjectMaker

to capture certain vital data, a manually created text �le, MANUAL.TEXT, is used to augment

the .TXT �les exported by ObjectMaker. An example MANUAL.TEXT �le is shown in Figure

D.3. Five types of data may be entered in MANUAL.TEXT: aggregate quali�ers, class constraints,

methodde�nitions, substate de�nitions, and subprocess de�nitions. Each of these is shown in Figure

D.3. The aggregate quali�er, substate de�nition, and subprocess de�nition simply state that a rela-

tionship exists between a quali�er/substate/subprocess and its associated aggregate/state/process.

The class-constraints allows the user to enter general class constraints via �rst-order axioms. These

constraints may be constraints on attribute values or state invariants. Method de�nitions de�ne

the e�ect of a method on each attribute de�ned in its class. Once again, these de�nitions are in

the form of a set of �rst-order axioms. The �rst line in the de�nition de�nes the method's class.

The MANUAL.TEXT �le is merged directly into the OMT speci�cation which is parsed into

the ObjectMaker OMT AST. ObjectMaker does have the capability to manually enter some the

data found in MANUAL.TEXT; however, this manually entered data is lost whenever the repository

becomes inconsistent and has to be rebuilt.

D.3 OMT Parser

The ObjectMaker OMT parser is de�ned in Re�ne Dialect and is used to parse ObjectMaker

OMT speci�cations into a Re�ne AST. The ObjectMaker OMT AST mirrors the ObjectMaker

OMT speci�cation language and was only intended as a convenient way to get the ObjectMaker

OMT speci�cation into a Re�ne AST where it is more easily manipulated and transformed into the

D-4



aggregate: Pump has quali�er display-id to component Display.

class-constraints: Display

display-state(d) = zero-display => cost(d) = 0 & volume(d) = 0;

display-state(d) = increment-display => cost(d) >= 0 & volume(d) >= 0;

cost(d) >= 0;

volume(d) >= 0

end class-constraints.

de�nition: update-display

class = display;

update-display(d) = update-cost(update-volume(d))

end de�nition.

de�nition: update-volume

class = display;

grade(update-cost(d)) = grade(d);

volume(update-volume(d)) = volume(d) + 1;

cost(update-cost(d)) = cost(d)

end de�nition.

de�nition: update-cost

class = display;

grade(update-cost(d)) = grade(d);

volume(update-cost(d)) = volume(d);

cost(update-cost(d)) = cost(d) + 1

end de�nition.

de�nition: zero-out-display

class = display;

grade(update-cost(d)) = grade(d);

cost(zero-out-display(d)) = 0;

volume(zero-out-display(d)) = 0

end de�nition.

substate Locked < state Display-On .

substate Running < state Display-On .

subprocess update-volume < process update-display.

subprocess update-cost < process update-display.

Figure D.3 MANUAL.TEXT Example

GOMT AST. I decided not to attempt to parse the ObjectMaker OMT speci�cation directly into

the GOMT AST due to the required complexity of the required parser. No semantic processing

is done on the ObjectMaker OMT speci�cation after being parsed into the AST. All semantic

processing is done after the conversion to the GOMT AST described in the next section.

D.4 ObjectMaker OMT AST to GOMT AST Transformation

Transformation from the ObjectMaker OMT AST and the GOMT AST is accomplished

through a rule-based Re�ne program. This transformation program takes individual objects from

the ObjectMaker OMT AST and transforms them into the appropriate GOMT AST object. There

are four phases to the transformation process: (I) creation of class and association objects, (II)
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creation of dynamic and functional objects for each class, (III) �lling in attributes of objects de�ned

in phases two and three, and (IV) checking redundant information for consistency.

Because ObjectMaker exports its repositories in a series of 
at �les with redundant informa-

tion, the ObjectMaker OMT AST re
ects that architecture; therefore, the transformation process

must be completed in steps. Since the basic objects in the GOMT AST are classes and associations,

these objects must be created before ObjectMaker OMT AST objects that are logically a part of

a class or association are transformed. Therefore, in the �rst transformation phase, only the root,

class, and association objects are allowed to be transformed. During the preorder traversal of the

ObjectMaker OMT AST, each object and association object encountered causes the appropriate

class or association object to be created in the GOMT AST. Any attributes, partitions, opera-

tions, constraints, or superclasses de�ned in the class object get transformed into the appropriate

attribute in the new class object. Likewise, any association classes, attributes, or operations are

also transformed into the new AST.

Once all the basic classes and associations have been created in the GOMT AST, the dynamic

model objects (state and transitions) and functional model objects (actors, processes, data
ows,

and datastores) are created and attached to their appropriate classes de�ned in phase I. It is in

this phase that the transformation system uses the diagram names to determine which class owns

the dynamic and functional model components. If the class speci�ed by the diagram name has not

been created, error messages are generated.

After all the functional and dynamic model components have been transformed and attached

to their owning classes, the attributes speci�ed in various ObjectMaker OMT AST objects are used

to �ll in the existing class, association, functional, and dynamic objects. Information transformed

in this step includes association and aggregate role names, and quali�ers; operation parameters,

results, and axioms; substate and subprocess relationships; attribute datatype and initial value or
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derivation axioms; and inheritance information. During phase III all duplicate data in the objects

being transformed is checked against the existing objects to ensure consistency.

Once phase III is completed, the entire GOMT AST is complete. The only phase left is con-

sistency checking. There is only one ObjectMaker OMT AST object that is completely redundant:

the generalization object. This object is used to ensure that all superclass { superclass relationships

have been captured.

Once phase IV is completed, the GOMT AST is complete. There is no semantic processing

for this tree. All semantic processing is done during or after transformation to the O-Slang AST

as discussed in Chapter VII.

D.5 GOMT AST to O-Slang Transformation

Once in the GOMT AST, a rule-based transformation program implementing the transfor-

mation rules de�ned in Chapter VII transforms the GOMT AST into an O-Slang AST within the

Re�ne environment. This transformation process is much like the process for transforming the Ob-

jectMaker AST into the GOMT AST except it carries out the transformation in one phase. Once

in a valid O-Slang AST, the Dialect pretty printer is used to produce a textual representation of

the O-Slang AST.

The actual transformation is performed by creating the root node of the O-Slang AST and

then automatically transforming each class and association, one at a time, within the GOMT AST.

The only sequencing done in the transformation is done to ensure that all component classes of an

aggregate are transformed before the aggregate itself is transformed.

In its current state, the GOMT to O-Slang transformation system converts almost all of the

GOMT AST objects correctly into O-Slang with the following exceptions.

1. Multiple Event Theories
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2. Super/Substate Axiom Generation

3. Multiple Parameter Events

4. Association and Aggregate Quali�ers

These items were not implemented because I did not consider the time required to implement

and debug them useful. None of these items were omitted due to the inability to implement them.

D.6 Summary

This appendix documents the use of the object-oriented drawing tool ObjectMaker as a front

end for the user interface of a parallel re�nement speci�cation acquisition system. Data is exported

from ObjectMaker, merged with additional manually entered data, and parsed into an AST based

on the ObjectMaker output �les. This AST is then transformed via a rule-based Re�ne program

into the GOMT AST which is used as the starting point for a formal transformation from OMT

to theory-based speci�cations. A conversion system for the GOMT to O-Slang transformation,

based on the rules de�ned in Chapter VII, was developed and used to produce the demonstration

examples shown in Chapter VIII.
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Appendix E. Additional Theories

Speci�cation of Triv

spec Triv is

sorts E
end-spec
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Speci�cation of Set

spec Set is

import INTEGER
sorts E, Set
constants

empty-set: Set
operations

in : E, Set ! boolean
empty? : Set ! boolean
insert : E, Set ! Set
singleton : E ! Set
union : Set, Set ! Set
delete : E, Set ! Set
size : Set ! integer
subset : Set, Set ! boolean

constructors finsert, empty-setg construct Set
constructors funion, singleton, empty-setg construct Set
axioms

union(x,y) = union(y,x);
union(x,union(y,z)) = union(union(x,y) z);
union(x,empty-set) = x;
union(empty-set x) = x;
union(x,x) = x;

de�nition

in(x,insert(y,c)) , x = y _ in(x,c);
in(x,empty-set) = false;
end-de�nition

de�nition

theorem

empty?(insert(x,c)) = false;
empty?(empty-set) = true;

end-de�nition

de�nition

in(x,union(u,v)) , in(x,u) _ in(x,v));
in(x,singleton(x)) = true;
in(x,empty-set) = false;
end-de�nition

de�nition

empty?(union(u,v)), empty?(u) ^ empty?(v);
empty?(singleton(x)) = false;
empty?(empty-set) = true;
end-de�nition
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de�nition of delete is
delete(x,empty-set) = empty-set;
delete(x,insert(x,s)) = s;
x1 6= x2 ) delete(x1,insert(x2,s)) = insert(x2,delete(x1,s));
end-de�nition

de�nition set-equal-def of equal is
s = t , (8 (x:E) in(x,s) , in(x,t));
end-de�nition

de�nition set-size-def of size is
size(empty-set) = 0;
in(e,s) ) size(insert(e,s)) = size(s);
: in(e,s) ) size(insert(e,s)) = size(s) + 1;
in(e,s) ) size(delete(e,s)) = size(s) � 1;
: in(e,s) ) size(delete(e,s)) = size(s);
end-de�nition

de�nition subset-def of subset is
subset(s1,s2) = in(e,s1) ) in(e,s2);
end-de�nition

end-spec

E-3



Speci�cation of Integer

spec Integer is

sorts Integer
operations

zero : ! Integer
one : ! Integer
< : Integer, Integer! Boolean
> : Integer, Integer! Boolean
� : Integer, Integer! Boolean
� : Integer, Integer! Boolean
+ : Integer, Integer! Integer
� : Integer, Integer! Integer
� : Integer, Integer! Integer
min : Integer, Integer! Integer
max : Integer, Integer ! Integer

axioms

(zero < one);
(x � x);
(x � y) _ (y � x);
(x � y) ^ (y � z)) ) (x � z);
(x � y) ^ (y � x)) ) (x = y);
(x > y) , ((y + one) � x);
(x < y) , ((x + one) y);
(: ((y + one) � x)) , (x � y);
(x � y) , (y � x);
(x + y) = (y + x);
(x + (y + z)) = ((x + y) + z);
((x + y) + z) = (x + (y + z));
(x + zero) x);
(x � x) zero);
((z � x) � y) = (z � (x + y));
((x + y) = (x + z)) , (y = z);
(x � (y � z)) , ((x + z) � y);
((x � y) � z) , (x � (y + z));
((y + x) = (z + x)) ) (y = z);
((zero � x) ^ (zero � y)) ) (zero � (x + y));
(y zero) ) ((x � y) = zero);
(y = one) ) ((x � y) = x);
((: (y = zero)) ^ (: (y = one)))) ((x � y) = (((x + (y � one)) � x));
(x � y) ) (min(x,y) = x);
(x > y) ) (min(x,y) = y);
(x � y) ) (max(x,y) = y);
(x > y) ) (max(x,y) = x)

end-spec
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Appendix F. Translation Correctness

In this Appendix, I prove Theorems VII.1, VII.2, and VII.3. These theorems show that the

transformation rules as de�ned in Chapter VII preserve the semantics of the the object model, the

dynamic model, and the functional model as de�ned Chapter V.

F.1 Object Model Correctness Proof

In this section, Theorem VII.1 is proved.

Proof. Preservation of the object model semantics by � is established by showing the equiv-

alence of two sets of object model semantics, OM and OM 0, created from a generic OMT domain

theory, G. OM is the object model semantics de�ned by transforming G by ' while OM 0 is the

object model semantics de�ned by transforming G by � , into an O-Slang domain theory O, and

then by !. In this proof, I assume that G has a well de�ned object model in which C is a class and

A is an association.

I prove the theorem by showing that, given a valid generic OMT domain theory G, each

component (Name, Imports, Sorts, Operations, and Axioms) of each speci�cation in OM exists in

OM
0 and that each component of each speci�cation in OM 0 exists in OM . I start by proving that

the set of speci�cations in OM and OM 0 are equivalent and then complete the proof by showing

that each component within those speci�cations are equivalent.

1. In this section I show that the set of speci�cations in OM and OM 0 are equivalent by showing

for any speci�cation in OM , there is a corresponding speci�cation on OM 0 and vice versa.

S 2 OM ) S
0
2 OM

0. If SC is some speci�cation in OM , it must have been generated

by Equation 7.40 (S is a class speci�cation SC) or 7.49 (S is an association speci�cation SA).

If S is a class then by Equation 7.40, there must exist a class C in G such that C:Name =

SC :Name. Then by OMT-1 or OMT-2 there exists a class C in O such that C :Name =
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C:Name = SC :Name that in turn, by Equation 7.58, generates a class S0C in OM 0 such that

S
0
C :Name = C :Name = SC :Name.

If S is an association then by Equation 7.49 there must exist an association A in G such

that A:Name = SA:Name. Then by OMT-44 there exists an association A in O such that

A :Name = A:Name = SA:Name that in turn, by Equation 7.68, generates an association

S
0
A in OM 0 such that S0A:Name = C :Name = SA:Name.

S
0
2 OM

0
) S 2 OM . If S0 is some speci�cation in OM 0, it must have been generated by

Equation 7.58 (S0 is a class speci�cation S0C) or 7.68 (S
0 is an association speci�cation S0A).

If S0 is a class then by Equation 7.58 there must exist a class C in O such that C :Name =

S
0
C :Name. Then, since OMT-1 or OMT-2 are the only rules in � that create simple classes

in O, there exists a class C in G such that C:Name = C :Name = S
0
C :Name that in turn, by

Equation 7.40, generates a class SC in OM such that SC :Name = C:Name = S
0
C :Name.

If S0 is an association then by Equation 7.68 there must exist an association A in O such

that A :Name = S
0
A:Name. Then, since OMT-44 is the only rule that creates associations

in O, there exists an association A in G such that A:Name = A :Name = S
0
A:Name that in

turn, by Equation 7.49, generates an association SA in OM such that SA:Name = C:Name

= S
0
A:Name.

Therefore, since S 2 OM ) S
0
2 OM

0, OM � OM
0 and since S0 2 OM

0
) S 2 OM:,

OM
0
� OM , therefore, the set of speci�cations in OM and OM 0 are equivalent. Now I show

that each item in associated speci�cations in OM and OM 0 are equivalent.

2. Imports

i 2 S:Imports) i
0
2 S

0
:Imports. Within each speci�cation S 2 OM , there is a set of

imported speci�cations whose names are in S:Imports. In the de�nition of ', there are three
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equations that map names into S:Imports: Equations 7.41, 7.48, and 7.50. Each of these

possibilities is analyzed below.

(a) If a speci�cation name s 2 S:Imports is generated via Equation 7.41, then i represents

the datatype of an attribute and thus there exists an attribute a = ha:name;, axiom;

ii 2 C such that i is the datatype of a. If a is a normal attribute, OMT-13 generates

an attribute ha:Name; [C :Name]; [i]i 2 C :Attribute and by Equation 7.59 in !, Range-

Ident(1) = i 2 SC :Imports. If a is a derived attribute, OMT-14 generates an operation

ha:Name; [C :Name]; [i]i 2 C :Operation and by Equation 7.60 in !, Range-Ident(1) =

i 2 S
0
C :Imports.

(b) If i 2 SC :Imports is generated by Equation 7.48, then by Equation 7.48 there exists

a c 2 C:Superclass such that c = i. Then, by OMT-4, i 2 C:Superclass generates

an i in C :class-sort:inherited-class-id that in turn, by Equation 7.67, inserts i into

S
0
C :Imports.

(c) If i 2 SA:Imports is generated by Equation 7.50, then imust be the name of a connection

in A. Then by OMT-46, if i is the name of some c in A:Connection there exists

an operation o = hIMAGE; [A :Name; c:Name]; [x]i 2 A :Operation that in turn, by

Equation 7.69, places c:Range-Ident(2) = i in S0A:Imports. Therefore, if i 2 S:Imports,

i 2 S
0
:Imports.

Therefore, since for each possible source of i in S (Equations 7.41, 7.48, and 7.50), if i

was generated by that equation then i 2 S:Imports ) i 2 S
0
:Imports and S:Imports �

S
0
:Imports.

i
0
2 S

0
:Imports) i 2 S:Imports. If i0 2 S

0
:Imports, there are four possible sources {

Equations 7.59, 7.60, 7.67, or 7.69. Each is analyzed below.
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(a) If the source of i 2 S
0
:Imports is Equation 7.59, then there must be some attribute a

2 C :Attribute such that a:Range-Ident = [i] and i is not a class set or association sort.

The only transformation capable of creating such an attribute in C from G is OMT-13.

Thus by OMT-13 there must be some a in C:Attribute such that i = type(a) and by

the assumption that all attributes have de�ned datatypes i = a:datatype. Therefore, by

Equation 7.41 in transformation ', a:datatype 2 S:Imports and thus i 2 S:Imports.

(b) If the source of i 2 S
0
:Imports is Equation 7.60, then there must be some operation

o 2 C :Operation such that i 2 o:Range-Ident. The only transformation that creates

such an operation in C from G is OMT-14. (Actually, OMT-15 and OMT-90 could also

create operations in C ; however, OMT-15 creates the attr-equal operation and OMT-90

creates operations manually de�ned by the user that, by assumption, do not exist.) Thus

by OMT-14 there must be some a in C:Attribute such that i = = a:datatype and by

Equation 7.41 in ', a:datatype 2 S:Imports and thus i 2 S:Imports.

(c) If the source of i 2 S
0
:Imports is Equation 7.67 then i must be a sort in C :Class-

Sort:Inherited-Sort-Id: Since OMT-4 is the only transformation that generates sorts in

C :Class-Sort:Inherited-Sort-Id, it must be the case that i is in C:Superclass and thus,

by ' Equation 7.48, i 2 S:Imports.

(d) Finally, if the source of i 2 S
0
:Imports is Equation 7.69 then i must be o:Domain-

Ident(2) in some operation named IMAGE in A :Operation. Since OMT-46 is the only

transformation in � capable of placing an IMAGE operation in A :Operation and (OMT-

49 de�nes quali�ed operations that, by assumption, are not included in G), i must be

the name of some connection, c, in A and thus i = c:Name. Then by Equation 7.50

s:Name 2 S:Imports and thus i 2 S:Imports.

Therefore, since for each possible source of i in S0 (Equations 7.59, 7.60, 7.67, and 7.69), if

i was generated by that equation then i 2 S
0
:Imports ) i 2 S:Imports and S0:Imports �
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S:Imports. Also, since I already established that S:Imports � S
0
:Imports, it must be the

case that S:Imports = S
0
:Imports.

3. Sorts

s 2 S:Sorts) s
0
2 S

0
:Sorts. Within each speci�cation S 2 OM , there is a set of sorts

de�ned by placing their names in S:Sorts. In the de�nition of ', there are two equations that

map names from G into S:Sorts: Equations 7.40 and 7.49. Since, as shown in Item 1 above

using Equations 7.40 and 7.49, any S 2 OM with name n ) 9 S
0
2 OM

0 with name n and

by Equations 7.58 and 7.68 if n = S
0
:Name then n 2 S

0
:Sort. Therefore S:Sorts � S

0
:Sorts.

s 2 S
0
:Sorts) s 2 S:Sorts. In the de�nition of !, there are two equations that map

from C into S
0
:Sorts: Equations 7.58 and 7.68. Since, as shown in Item 1 above using

Equations 7.58 and 7.68, if S0 2 OM
0 and S0:name = n then there exists an S 2 OM with

S:name = n as well. And since S was created by either Equation 7.58 or 7.68, this implies n

2 S:Sort. Therefore S0:Sorts � S:Sorts and since S:Sorts � S
0
:Sorts, it must be true that

S:Sorts = S
0
:Sorts.

4. Operations

o 2 S:Operations) o
0
2 S

0
:Operations. If o 2 S:Operations, there are four possible

sources of o as transformed from G: Equations 7.41, 7.42, 7.48, and 7.50. Each of these

possibilities is analyzed below.

(a) If the source of o 2 S:Operations is Equation 7.41 then o = ha:Name; [C:Name];

[a:Datatype]i for some a in C:Attribute. If this a is a normal attribute, then by OMT-

13 ha:Name; [C:Name]; [a:Datatype]i 2 C :Attribute and by Equation 7.59, ha:Name;

[C :Name]; [a:Datatype]i = ha:Name; [C:Name]; [a:Datatype]i 2 S
0
:Operations.
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If, however, a is a derived attribute, then by OMT-14 ha:Name; [C:Name]; [a:Datatype]i

2 C :Operation and by Equation 7.60, ha:Name; [C :Name]; [a:Datatype]i = ha:Name;

[C:Name]; [a:Datatype]i 2 S
0
:Operations.

(b) If the source of o 2 S:Operations is Equation 7.42 then o = hHAS-PART; [C:Name;

c:Name]; [Boolean]i or o = hc:Role; [C:Name; c:Name]; [Boolean]i for some c 2

C:Connection based on whether c:Role is de�ned.

i. If c:Role is de�ned, then by OMT-5, hc:Role; [C:Name]; [c:Name-CLASS]i 2

C :Attribute and by ! Equation 7.61, hc:Role; [C :Name; c:Name]; [Boolean]i =

hc:Role; [C:Name; c:Name]; [Boolean]i = o 2 S
0
:Operations.

ii. If c:Role is not de�ned, then by OMT-5, hc:Name-OBJ; [C:Name]; [c:Name-

CLASS]i 2 C :Attribute and by ! Equation 7.61, hHAS-PART; [C :Name; c:Name];

[Boolean]i = hHAS-PART; [C:Name; c:Name]; [Boolean]i = o 2 S
0
:Operations.

(c) If the source of o 2 S:Operations is Equation 7.48 then o = hSIMULATES; [C:Name];

[c]i for some c 2 C:Superclass. Then by OMT-4, c 2 C:Superclass implies c 2 C :Class-

Sort:Inherited-Sort-Id and by Equation 7.67 in !, hSIMULATES; [C :Name]; [c]i =

hSIMULATES; [C:Name]; [c]i = o 2 S
0
:Operations.

(d) If the source of o 2 S:Operations is Equation 7.50 then o = hA:Name; dom; [Boolean]i

where dom = [c:Name j c 2 A:Connection]. By OMT-46, for each c 2 A:Connection,

there must be an operation hIMAGE; [A:Name; c:Name]; [c2:Name-CLASS]i 2

A :Operation. Then, by ! Equation 7.69, the second sort in each IMAGE operation

in A , Range-Ident(2) (which equals c:Name for some c 2 C:Connection) becomes part

of the domain, dom, of the operation hA :Name; dom; [Boolean]i = hA:Name; dom;

[Boolean]i= o 2 S
0
:Operations.
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Therefore, since for each possible source of o in S (Equations 7.41, 7.42, 7.48, and 7.50),

if o was generated by that equation then o 2 S:Operations ) o
0
2 S

0
:Operations and

S:Operations � S
0
:Operations.

o 2 S
0
:Operations) o 2 S:Operations. If o 2 S

0
:Operations, there are �ve possible

sources { Equations 7.59, 7.60, 7.61, 7.67, or 7.69. Each is analyzed below.

(a) If the source of o 2 S
0
:Operations is Equation 7.59 then there must be some attribute

a 2 C :Attribute such that a = o = ho:Name; C :Name; o:Range-Identi. The only �

transformation that could create such an attribute in C is OMT-13. Thus by OMT-13

there must be some a0 in C:Attribute such that a0:Name = o:Name and [a0:Datatype] =

o:Range-Ident. Therefore, by Equation 7.41 in transformation ', ha0:Name; [C:Name];

[a0:Datatype]i = ho:Name; [C :Name]; o:Range-Identi = o 2 S:Operations.

(b) If the source of o 2 S
0
:Operations is Equation 7.60 then o = ho:Name; [C :Name]

o:Range-Identi 2 C :Operation and o:Name 6= ATTR-EQUAL. The only transfor-

mation that creates such an operation in C from G is OMT-14. Thus by OMT-14 there

must be some a =ha:Name; [C:Name]; [a:Datatype]i in C:Attribute such that a:Name

= o:Name and a:Datatype = o:Range-Ident. Then, by Equation 7.41 in ', ha:Name;

[C:Name]; [a:Datatype]i = ho:Name; [C :Name]; o:Range-Identi = o 2 S:Operations.

(c) If the source of o 2 S0:Operations is Equation 7.61 then o = ho:Name; [C :Name; name]

[Boolean]i 2 S
0
C :Operations and, since Equation 7.61 is the only equation in ! capable

of producing such an operation, there exists an attribute a 2 C :Attribute such that

a:Range-Ident = [name-CLASS] and, by the de�nition of om-pred, a:Name = xxx-

OBJ if o:Name = HAS-PART or a:Name = o:Name if o:Name 6= HAS-PART .

Since the only transformation that can create an attribute with this signature in C from

G is OMT-5, there must exist some c 2 C:Connection such that c:Name = name and
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attr-name(c) = a:Name. This means that if o:Name = HAS-PART then c:Role is

unde�ned, otherwise c:Role = a:Name = o:Name.

Thus by Equation 7.42 in ',

hcomp-pred(c), [C:Name; c:Name]; [Boolean]i = ho:Name; [S:Name; name]; [Boolean]i

= ho:Name; [S0:Name; name]; [Boolean]i = o 2 SC :Operations. Therefore, o 2

S
0
:Operations ) o 2 S:Operations for operations in S0 generated by Equation 7.61.

(d) If the source of o 2 S0:Operations is Equation 7.67 then o = hSIMULATES; [C :Name];

[c]i and c must be a sort in C :Class-Sort:Inherited-Sort-Id: Since OMT-4 is the only

transformation that generates sorts in C :Class-Sort:Inherited-Sort-Id, it must be the

case that c is in C:Superclass and thus, by ' Equation 7.48, hSIMULATES; [C:Name];

[c]i = hSIMULATES; [C :Name]; [c]i = o 2 S:Operations.

(e) Finally, if the source of o 2 S
0
:Operations is Equation 7.69 then o = h[A :Name]; dom;

[Boolean]i where each sort name, s 2 dom, must be o:Domain-Ident(2) in some oper-

ation named IMAGE in A :Operation. Since OMT-46 is the only transformation in �

capable of placing an IMAGE operation in A :Operation and (OMT-49 de�nes quali�ed

operations that, by assumption, are not included in G), s must be the name of some

connection, c, in A and thus s = c:Name. Then by Equation 7.50, h[A:Name]; dom;

[Boolean]i = h[A :Name]; dom; [Boolean]i = o 2 S:Operations.

Therefore, since for each possible source of o in S
0 (Equations 7.59, 7.60, 7.61, 7.67, and

7.50), if o was generated by that equation then o 2 S
0
:Operations ) o 2 S:Operations

and S0:Operations � S:Operations. Also, since I already established that S:Operations �

S
0
:Operations, it must be the case that S:Operations = S

0
:Operations.

5. Axioms

Initially, the number of transformations equations in ' (7.43, 7.44, 7.45, 7.46, 7.47, 7.51,

7.52, 7.53, 7.54, and 7.55) along with the number of transformations equations in ! ( 7.62,
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7.63, 7.64, 7.65, 7.66, 7.70, 7.71, 7.72, 7.73, and 7.74) make it appear though proving that

the axioms generated by one equation are unique and can only be transformed into an exact

duplicate might be exhausting if not impossible; however, by making a few observations the

proof can be dramatically simpli�ed.

First, note that the axioms generated by classes by equations 7.43{ 7.47 and 7.62 { 7.66 are

unique from those generated for associations by equations 7.51 { 7.55 and 7.70 { 7.74. All

class axioms are based on a predicate in the class whose name is determined by the functions

comp-pred or om-pred. The resulting predicate name is either HAS-PART or the role name

of the component class. However, in an association, the name of the predicate is the name

of the association. Therefore, assuming unique names in the object model, ' and ! generate

unique axioms in SC and SA.

Second, note that inside a given class or association, the axioms generated by separate rules

are unique with a few minor, non-critical exceptions. For example, in the set of equations

7.43{ 7.47, Equation 7.43 generates the axiom

\X 2 c:Name) SIZE(fY j comp-pred(c)(X;Y )g) = 1"

that may also be generated by Equation 7.47. This is because the same OMT notation can be

represented in two ways in the generic OMT abstract syntax tree. This is not a problem since

both representations result in the same axioms being generated. Also, the axiom generated

by Equation 7.44 may also be generated by Equation 7.45 while the axiom generated by

Equation 7.46 may also be generated by Equation 7.47. In both these cases, there are two

distinct methods of representing the same semantics in the OMT object model; however, both

representations generate the exact same axiom. Since I am only concerned about preserving

the semantics of the object model, the internal representation in the generic OMT AST is of

no importance as long as the semantics are equivalent.
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I �rst look at an axiom a in a class SC followed by axioms in an association SA.

Aggregate Axioms.

a 2 S:Axioms) a
0
2 S

0
:Axioms. Since a is in a class, it must have been generated by

one of the Equations 7.43 { 7.47. Each possibility is discussed below.

(a) If a in SC :Axioms is of the form generated by Equation 7.43 such that

a =\X 2 s) SIZE(fY j p(X; Y )g) = 1"

then there exists a c 2 C:Connection such that (1) by Equation 7.43, c:Mult = One,

c:Name = s, and if p = HAS-PART then c:Role = undefined else c:Role = p, or (2)

by Equation 7.47 c:Mult = Specified, c:Name = s, if p = HAS-PART then c:Role =

undefined else c:Role = p, and c:Specified = fh1; undefinedig.

i. If c:Mult = One, then by OMT-8 there exists an axiom ax1 2 C :Axiom such that

ax1 =\SIZE(IMAGE(attr-name(c)(X); Q)) = 1"

where attr-name(c) = c:Role (if de�ned) or c:Name-CLASS.

ii. If c:Mult = Specified, then by OMT-12 there exists an axiom ax2 2 C :Axiom such

that

ax2 =\SIZE(IMAGE(attr-name(c)(X); Q)) = s:value1"

Thus it is obvious that ax1 = ax2 = ax 2 C :Axiom. From here, there are two paths to

S
0
C , via Equation 7.62 or 7.66.

i. Given ax, by Equation 7.62 there exists an axiom a
0
1 2 S

0
C :Axioms such that

a
0

1 =\X 2 sort-of(attr-name(c))

) SIZE(fY j om-pred(attr-name(c))(X; Y )g) = 1"

where if c:Role was de�ned then sort-of(attr-name(c)) = sort-of(c:Role) = c:Name

= s (by OMT-5) and om-pred(attr-name(c)) = om-pred(c:Role) = c:Role = p, or

if c:Role was not de�ned then sort-of(attr-name(c)) = sort-of(c:Name-OBJ) =
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c:Name = s (by OMT-5) and om-pred(attr-name(c)) = om-pred(c:Name-OBJ) =

HAS-PART = p. Thus a = a
0
1.

ii. Given ax, by Equation 7.66 there exists an axioms a02 2 S
0
C :Axioms such that

a
0

2 =\X 2 sort-of(attr-name(c))

) SIZE(fY j om-pred(attr-name(c))(X; Y )g) = s:value1"

where s:value1 = 1, and if c:Role was de�ned, sort-of(attr-name(c)) = sort-

of(c:Role) = c:Name = s (by OMT-5) and om-pred(attr-name(c)) = om-

pred(c:Role) = c:Role = p, or if c:Role was not de�ned then sort-of(attr-name(c))

= sort-of(c:Name-OBJ) = c:Name = s (by OMT-5) and om-pred(attr-name(c))

= om-pred(c:Name-OBJ) = HAS-PART = p. Thus a = a
0
2.

Again it is clear that a01 = a
0
2 = a and thus any axiom in SC generated by Equation 7.43

(or by Equation 7.47 in the form of Equation 7.43) also exists in S0C .

(b) If a in SC :Axioms is of the form generated by Equation 7.44 such that

a =\X 2 s) SIZE(fY j p(X; Y )g) � 0"

then there exists a c 2 C:Connection such that (1) by Equation 7.44, c:Mult = Many,

c:Name = s, and if p = HAS-PART then c:Role = undefined else c:Role = p, or

(2) by Equation 7.45, c:Mult = P lus, c:Name = s, if p = HAS-PART then c:Role =

undefined else c:Role = p, and c:P lus:Integer = 0.

i. If c:Mult =Many, then by OMT-9 there exists an axiom ax1 2 C :Axiom such that

ax1 =\SIZE(IMAGE(attr-name(c)(X); Q)) � 0"

where attr-name(c) = c:Role (if de�ned) or c:Name-CLASS.

ii. If c:Mult = P lus, then by OMT-10 there exists an axiom ax2 2 C :Axiom such that

ax2 =\SIZE(IMAGE(attr-name(c)(X); Q)) � c:P lus:Integer"

Thus it is obvious that ax1 = ax2 = ax 2 C :Axiom. Then by Equation 7.63 there exists

an axiom a
0
1 2 S

0
C :Axioms such that
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a
0

1 =\X 2 sort-of(attr-name(c))

) SIZE(fY j om-pred(attr-name(c))(X; Y )g) � 0"

where if c:Role was de�ned then sort-of(attr-name(c)) = sort-of(c:Role) = c:Name =

s (by OMT-5) and om-pred(attr-name(c)) = om-pred(c:Role) = c:Role = p, or if c:Role

was not de�ned then sort-of(attr-name(c)) = sort-of(c:Name-OBJ) = c:Name = s

(by OMT-5) and om-pred(attr-name(c)) = om-pred(c:Name-OBJ) = HAS-PART =

p. Thus a = a
0
1.

Again it is clear that a01 = a
0
2 = a and thus any axiom in SC generated by Equation 7.44

(or by Equation 7.45 in the same form) also exists in S0C .

(c) If a in SC :Axioms is of the form generated by Equation 7.45 such that

a =\X 2 s) SIZE(fY j p(X; Y )g) � x"

then by Equation 7.45 there exists a c 2 C:Connection such that c:Mult = P lus, c:Name

= s, if p = HAS-PART then c:Role = undefined else c:Role = p, c:P lus:Integer = x.

(Note: If x = 0 then a is of the form generated by Equation 7.44 that was previously

shown to be in OM 0; therefore, in this section of the proof, I assume x > 0.)

Then by OMT-10 there exists an axiom ax 2 C :Axiom of the form

ax =\SIZE(IMAGE(attr-name(c)(X); Q)) � c:P lus:Integer"

and by Equation 7.64 there exists an axiom a
0
2 S

0
C :Axioms such that

a
0
=\X 2 sort-of(attr-name(c))

) SIZE(fY j om-pred(attr-name(c))(X; Y )g) � c:P lus:Integer"

where c:P lus:Integer = x, if c:Role was de�ned, sort-of(attr-name(c)) = sort-

of(c:Role) = c:Name= s (by OMT-5) and om-pred(attr-name(c))= om-pred(c:Role) =

c:Role = p, or if c:Role was not de�ned then sort-of(attr-name(c)) = sort-of(c:Name-

OBJ) = c:Name = s (by OMT-5) and om-pred(attr-name(c)) = om-pred(c:Name-
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OBJ) = HAS-PART = p. Thus a = a
0 and thus any axiom in SC generated by

Equation 7.45 also exists in S0C .

(d) If a in SC :Axioms is of the form generated by Equation 7.46 such that

a =\X 2 s) (SIZE(fY j p(X;Y )g) = 0 _ SIZE(fY j p(X; Y )g) = 1)"

then there exists a c 2 C:Connection such that (1) by Equation 7.46, c:Mult = Optional,

c:Name = s, and if p = HAS-PART then c:Role = undefined else c:Role = p, or (2)

by Equation 7.47, c:Mult = Specified, c:Name = s, if p = HAS-PART then c:Role =

undefined else c:Role = p, and c:Specified = fsr1; sr2g, sr1 = h0; undefinedi, and sr2

= h1; undefinedi.

i. If c:Mult = Optional, then by OMT-11 there exists an axiom ax1 2 C :Axiom such

that

ax2 =\SIZE(IMAGE(attr-name(c)(X); Q)) = 0

_ SIZE(IMAGE(attr-name(c)(X); Q)) = 1"

where attr-name(c) = c:Role (if de�ned) or c:Name-CLASS.

ii. If c:Mult = Specified, then by OMT-12 there exists an axiom ax2 2 C :Axiom such

that

ax2 =\SIZE(IMAGE(attr-name(c)(X); Q)) = sr1:value1

_ SIZE(IMAGE(attr-name(c)(X); Q)) = sr2:value2"

where s:value1 = 0 and s:value2 = 1.

Thus it is obvious that ax1 = ax2 = ax 2 C :Axiom. From here, there are two paths to

S
0
C , via Equation 7.65 or 7.66.

i. Given ax, by Equation 7.65 there exists an axiom a
0
1 2 S

0
C :Axioms such that
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a
0

1 =\X 2 sort-of(attr-name(c))

) (SIZE(fY j om-pred(attr-name(c))(X; Y )g) = 0

_ SIZE(fY j om-pred(attr-name(c))(X; Y )g) = 1)"

where if c:Role was de�ned then sort-of(attr-name(c)) = sort-of(c:Role) = c:Name

= s (by OMT-5) and om-pred(attr-name(c)) = om-pred(c:Role) = c:Role = p, or

if c:Role was not de�ned then sort-of(attr-name(c)) = sort-of(c:Name-OBJ) =

c:Name = s (by OMT-5) and om-pred(attr-name(c)) = om-pred(c:Name-OBJ) =

HAS-PART = p. Thus a = a
0
1.

ii. Given ax, by Equation 7.66 there exists an axioms a02 2 S
0
C :Axioms such that

a
0

2 =\X 2 sort-of(attr-name(c))

) (SIZE(fY j om-pred(attr-name(c))(X; Y )g) = s:value1

_ SIZE(fY j om-pred(attr-name(c))(X; Y )g) = s:value2)"

where s:value1 = 0, s:value2 = 1, and if c:Role was de�ned, sort-of(attr-name(c))

= sort-of(c:Role) = c:Name = s (by OMT-5) and om-pred(attr-name(c)) = om-

pred(c:Role) = c:Role = p, or if c:Role was not de�ned then sort-of(attr-name(c))

= sort-of(c:Name-OBJ) = c:Name = s (by OMT-5) and om-pred(attr-name(c))

= om-pred(c:Name-OBJ) = HAS-PART = p. Thus a = a
0
2.

Again it is clear that a01 = a
0
2 = a and thus any axiom in SC generated by Equation 7.46

also exists in S0C .

(e) If a 2 SC :Axioms consists of the logical disjunction of n subaxioms of either of two

forms

\X 2 s) SIZE(fY j p(X; Y )g) = v1"

or

\X 2 s) (SIZE(fY j p(X; Y )g) � v1 _ SIZE(fY j p(X;Y )g) � v2)"
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and assuming a is not of the form generated by Equations 7.43 or 7.46, then by Equa-

tion 7.47 there exists c 2 C:Connection such that c:Mult = Specified, c:Name = s,

and c:Role = p if p 6= HAS-PART .

Then for each subaxiom a1:::an in a, there exists some s 2 c:Specified (where s is of

type SPEC-RANGE) such that s:value1 = v1 and s:value2 = v2.

Then by OMT-12 there exists an axiom ax 2 C :Axiom where ax is the logical disjunction

of the set of subaxioms generated for each si 2 c:Specified such that

si =\SIZE(attr-name(c)(X)) = s:value1"

or

si =\(SIZE(attr-name(c)(X)) � s:value1

_ SIZE(attr-name(c)(X)) � s:value2)"

where attr-name(c) = c:Role, if de�ned, or c:Name otherwise.

Then by Equation 7.66 there exists an a0 in S0C :Axioms such that for each subaxiom of

ax of one of the forms given above for si there exists a subaxiom in a0 of the form

\X 2 sort-of(attr-name(c))

) SIZE(fY j om-pred(attr-name(c))(X; Y )g) = s:value1"

or

\X 2 sort-of(attr-name(c)) ) (SIZE(fY j om-pred(attr-name(c))(X; Y )g) � s:value1

_ SIZE(fY j om-pred(attr-name(c))(X; Y )g) � s:value2)"

where if c:Role is de�ned then sort-of(attr-name(c)) = sort-of(c:Role) = c:Name =

s and om-pred(attr-name(c)) = om-pred(c:Role) = c:Role = p. And, if c:Role is not

de�ned, then sort-of(attr-name(c)) = sort-of(c:Name-OBJ) = c:Name = s and om-

pred(attr-name(c)) = om-pred(c:Name-OBJ) = HAS-PART = p. Therefore, each

subaxiom in a0 2 S
0
C :Axioms is of the form

\X 2 s) SIZE(fY j p(X; Y )g) = v1"
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or

\X 2 s) (SIZE(fY j p(X; Y )g) � v1 _ SIZE(fY j p(X;Y )g) � v2)"

and thus for each subaxiom in a there exists an equivalent subaxiom in a0 and thus a =

a
0.

Therefore, since for each type of axiom in SC :Axioms there is an equivalent axiom in

S
0
C :Axiom then SC :Axioms � S

0
C :Axioms.

a 2 S
0
:Axioms) a 2 S:Axioms. The six possible sources of axioms in S0C are analyzed

below.

(a) If a in S0C :Axioms is of the form generated by Equation 7.62 such that

a =\X 2 s) SIZE(fY j p(X; Y )g) = 1"

then there exists an axiom, ax 2 C :Axiom of the form

ax =\SIZE(IMAGE(n(X);Q)) = 1"

generated by either Equation 7.62 or 7.66 where sort-of(n) = s and om-pred(n) = p.

Given ax, there are two paths from C, OMT-8 or OMT-12.

i. If ax is generated by OMT-8 then

A. If c:Role is de�ned then there exists a c 2 C:Connection such that

c:Mult = ONE

n = attr-name(c) = c:Role

s = sort-of(n) = sort-(c:Role) = c:Name

p = om-pred(n) = om-pred(c:Role) = c:Role

comp-pred(c) = c:Role = p

Thus by Equation 7.43 there exists an axiom a
0
1 2 SC :Axiom such that

a
0

1 = \X 2 c:Name) SIZE(fY j comp-pred(c)(X; Y )g) = 1"

= \X 2 s) SIZE(fY j p(X; Y )g) = 1"

B. If c:Role is not de�ned then there exists a c 2 C:Connection such that

F-16



c:Mult = ONE

n = attr-name(c) = c:Name �OBJ

s = sort-of(n) = sort-(c:Name-OBJ) = c:Name

p = om-pred(n) = om-pred(c:Name-OBJ) = HAS-PART

comp-pred(c) = HAS-PART = p

Thus by Equation 7.43 there exists an axiom a
0
2 2 SC :Axiom such that

a
0

2 = \X 2 c:Name) SIZE(fY j comp-pred(c)(X; Y )g) = 1"

= \X 2 s) SIZE(fY j p(X; Y )g) = 1"

Thus a01 = a
0
2 2 SC :Axioms = a 2 S

0
C :Axioms.

ii. If ax is generated by OMT-12

A. If c:Role is de�ned then there exists a c 2 C:Connection such that

c:Mult = Specified

c:Mult = fh1; undefinedig

n = attr-name(c) = c:Role

s = sort-of(n) = sort-(c:Role) = c:Name

p = om-pred(n) = om-pred(c:Role) = c:Role

comp-pred(c) = c:Role = p

Thus by Equation 7.47 there exists an axiom a
0
1 2 SC :Axiom such that

a
0

1 = \X 2 c:Name) SIZE(fY j comp-pred(c)(X;Y )g) = x:value1"

= \X 2 s) SIZE(fY j p(X; Y )g) = 1"

B. If c:Role is not de�ned then there exists a c 2 C:Connection such that

c:Mult = Specified

c:Mult = fh1; undefinedig

n = attr-name(c) = c:Name �OBJ

s = sort-of(n) = sort-(c:Name-OBJ) = c:Name

p = om-pred(n) = om-pred(c:Name-OBJ) = HAS-PART

comp-pred(c) = HAS-PART = p

Thus by Equation 7.47 there exists an axiom a
0
2 2 SC :Axiom such that
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a
0

2 = \X 2 c:Name) SIZE(fY j comp-pred(c)(X;Y )g) = x:value1"

= \X 2 s) SIZE(fY j p(X; Y )g) = 1"

Thus a01 = a
0
2 2 SC :Axioms = a 2 S

0
C :Axioms.

Again it is clear that a1 = a2 = a and thus any axiom in S0C generated by Equation 7.62

also exists in SC .

(b) If a in S0C :Axioms is of the form generated by Equation 7.63 such that

a =\X 2 s) SIZE(fY j p(X; Y )g) � 0"

then there exists an axiom, ax 2 C :Axiom of the form

ax =\SIZE(IMAGE(n(X); Q)) � 0"

generated by Equation 7.63 where sort-of(n) = s and om-pred(n) = p.

Given ax, there are two paths from C, OMT-9 or OMT-10.

i. If ax is generated by OMT-9 then

A. If c:Role is de�ned then there exists a c 2 C:Connection such that

c:Mult =Many

n = attr-name(c) = c:Role

s = sort-of(n) = sort-(c:Role) = c:Name

p = om-pred(n) = om-pred(c:Role) = c:Role

comp-pred(c) = c:Role = p

Thus by Equation 7.44 there exists an axiom a
0
1 2 SC :Axiom such that

a
0

1 = \X 2 c:Name) SIZE(fY j comp-pred(c)(X; Y )g) � 0"

= \X 2 s) SIZE(fY j p(X; Y )g) � 0"

B. If c:Role is not de�ned then there exists a c 2 C:Connection such that
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c:Mult =Many

n = attr-name(c) = c:Name �OBJ

s = sort-of(n) = sort-(c:Name-OBJ) = c:Name

p = om-pred(n) = om-pred(c:Name-OBJ) = HAS-PART

comp-pred(c) = HAS-PART = p

Thus by Equation 7.44 there exists an axiom a
0
2 2 SC :Axiom such that

a
0

2 = \X 2 c:Name) SIZE(fY j comp-pred(c)(X; Y )g) � 0"

= \X 2 s) SIZE(fY j p(X; Y )g) � 0"

Thus a01 = a
0
2 2 SC :Axioms = a 2 S

0
C :Axioms.

ii. If ax is generated by OMT-10

A. If c:Role is de�ned then there exists a c 2 C:Connection such that

c:Mult = Plus

c:P lus:integer = 0

n = attr-name(c) = c:Role

s = sort-of(n) = sort-(c:Role) = c:Name

p = om-pred(n) = om-pred(c:Role) = c:Role

comp-pred(c) = c:Role = p

Thus by Equation 7.45 there exists an axiom a
0
1 2 SC :Axiom such that

a
0

1 = \X 2 c:Name) SIZE(fY j comp-pred(c)(X; Y )g) � x:P lus:integer"

= \X 2 s) SIZE(fY j p(X; Y )g) � 0"

B. If c:Role is not de�ned then there exists a c 2 C:Connection such that

c:Mult = Plus

c:P lus:integer = 0

n = attr-name(c) = c:Name �OBJ

s = sort-of(n) = sort-(c:Name-OBJ) = c:Name

p = om-pred(n) = om-pred(c:Name-OBJ) = HAS-PART

comp-pred(c) = HAS-PART = p

Thus by Equation 7.45 there exists an axiom a
0
2 2 SC :Axiom such that
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a
0

2 = \X 2 c:Name) SIZE(fY j comp-pred(c)(X;Y )g) � c:P lus:integer"

= \X 2 s) SIZE(fY j p(X;Y )g) � 0"

Thus a01 = a
0
2 2 SC :Axioms = a 2 S

0
C :Axioms.

Therefore, it is clear that a1 = a2 = a and thus any axiom in S0C generated by Equa-

tion 7.62 also exists in SC .

(c) If a in S0C :Axioms is of the form generated by Equation 7.64 (assuming x > 0) such that

a =\X 2 s) SIZE(fY j p(X; Y )g) > x"

then there exists an axiom, ax 2 C :Axiom of the form

ax =\SIZE(IMAGE(n(X);Q)) > x"

generated by either Equation 7.64 where sort-of(n) = s and om-pred(n) = p.

Given ax, by OMT-10 there exists a c 2 C:Connection such that

i. If c:Role is de�ned then

c:Mult = Plus

c:P lus:integer = x

n = attr-name(c) = c:Role

s = sort-of(n) = sort-(c:Role) = c:Name

p = om-pred(n) = om-pred(c:Role) = c:Role

comp-pred(c) = c:Role = p

Thus by Equation 7.45 there exists an axiom a
0
1 2 SC :Axiom such that

a
0

1 = \X 2 c:Name) SIZE(fY j comp-pred(c)(X;Y )g) � c:P lus:integer"

= \X 2 s) SIZE(fY j p(X;Y )g) � x"

ii. If c:Role is not de�ned then
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c:Mult = PLUS

c:P lus:integer = x

n = attr-name(c) = c:Name�OBJ

s = sort-of(n) = sort-(c:Name-OBJ) = c:Name

p = om-pred(n) = om-pred(c:Name-OBJ) = HAS-PART

comp-pred(c) = HAS-PART = p

Thus by Equation 7.45 there exists an axiom a
0
2 2 SC :Axiom such that

a
0

2 = \X 2 c:Name) SIZE(fY j comp-pred(c)(X;Y )g) � c:P lus:integer"

= \X 2 s) SIZE(fY j p(X;Y )g) � x"

Thus a01 = a
0
2 2 SC :Axioms = a 2 S

0
C :Axioms.

Again it is clear that a1 = a2 = a and thus any axiom in S0C generated by Equation 7.64

also exists in SC .

(d) If a in S0C :Axioms is of the form generated by Equation 7.65 such that

a =\X 2 s) (SIZE(fY j p(X; Y )g) = 0 _ SIZE(fY j p(X; Y )g) = 1)"

then there exists an axiom, ax 2 C :Axiom of the form

ax =\SIZE(IMAGE(n(X); Q)) = 0 _ SIZE(IMAGE(n(X); Q)) = 1"

generated by either Equation 7.65 or 7.66 where sort-of(n) = s and om-pred(n) = p.

Given ax, there are two paths from C, OMT-11 or OMT-12.

i. If ax is generated by OMT-11 then

A. If c:Role is de�ned then there exists a c 2 C:Connection such that

c:Mult = Optional

n = attr-name(c) = c:Role

s = sort-of(n) = sort-(c:Role) = c:Name

p = om-pred(n) = om-pred(c:Role) = c:Role

comp-pred(c) = c:Role = p

Thus by Equation 7.46 there exists an axiom a
0
1 2 SC :Axiom such that
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a
0

1 = \X 2 c:Name) (SIZE(fY j comp-pred(c)(X; Y )g) = 0

_ SIZE(fY j comp-pred(c)(X;Y )g) = 1)"

= \X 2 s) (SIZE(fY j p(X; Y )g) = 0 _ SIZE(fY j p(X; Y )g) = 1)"

B. If c:Role is not de�ned then there exists a c 2 C:Connection such that

c:Mult = Specified

n = attr-name(c) = c:Name �OBJ

s = sort-of(n) = sort-(c:Name-OBJ) = c:Name

p = om-pred(n) = om-pred(c:Name-OBJ) = HAS-PART

comp-pred(c) = HAS-PART = p

Thus by Equation 7.46 there exists an axiom a
0
2 2 SC :Axiom such that

a
0

2 = \X 2 c:Name) SIZE(fY j comp-pred(c)(X; Y )g) = 1"

= \X 2 s) SIZE(fY j p(X; Y )g) = 1"

Thus a01 = a
0
2 2 SC :Axioms = a 2 S

0
C :Axioms.

ii. If ax is generated by OMT-12

A. If c:Role is de�ned then there exists a c 2 C:Connection such that

c:Mult = Specified

c:Mult = fh0; undefinedi; h1; undefinedig

n = attr-name(c) = c:Role

s = sort-of(n) = sort-(c:Role) = c:Name

p = om-pred(n) = om-pred(c:Role) = c:Role

comp-pred(c) = c:Role = p

Thus by Equation 7.47 there exists an axiom a
0
1 2 SC :Axiom such that

a
0

1 = \X 2 c:Name) SIZE(fY j comp-pred(c)(X;Y )g) = x:value1"

= \X 2 s) SIZE(fY j p(X; Y )g) = 1"

B. If c:Role is not de�ned then there exists a c 2 C:Connection such that
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c:Mult = Specified

c:Mult = fh0; undefinedi; h1; undefinedig

n = attr-name(c) = c:Name �OBJ

s = sort-of(n) = sort-(c:Name-OBJ) = c:Name

p = om-pred(n) = om-pred(c:Name-OBJ) = HAS-PART

comp-pred(c) = HAS-PART = p

Thus by Equation 7.47 there exists an axiom a
0
2 2 SC :Axiom such that

a
0

1 = \X 2 c:Name) SIZE(fY j comp-pred(c)(X;Y )g) = x:value1"

= \X 2 s) SIZE(fY j p(X; Y )g) = 1"

Thus a01 = a
0
2 2 SC :Axioms = a 2 S

0
C :Axioms.

Again it is clear that a1 = a2 = a and thus any axiom in S0C generated by Equation 7.65

also exists in SC .

(e) If a0 in S
0
C :Axioms is of the form generated by Equation 7.66 such that it consists of

the logical disjunction of n subaxioms of either of two forms

\X 2 s) SIZE(fY j p(X; Y )g) = v1"

or

\X 2 s) (SIZE(fY j p(X; Y )g) � v1 _ SIZE(fY j p(X;Y )g) � v2)"

and assuming a0 is not of the form generated by Equations 7.62 or 7.65, then by Equa-

tion 7.66, there exists an axiom ax in C :Axiom where ax is the logical disjunction of

the set of subaxioms generated for each si in a
0 such that

si =\SIZE(n(X)) = v1"

or

si =\(SIZE(n(X)) � v1 _ SIZE(n(X)) � v2)"

where s = sort-of(n) and p = om-pred(c). Then by OMT-12 there exists a c 2

C:Connection such that c:Mult = Specified, there exists some hv1; v2i 2 c:Specified

(v2 may be unde�ned) for each si in ax, and the attr-name(c) = n.
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i. By the de�nition of the function om-pred in Equation 7.75, if p = om-pred(c) =

HAS-PARTS then c:Role is unde�ned and

n = attr-name(c) = c:Name�OBJ

s = sort-of(n) = sort-of(c:Name-OBJ) = c:Name

p = om-pred(n) = om-pred(c:Name-OBJ) = HAS-PART

comp-pred(c) = HAS-PART = p

ii. By the de�nition of the function om-pred in Equation 7.75, if p = om-pred(c) 6=

HAS-PARTS then c:Role is de�ned and

n = attr-name(c) = c:Role

s = sort-of(n) = sort-of(c:Role) = c:Name

p = om-pred(n) = om-pred(c:Role) = c:Role

comp-pred(c) = c:Role = p

Then by Equation 7.47 there exists an a in SC :Axioms such that for each spec-range 2

c:Specified there exists a subaxiom in a of the form

\X 2 sort-of(attr-name(c))

) SIZE(fY j om-pred(attr-name(c))(X; Y )g) = s:value1"

or

\X 2 sort-of(attr-name(c)) ) (SIZE(fY j om-pred(attr-name(c))(X; Y )g) � s:value1

_ SIZE(fY j om-pred(attr-name(c))(X; Y )g) � s:value2)"

where if c:Role is de�ned then sort-of(attr-name(c)) = sort-of(c:Role) = c:Name =

s and om-pred(attr-name(c)) = om-pred(c:Role) = c:Role = p. And, if c:Role is not

de�ned, then sort-of(attr-name(c)) = sort-of(c:Name-OBJ) = c:Name = s and om-

pred(attr-name(c)) = om-pred(c:Name-OBJ) = HAS-PART = p. Therefore, each

subaxiom in a 2 SC :Axioms is of the form

\X 2 s) SIZE(fY j p(X; Y )g) = v1"

or
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\X 2 s) (SIZE(fY j p(X; Y )g) � v1 _ SIZE(fY j p(X;Y )g) � v2)"

and thus for each subaxiom in a0 there exists an equivalent subaxiom in a and thus a =

a
0.

Therefore, since for each type of axiom in S
0
C :Axioms there is an equivalent axiom

in SC :Axiom then S
0
C :Axioms � SC :Axioms, and, since I have previously shown that

SC :Axioms � S
0
C :Axioms, it is clear that SC :Axioms = S

0
C :Axioms

Association Axioms. Since a is in an association speci�cation, it must have been

generated by one of the Equations 7.51 { 7.55. Each possibility is discussed below.

(a) If a in SA:Axioms is of the form generated by Equation 7.51 such that

a =\X 2 s) SIZE(fY j SA:Name(X; Y )g) = 1"

then there exists a c 2 C:Connection such that (1) by Equation 7.51, c:Mult = One and

c:Name = s , or (2) by Equation 7.55 c:Mult = Specified, c:Name = s, c:Specified =

fsrg, and sr =h1; undefinedi.

i. If c:Mult = One, then by OMT-50 there exists an axiom ax1 2 C :Axiom such that

ax1 =\X 2 c:Name) SIZE(IMAGE(A;X)) = 1"

ii. If c:Mult = Specified, then by OMT-54 there exists an axiom ax2 2 C :Axiom such

that

ax1 =\X 2 c:Name) SIZE(IMAGE(A;X)) = sr:value1"

Thus, since sr:value1 = 1, ax1 = ax2 = ax 2 C :Axiom, then by Equation 7.70 there

exists an axiom a
0
2 S

0
A:Axioms such that

a
0
=\X 2 c:Name) SIZE(fY j S0

A:Name(X; Y )g) = 1"

Thus a = a
0 since c:Name = s and SA:Name = S

0
A:Name; therefore any axiom in SA

generated by Equation 7.51 (or by Equation 7.55 in the form of Equation 7.51) also

exists in S0A.
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(b) If a in SA:Axioms is of the form generated by Equation 7.52 such that

a =\X 2 s) SIZE(fY j SA:Name(X; Y )g) � 0"

then there exists a c 2 C:Connection such that (1) by Equation 7.52, c:Mult =

Many and c:Name = s, or (2) by Equation 7.53, c:Mult = P lus, c:Name = s, and

c:P lus:Integer = 0.

i. If c:Mult = Many, then by OMT-51 there exists an axiom ax1 2 C :Axiom such

that

ax1 =\X 2 c:Name) SIZE(IMAGE(A;X)) � 0"

where attr-name(c) = c:Role (if de�ned) or c:Name-CLASS.

ii. If c:Mult = P lus, then by OMT-52 there exists an axiom ax2 2 C :Axiom such that

ax1 =\X 2 c:Name) SIZE(IMAGE(A;X)) � c:P lus:integer"

Thus, since c:P lus:Integer = 0, it is obvious that ax1 = ax2 = ax 2 C :Axiom. Then

by Equation 7.71 there exists an axiom a
0
2 S

0
A:Axioms such that

a
0

=\X 2 c:Name) SIZE(fY j S0

A:Name(X; Y )g) � c:P lus:integer"

and since c:Name = s and SA:Name = S
0
A:Name, a = a

0 and any axiom in SA generated

by Equation 7.52 (or by Equation 7.53 in the same form) also exists in S0A.

(c) If a in SA:Axioms is of the form generated by Equation 7.53 such that

a =\X 2 s) SIZE(fY j SA:Name(X; Y )g) � x"

then by Equation 7.53 there exists a c 2 C:Connection such that c:Mult = P lus, c:Name

= s, and c:P lus:Integer = x. (Note: If x = 0 then a is of the form generated by

Equation 7.52 that was previously shown to be in OM 0; therefore, in this section of the

proof, I assume x > 0.)

Then by OMT-52 there exists an axiom ax 2 C :Axiom of the form

ax =\X 2 c:Name) SIZE(IMAGE(A;X) � c:P lus:Integer"

and thus by Equation 7.72 there exists an axiom a
0
2 S

0
A:Axioms such that
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a
0
=\X 2 c:Name) SIZE(fY j S0

A:Name(X; Y )g) � c:P lus:Integer"

and since c:Name = s, c:P lus:Integer = x, and SA:Name = S
0
A:Name, it must be true

that a = a
0 and thus any axiom in SA generated by Equation 7.53 also exists in S0A.

(d) If a in SA:Axioms is of the form generated by Equation 7.54 such that

a =\X 2 s) (SIZE(fY j SA:Name(X; Y )g) = 0

_ SIZE(fY j SA:Name(X; Y )g) = 1)"

then there exists a c 2 C:Connection such that (1) by Equation 7.54, c:Mult = Optional

and c:Name = s, or (2) by Equation 7.55, c:Mult = Specified, c:Name = s, c:Specified

= fsr1; sr2g, sr1 = h0; undefinedi, and sr2 = h1; undefinedi.

i. If c:Mult = Optional, then by OMT-53 there exists an axiom ax1 2 C :Axiom such

that

ax1 =\X 2 c:Name) (SIZE(IMAGE(A;X) = 0

_ SIZE(IMAGE(A;X) = 1)"

ii. If c:Mult = Specified, then by OMT-54 there exists an axiom ax2 2 C :Axiom such

that

ax1 =\X 2 c:Name) (SIZE(IMAGE(A;X) = sr1:value1

_ SIZE(IMAGE(A;X) = sr2:value1)"

Thus it is obvious that ax1 = ax2 = ax 2 C :Axiom and by Equation 7.73 there exists

an axiom a
0
2 S

0
A:Axioms such that

a
0
=\X 2 c:Name) (SIZE(fY j S0

A:Name(X; Y )g) = 0

_ SIZE(fY j S0

A:Name(X; Y )g) = 1)"

and since c:Name = s and S0AName = SA:Name, a = a
0.

Again it is clear that a01 = a
0
2 = a and thus any axiom in SA generated by Equation 7.54

also exists in S0A.
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(e) If a 2 SA:Axioms is of the form generated by Equation 7.55 such that a consists of the

logical disjunction of n subaxioms of either of two forms

\X 2 s) SIZE(fY j pred(X; Y )g) = v1"

or

\X 2 s) (SIZE(fY j pred(X; Y )g) � v1 ^ SIZE(fY j p(X; Y )g) � v2)"

and assuming a is not of the form generated by Equations 7.51 or 7.54, then by Equa-

tion 7.55 there exists c 2 C:Connection such that c:Mult = Specified, c:Name = s,

and pred = SA:Name.

Then for each subaxiom a1:::an in a, there exists some s 2 c:Specified (where s is of type

SPEC-RANGE) such that s:value1 = v1 and s:value2 = v2 (v2 may be unde�ned).

Then by OMT-54 there exists an axiom ax 2 C :Axiom such that ax is the logical

disjunction of the set of subaxioms generated for each si 2 c:Specified such that

si =\X 2 c:Name) SIZE(IMAGE(A;X)) = s:value1"

or

si =\X 2 c:Name) (SIZE(IMAGE(A;X)) � s:value1

^ SIZE(IMAGE(A;X)) � s:value2)"

Then by Equation 7.74 there exists an a0 in S0A:Axioms such that for each subaxiom of

ax of one of the forms given above for si there exists a subaxiom in a0 of the form

\X 2 c:Name) SIZE(fY j S0

A:Name(X; Y )g) = s:value1"

or

\X 2 c:Name) (SIZE(fY j S0

A:Name(X; Y )g) � s:value1

^ SIZE(fY j S0

A:Name(X; Y )g) � s:value2)"

where c:Name = s and S
0
A:Name = SA:Name. Therefore, each subaxiom in a

0
2

S
0
A:Axioms is of the form

\X 2 s) SIZE(fY j pred(X; Y )g) = v1"
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or

\X 2 s) (SIZE(fY j pred(X; Y )g) � v1 _ SIZE(fY j pred(X;Y )g) � v2)"

and thus for each subaxiom in a there exists an equivalent subaxiom in a0 and thus a =

a
0.

Therefore, since for each type of axiom in SA:Axioms there is an equivalent axiom in

S
0
A:Axiom it must be true that SA:Axioms � S

0
A:Axioms.

a 2 S
0
:Axioms) a 2 S:Axioms. The six possible sources of axioms in S0A are analyzed

below.

(a) If a in S0A:Axioms is of the form generated by Equation 7.70 such that

a =\X 2 s) SIZE(fY j S0

A:Name(X; Y )g) = 1"

then there exists an axiom, ax 2 C :Axiom of the form

ax =\X 2 sSIZE(IMAGE(A;X)) = 1"

generated by either Equation 7.70 or 7.74.

Given ax, there are two paths from C, OMT-50 or OMT-54.

i. If ax is generated by OMT-50 then c:Mult = ONE and c:Name = s, and by

Equation 7.51 there exists an axiom a
0
1 2 SA:Axiom such that

a
0
=\X 2 c:Name) SIZE(fY j SA:Name(X; Y )g) = 1"

Since c:Name = s and SA:Name = S
0
A:Name, a

0 = a.

ii. If ax is generated by OMT-54 then there exists a c 2 C:Connection such that c:Mult

= Specified, c:Specified = fsrg, and sr = h1; undefinedi. Thus by Equation 7.55

there exists an axiom a
0
2 SA:Axiom such that

a
0
=\X 2 c:Name) SIZE(fY j SA:Name(X; Y )g) = sr:value1"

Since c:Name = s, sr:value1 = 1, and SA:Name = S
0
A:Name, a

0
2 SA:Axioms = a 2

S
0
A:Axioms and thus any axiom in S0A generated by Equation 7.70 also exists in SA.
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(b) If a in S0A:Axioms is of the form generated by Equation 7.71 such that

a =\X 2 s) SIZE(fY j S0

A:Name(X; Y )g) � 0"

then there exists an axiom, ax 2 C :Axiom of the form

ax =\X 2 sSIZE(IMAGE(A;X)) � 0"

generated by Equation 7.71.

Given ax, there are two paths from C, OMT-51 or OMT-52.

i. If ax is generated by OMT-51 then there exists a c 2 C:Connection such that c:Mult

= Many and c:Name = s; therefore, by Equation 7.52 there exists an axiom a
0
2

SA:Axiom such that

a =\X 2 c:Name) SIZE(fY j SA:Name(X; Y )g) � 0"

Therefore since s = c:Name and SA:Name = S
0
A:Name, a

0 = a.

ii. If ax is generated by OMT-52 then there exists a c 2 C:Connection such that c:Mult

= P lus, c:P lus:integer = 0, and s = c:Name and by Equation 7.53 there exists an

axiom a
0
2 SA:Axiom such that

a =\X 2 c:Name) SIZE(fY j SA:Name(X; Y )g) � 0"

Since s = c:Name and SA:Name = S
0
A:Name, a

0 = a; therefore any axiom in S
0
A

generated by Equation 7.70 also exists in SA.

(c) If a in S0A:Axioms is of the form generated by Equation 7.72 (assuming x > 0) such that

a =\X 2 s) SIZE(fY j S0

A:Name(X; Y )g) > x"

then there is an axiom, ax 2 C :Axiom

X 2 S ) ax =\SIZE(IMAGE(A;X)) > x"

generated by Equation 7.72.

Given ax, by OMT-52 there exists a c 2 C:Connection such thatc:Mult = P lus,

c:P lus:integer = x, and c:Name = s. Therefore, by Equation 7.53 there exists an

axiom a
0
2 SA:Axiom such that
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a =\X 2 c:Name) SIZE(fY j SA:Name(X; Y )g) > c:P lus:integer"

Again, since c:P lus:integer = x and c:Name = s, it is clear that a = a and thus any

axiom in S0A generated by Equation 7.72 also exists in SA.

(d) If a in S0A:Axioms is of the form generated by Equation 7.73 such that

a =\X 2 s) (SIZE(fY j S0

A:Name(X; Y )g) = 0

_SIZE(fY j S0

A:Name(X; Y )g) = 1)"

then there os an axiom, ax 2 C :Axiom

ax =\X 2 s) (SIZE(IMAGE(A;X)) = 0 _ SIZE(IMAGE(A;X)) = 1)"

generated by either Equation 7.73 or 7.74.

Given ax, there are two paths from C, OMT-53 or OMT-54.

i. If ax is generated by OMT-53 then there exists a c 2 C:Connection such that c:Mult

= Optional and c:Name = s. Thus by Equation 7.54 there exists an axiom a
0
2

SA:Axiom such that

a =\X 2 c:Name) (SIZE(fY j SA:Name(X; Y )g) = 0

_SIZE(fY j SA:Name(X; Y )g) = 1)"

Therefore since s = c:Name and SA:Name = S
0
A:Name, a

0 = a.

ii. If ax is generated by OMT-54 then there exists a c 2 C:Connection such thatc:Mult

= Specified, c:Name = s, c:Specified = fsr1; sr2g, sr1 = h0; undefinedi, and sr2

= h1; undefinedi.

Thus by Equation 7.55 there exists an axiom a
0
2 SA:Axiom such that

a =\X 2 c:Name) (SIZE(fY j SA:Name(X; Y )g) = 0

_SIZE(fY j SA:Name(X; Y )g) = 1)"

Therefore since s = c:Name and SA:Name = S
0
A:Name, a

0 = a.

Again it is clear that a0 = a in both cases and, therefore, any axiom in S0A generated by

Equation 7.73 also exists in SA.
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(e) If a0 in S
0
A:Axioms is of the form generated by Equation 7.74 such that it consists of

the logical disjunction of n subaxioms of either of two forms

\X 2 s) SIZE(fY j S0

A:Name(X; Y )g) = v1"

or

`X 2 s) (SIZE(fY j S0

A:Name(X; Y )g) � v1

_ SIZE(fY j S0

A:Name(X; Y )g) � v2)"

and assuming a0 is not of the form generated by Equations 7.70 or 7.73, then by Equa-

tion 7.74 there exists an axiom ax in C :Axiom where ax is the logical disjunction of the

set of subaxioms generated for each si in a
0 such that

si =\X 2 c:Name) SIZE(IMAGE(A;X)) = v1"

or

si =\X 2 c:Name) (SIZE(IMAGE(A;X)) � v1

_ SIZE(IMAGE(A;X)) � v2)"

Thus by OMT-54 there exists a c 2 C:Connection such that c:Mult = Specified, and

there exists some hv1; v2i 2 c:Specified (v2 may be unde�ned) for each si in ax.

Then by Equation 7.55 there exists an a in SA:Axioms such that for each spec-range 2

c:Specified there exists a subaxiom in a of the form

\X 2 c:Name) SIZE(fY j SA:Name(X; Y )g) = s:value1"

or

\X 2 c:Name) (SIZE(fY j SA:Name(X; Y )g) � s:value1

_ SIZE(fY j SA:Name(X; Y )g) � s:value2)"

Since c:Name = s and SA:Name = S
0
A:Name, it must be true that for each subaxiom

in a0 there exists an equivalent subaxiom in a, and thus a = a
0. Therefore, any axiom

in S0A generated by Equation 7.74 also exists in SA.
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Therefore, since for each type of axiom in S
0
A:Axioms, there is an equivalent axiom

in SA:Axiom, then S
0
A:Axioms � SA:Axioms, and, since I have previously shown that

SA:Axioms � S
0
A:Axioms it is clear that SA:Axioms = S

0
A:Axioms

Therefore, since each speci�cation in OM is in OM
0, each speci�cation in OM

0 is in OM ,

and each component within each speci�cation in OM is in the associated speci�cation in OM 0 and

vice versa, it is obvious that OM = OM
0. �

F.2 Dynamic Model Correctness Proof

In this section, Theorem VII.2 is proved.

Proof. Preservation of the dynamic model semantics by � is established by showing the

equivalence of two sets of dynamic model semantics, M and M
0, created from a generic OMT

domain theory, G. M is the dynamic model semantics de�ned by transforming G by ' while M 0

is the dynamic model semantics de�ned by transforming G by � , into an O-Slang domain theory

O, and then by !. In this proof, I assume that G has a well de�ned dynamic model in which C is

a class.

I prove the theorem by showing that, given a valid generic OMT domain theory G, each

component de�ned inM (Q;�;� and �) exist inM 0 and that each component de�ned inM 0 exists

in M .

1. Q = Q
0.

To show that Q = Q
0, I �rst show that Q � Q

0 and then that Q0 � Q. By assumption, C is

some class in G with a well-de�ned dynamic model. Therefore, for each state s in C:State, by

', s:Name is in Q.
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If s in C:State, then by rule OMT-68 hs:Name; ; xi is in C :State (with the exception of Initial-

State-Marker by function �s as de�ned in Equation 7.19) and by !, s:Name is in Q
0. The

de�nition of Q0 in ! also explicitly re-inserts the Initial-State-Marker; therefore, Q � Q
0.

By !, if s:Name is in Q0 then s:Name must be the name of some state s in C :State or the

Initial-State-Marker. Rules OMT-68 and OMT-72 are the only translation rules in � that

create elements of C :State. However, since OMT-72 translates substates of some state s in

the states of C and, by assumption the dynamic model has been translated into a simple �nite

state machine automata as de�ned in Section 5.4.4 without substates, if s is in C :State it had

to be placed there by OMT-68, and thus s:Name is the name of some state in C:State. Since

the Initial-State-Marker is present in C:State, it is in Q as well. Thus Q0 � Q and therefore

Q = Q
0.

2. � = �0.

To show that � = �0, I �rst show that � � �0 and then that �0 � �. By de�nition of � in

', for t:Name to be in the set �, the corresponding transition, t, must exist in C:T ransition.

Then, if t 2 C:T ransition, by OMT-74, an event ht:Name; x; yi is in C :Event that is mapped

by ! to �0. Thus � � �0.

Assume t:Name is in �0. Then by de�nition of �0 in !, there must be some ht:Name; x0; y0i

in C :Event. And, since Rule OMT-74 is the only rule in � that translates components in G to

C :Event (OMT-17 only creates events in C :Event when there is no dynamic model de�ned

by the user), t:Name must be the name of some transition t 2 C:T ransition, which by '

implies t:Name 2 �. Therefore �0 � � and knowing that � = �0 from above, implies �0 = �.

3. � = �0

To show that � = �0, I �rst show that � � �0 and then that �0
� �. Assume t is some

transition in C:T ransition, then by de�nition of � in ', for each a in t:Action, msig(a), as
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de�ned in Equation 7.77, is in � if and only if a:Name 6= SEND and msig(a:Action) is in

� if and only if a:Name = SEND.

Assume a:Name 6= SEND and thusmsig(a) = ha:Name; [C:Name] k domain(a:Parameter);

[C:Name]i is in � by de�nition of '. By Rule OMT-75, m = ha:Name, [C:Name] k

domain(a:Parameter), [C:Name] i 2 C :Method, by Rule OMT-74 ht:Name, [C:Name] k

domain(t:Parameter), [C:Name]i 2 C :Event, and by OMT-82 an axiom of the form

\oldstate(t:F romState)^ guard) newstate(t)

^ ::: ATTR-EQUAL(t:Name( ::: ); a:Name( ::: )) :::"

is in C :Axiom. Therefore, by de�nition of �0 in !, m 2 �0, and msig(a) 2 � = ha:Name,

[C:Name]kdomain(a:Parameter), [C:Namei = m 2 �0.

If a:Name = SEND, by de�nition of ', esig(a:Action) = ha:Action:Name, [a:Action:Name-

SORT ] k domain(a:Action:Parameter), [a:Action:Name-SORT ] i 2 �. By Rule OMT-76

and OMT-77, and event theory C E is created and C E :Name = a:Action:Name, by Rule OMT-

79 e = ha:Action:Name, [a:Action:Name] k domain(a:Action), [a:Action:Name-SORT ]i

2 C E :Event, and by Rule OMT-80 a:Action:Name 2 C :Import. Then by de�nition of

�0 in !, e 2 �0 and esig(a:Action) 2 � = ha:Action:Name, [a:Action:Name-SORT ] k

domain(a:Action:Parameter), [a:Action:Name-SORT ]i = e 2 �0. Therefore, � � �0.

An event theory can only be created by Rules OMT-76 through OMT-79, or Rule OMT-40;

however, since the event theories de�ned in Rule OMT-40 are broadcast theories and are only

referenced in aggregate speci�cations, an event theory whose name, C E :Name is found in

the import block of some class speci�cation C (as required by the de�nition of �0 in !),

must have been created by Rules OMT-76 through OMT-79. So, if there exists an event

theory C E such that C E :Name = n and n 2 C :Import of some class speci�cation C , then it

must be the case that there exists some t 2 C:T ransistion with an action a 2 t:Action such

that a:Name = SEND, a:Action:Name = n, and esig(a) = e 2 C E :Event (i.e., e is the
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event generated by a via Rule OMT-79). Therefore, by de�nition of ', esig(a) 2 �, and by

de�ntion of !, e 2 �0.

Assume that there exists somem 2 �0 such thatm 2 C :Method, e 2 C :Event, and an axiom

a 2 C :Axiom of the form

C :Name-STATE(x) = q ::: )

C :Name-STATE(event(:::)) = q2 ::: ATTR-EQUAL(e:Name(:::);m:Name(:::)) :::

Since, (1) as de�ned in Section 6.2.7 a user may not modify a state attribute except through

de�nition of a transition in the class dynamic model and (2) the assumption for this proof

that a dynamic model for class C has been de�ned, an axiom of the form of a,

\C :Name-STATE(x) = q:::) C :Name-STATE(event(:::)) = q2 :::"

must have been generated by Rule OMT-82. Therefore, by de�nition of themethod-invocation

function that implements Rule OMT-82, it must also be true that an axiom of the form of a

with the substring

\ATTR-EQUAL(e(:::);m(:::))"

must have been generated from a transition t 2 C:T ransition such that e = t:Name andm =

a:Name for some a 2 t:Action where a:Name 6= SEND. This same t and a also generated

m = ha:Name; [C:Name] k domain(a:Parameter); [C:Name]i 2 C :Method by OMT-75 and

msig(a) = ha:Name; [C:Name]kdomain(a:Parameter); [C:Name]i 2 � by de�nition of '.

Thus �0
� � and, already knowing that � � �0, implies � = �0.

4. � = �
0

To show that � = �
0, I show that if I pick an object in any class C with a well-de�ned dynamic

model such that the object is in some arbitrary state q 2 Q and receive input event � 2 �,

�(q; �) = �
0(q; �).
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First, pick some object in C in state q 2 Q. Upon receipt of an input event � 2 �, if

there exists a transition t 2 C:T ransition such that t:F romState = q, t:Name = �, and

t:Axiom evaluates to true, then by ', �(q; �) = t:T oState. Otherwise, if there is no transition

t 2 C:T ransition such that t:F romState = q, t:Name = �, and t:Axiom evaluates to true,

then by ', �(q; �) = q.

By Rule OMT-82, for all t 2 C:T ransition, t generates an axiom in C :Axiom of the form

C :Name-STATE(x) = q ^ guard) C :Name-STATE(�(:::)) = q2 ::: (F.1)

where q = t:F romState, the guard is simply t:Axiom, and the q2 = t:T oState. And, as shown

above in Item 3, no other axioms of this form can be entered into C :Axiom using any other

transformation rules.

Then, knowing that Q = Q
0 and � = �0 from Items 1 and 2 above, I choose some object

in class C in state q 2 Q. Upon receipt of an input event � 2 �, if there exists an axiom

in C :Axiom of the form shown in Equation F.1, such that the guard (t:Axiom) evaluates to

true then by !, �0(q; �) = q2 = t:T oState. Otherwise, if there is no axiom of the appropriate

form such that the guard (t:Axiom) evaluates to true then by !, �0(q; �) = q.

Therefore, since for all possible inputs, (q; �), �(q; �) = �
0(q; �), it must be the case that

� = �
0.

5. � = �
0

To show that � = �
0, I show that, for any class C with a well-de�ned dynamic model, if

I pick an object in the class in any arbitrary state q 2 Q and receive input event � 2 �,

�(q; �) = �
0(q; �).

First, choose some object in class C with state q 2 Q. Upon receipt of an input event � 2 �,

if there exists a transition t 2 C:T ransition such that t:F romState = q and t:Name = �,
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and t:Axiom evaluates to true then by ', �(q; �) = sig(t:Action) which is the set of all ac-

tion/event signatures invoked/sent in response to the transition as de�ned in Equation 7.79.

Otherwise, if there is no transition t 2 C:T ransition such that t:F romState = q and

t:Name = �, and t:Axiom evaluates to true then by ', �(q; �) = fg.

By Rule OMT-82, for all t 2 C:T ransition, t generates an axiom in ax 2 C :Axiom of the

form given in Equation F.1 where q = t:F romState, the guard is t:Axiom, and the q2 =

t:T oState. The method-invocations function translates each non-send actions a 2 t:Action to

a subsequence of the form

ATTR-EQUAL(t:Name( ::: ); a:Name( ::: )) :::

and the function event-sends translates each send event e 2 t:Action to a subsequence of ax

of the form

e:Action:Name-OBJ(t:Name(:::)) = e:Action:Name(e:Action:Name-OBJ(x):::)

As discussed above in Item 3, only Rule OMT-82 is capable of placing axioms of this form

into C :Axiom.

Since Q = Q
0 and � = �0 from Items 1 and 2 above, I may choose some object in class C in

state q 2 Q. Upon receipt of an input event � 2 �, if there exists an axiom, ax, in C :Axiom

of the form shown in Equation F.1, such that the guard (t:Axiom) evaluates to true then by

!, �0(q; �) = action-set(ax). By Rule OMT-82 all actions in t are translated into either a

method invocation or an event send subsequence in ax. The function action-set as de�ned

in Equation 7.80 returns the set of all method and event signatures for each method/event

subsequence found in ax; therefore, action-set(ax) = sig(t:Action). If, on the other hand,

there are no axioms in C :Axiom of the form shown in Equation F.1, such that the guard

(t:Axiom) evaluates to true then by !, �0(q; �) = fg. Therefore, since for all possible inputs,

(q; �), �(q; �) = �
0(q; �), it must be true that � = �

0.
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6. q0 = q
0
0

The initial state is explicitly represented in each G dynamic model with a unique identi�er

Initial-State-Marker; however, by Rule OMT-83, a transition, t, from the initial state (by a

new event) results in an axiom of the form

C:Name-STATE(new-C:Name(:::) = t:ToState^

method-invocations(t)^ event-sends(t)

Therefore, there is no explicit representation of q0. However, Q, �0, �0, and q
0
0 explicitly

incorporate the Initial-State-Marker into ! and thus q0 = q
0
0.

Therefore, since Q = Q
0, � = �0, � = �0, � = �

0, � = �
0 and q0 = q

0
0 it can be concluded

that M =M
0. �

F.3 Functional Model Correctness Proof

In this section, Theorem VII.3 is proved.

Proof. Preservation of the functional model semantics by � is established by showing the

equivalence of two sets of functional model semantics, D and D
0, created from a generic OMT

domain theory, G. D is the functional model semantics de�ned by transforming G by ' while D0 is

the functional model semantics de�ned by transforming G by � , into an O-Slang domain theory

O, and then by !. In this proof, I assume that G has a well de�ned functional model in which C is

a class.

I prove the theorem by showing that, given a valid generic OMT domain theory G, each

component de�ned in D (C, F , K, and R) exist in D
0 and that each component de�ned in D

0

exists in D.

1. C = C
0.

I show C = C
0 by showing that C � C

0 and then showing C 0 � C
0.
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� C � C
0.

For any c 2 C, by the de�nition of C, the name of c must be the name of a process of C,

a datastore of C, or the symbol Extern. If c refers to a process in C then by Rule OMT-

85 or Rule OMT-86 the process referred to by c is mapped to either a method or an

operation in C and therefore, by de�nition of C 0, c 2 C 0.

If c is the name of a datastore then by de�nition of a valid data
ow diagram, there

must be a data
ow in C.DataFlow such that it is either the target or source. Also,

by Assumptions V.12 and V.13 there exists a process, p, such that p only accesses or

modi�es datastore c. Therefore, by Rule OMT-87 there must be an axiom in C .Axiom

such that the following is a substring.

\::: op(datastore(X) :::) :::"

This substring is extracted by function datastores as de�ned in Equation 7.83 and thus,

by de�nition of C 0, c 2 C 0.

If c is Extern then by de�nition of C 0, c 2 C 0. Therefore C � C
0.

� C
0
� C.

Now, assume c 2 C
0. If c 2 C

0 then by the de�nition of C 0, c 2 C :Method, c 2

C :Operation, c 2 datastores(C ), or c = Extern. Since, by assumption, all methods in

C are de�ned from processes in C via Rule OMT-85 there must be a process in C whose

name is c and, by de�nition of C, c 2 C.

If c is the name of an operation in C then by the assumption that all methods in C are

de�ned from processes in C via Rule OMT-86 there must be a process in C whose name

is c and thus, by de�nition of C, c 2 C.

If c is a datastore, then c 2 datastores(ax) for some ax 2 C :Axiom that contains the

following substring.

\::: op(c(X) :::) :::"
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Since axioms of this form are only generated by Rule OMT-87, then c must have been

in datastore(C) that, by de�nition of C, implies c 2 C.

If c is Extern then by de�nition of C, c 2 C and C 0 � C. Therefore since C 0 � C and

C � C
0, C = C

0.

2. F = F
0.

I show that F = F
0 by showing that for any C in G, for each f in C:Dataflow, f 2 F and

f 2 F
0 and nothing else is in F or F 0.

If f 2 C:Dataflow, then trivially, by the de�nition of F , f 2 F and nothing else can be in F .

If f 2 C:Dataflow, it is a data
ow in a functional model. Given a valid data
ow diagram,

as shown in Table 7.1, these data
ows can be (a) an input to a process (lines 1, 2, 10, and

14), (b) an output to a datastore (line 11), or (c) an output from a process to Extern (lines

8 and 12). I discuss each of these possibilities below.

(a) There are two unique cases to consider when a data
ow is an input to a process. The

input may be to a top-level process (line 1 in Table 7.1) or a subprocess(lines 2, 10, and

14 in Table 7.1). Each of these is discussed below.

If f = hf:Name; f:T ype; f:Target; f:Sourcei is an input to a process, p, where p:Name

= f:Target and hf:Name; f:T ypei =2 p:InF lows, then by Rule OMT-85 or Rule OMT-

86 there is an operation or method de�ned in C as shown below.

hf:Target; [:::f:Type:::]; [:::]i 2 (C :Method [ C :Operation)

Thus by Rule OMT-87 there exists an axiom, ax, in C :Axiom of the form

ax =\m(i1:::im) = o1:::on::: ^ r1:::ro = sp(d1:::dp):::"

such that m = f:Target, or, sp = f:Target.

i. If m = f:Target, then some parameter i1:::im = f:Name such that the variables in

the function data
ows-of(ax) take on the following values.
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Extern = f:Source

t:Name = f:Target

p3 = f:Name

itype(p3; t) = f:Type

Thus by the de�ntions of data
ows-of and F 0, hp3; itype(p3; t); Extern; t:Namei =

hf:Name; f:T ype; f:Source; f:Targeti 2 F
0

ii. If sp = f:Target, then some parameter in d1:::dm = f:Name such that the variables

in the function data
ows-of(ax) take on the following values.

op2:Name = f:Source

op1:Name = f:Target

p1 = f:Name

itype(p1; op1) = f:Type

Therefore, by the de�ntions of data
ows-of and F 0, hp1; itype(p1; op1); op2:Name;

op1:Namei = hf:Name, f:Type, f:Source, f:Targeti 2 F
0

(b) If f = hf:Name; f:T ype; f:Target; f:Sourcei is an output to a datastore, d, then by

Assumptions V.12 and V.13 there exists a process p such that f is the only datastore

output of p. Therefore, p is a method such that p:Name = f:Source and by Rule OMT-

85 there is a method de�ned in C as shown below.

hf:Source; [f:Target:::]; [f:Target]i 2 C :Method

Thus by Rule OMT-87 there exists an axiom, ax, in C :Axiom of the form

ax =\m(i1:::im) = o1:::on::: ^ r1:::rn = sp(d1:::dp):::"

such that f:Source = sp and r1:::rn = r1 = f:Target and the variables in the function

data
ows-of(ax) take on the following values.
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op1:Name = f:Source

o = f:Target

dsname(o) = f:Name

dstype(o) = f:Type

Therefore, by the de�ntions of data
ows-of and F 0, hdsname(o); dstype(o); op1:Name;

oi = hf:Name; f:T ype; f:Source; f:Targeti 2 F
0

(c) There are two unique cases to consider when an output goes to Extern. The output

may come from a subprocess, or it may come from a top-level object. Each of these is

discussed separately.

i. If f = hf:Name; f:T ype; f:Target; f:Sourcei is an output from a subprocess p, with

p:Name = f:Source, to an external object such that f:Target = Extern, then p

must be an operation since the only output from a method is the class sort which

is implied and not actually part of the data
ow diagram. Thus by Rule OMT-86

there is an operation de�ned in C as shown below.

hf:Source; [:::]; [:::f:Type:::]i 2 C :Operation

Thus by Rule OMT-87 there exists an axiom, ax, in C :Axiom of the form

ax =\m(i1:::im) = o1:::on::: ^ r1:::ro = sp(d1:::dp):::"

such that sp = f:Source and some output of sp, r1:::rm = f:Name and the variables

in the function data
ows-of(ax) take on the following values.

Extern = f:Target

op1:Name = f:Source

o = f:name

otype(o; op1) = f:Type

Then by the de�ntions of data
ows-of and F 0, ho; otype(o; sp); op1:Name; Externi

= hf:Name; f:T ype; f:Source; f:Targeti 2 F
0
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ii. If f = hf:Name; f:T ype; f:Target; f:Sourcei is an output from a top-level process

p, where p:Name = f:Source, then p must be an operation since the only output

from a method is the class sort which is implied and not actually part of the data
ow

diagram. Thus by Rule OMT-86 there is an operation de�ned in C as shown below.

hf:Source; [:::]; [:::f:Type:::]i 2 C :Operation

Thus by Rule OMT-87 there exists an axiom, ax, in C :Axiom of the form

ax =\m(i1:::im) = o1:::on::: ^ r1:::ro = sp(d1:::dp):::"

such thatm = f:Source and some output ofm, o1:::om = f:Name and the variables

in the function data
ows-of(ax) take on the following values.

Extern = f:Target

t:Name = f:Source

p3 = f:name

otype(p3; t) = f:Type

Thus by the de�ntions of data
ows-of and F 0, hp3; otype(p3; t); t:Name; Externi =

hf:Name; f:T ype; f:Source; f:Targeti 2 F
0

Therefore, since if f 2 C:Dataflow is either (a) an input to a process, (b) an output to a

datastore, or (c) an output from the top-level process of a data
ow diagram, then f 2 F
0.

Also, given the initial assumption that all processes p in C are processes in a functional model

de�ned in C, all axioms produced by OMT-87 use only processes from a functional model of C.

Since OMT-87 is the only rule capable of producing axioms in C :Axiom of the form required

by the function data
ows-of, all sources and targets extracted from some axiom in C :Axiom

must be processes in a functional model of C. Finally, given the uniqueness of data
ow names

by Assumption V.19, the fact that there must be in in
ow and an out
ow for each input and

output of a process in a valid data
ow diagram (by Assumption V.18), and the de�nition of

OMT-87, it is clear that there are no data
ows in F
0 not derived from a data
ows in a C

functional model.
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3. K = K
0.

Since I showed in Item 1 that C = C
0 and by de�nition their de�nitions, each includes the

symbol Extern, it is obvious that C n fExterng = C
0
n fExterng and thus K = K

0.

4. R = R
0.

Since the de�nition of R uses the set dfmerge(C:DataF low), which is the de�nition F , its

de�nition is equivalent to Equation F.2.

fhx; yi j (x; y 2 F ^ x:Target = y:Source ^ x:Target 6= Extern)

_ (hx; zi 2 R ^ hz; yi 2 R)g (F.2)

And, since the de�ntion of R0 uses the set dfmerge(ff j a 2 C :Axiom ^ f 2 dataflows-

of(a)g, which is the de�nition of F 0, its de�nition is equivalent to Equation F.3.

fhx; yi j (x; y 2 F 0
)

^ x:Target = y:Source ^ x:Target 6= Extern)

_ (hx; zi 2 R0 ^ hz; yi 2 R0
)g (F.3)

And �nally, since F = F
0, Equations F.2 and F.3 are equivalent and thus R = R

0.

Since, as shown above, C = C
0, F = F

0, K = K, and R = R
0, then D = D

0 and therefore,

the translation � preserves the semantics of the generic OMT functional model. �

F.4 Summary

This appendix presents the proofs of Theorems VII.1, VII.2, and VII.3. These theorems show

that the transformation rules as de�ned in Chapter VII preserve the semantics of the the object

model, the dynamic model, and the functional model as de�ned Chapter V.
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Appendix G. Feasibility Demonstration O-Slang Output

G.1 Pump O-Slang

class CLUTCH is

class-sort CLUTCH

import START-FUEL

sort CLUTCH-STATE

attributes START-FUEL-OBJ: CLUTCH -> START-FUEL-SORT

state-attributes CLUTCH-STATE: CLUTCH -> CLUTCH-STATE

methods CREATE-CLUTCH: -> CLUTCH

states

CLUTCH-DISABLED: -> CLUTCH-STATE

CLUTCH-FREE: -> CLUTCH-STATE

CLUTCH-ENGAGED: -> CLUTCH-STATE

events

FREE-CLUTCH: CLUTCH -> CLUTCH

DISABLE-CLUTCH: CLUTCH -> CLUTCH

ENGAGE-CLUTCH: CLUTCH -> CLUTCH

NEW-CLUTCH: -> CLUTCH

axioms

CLUTCH-DISABLED <> CLUTCH-FREE;

CLUTCH-DISABLED <> CLUTCH-ENGAGED;

CLUTCH-FREE <> CLUTCH-ENGAGED;

ATTR-EQUAL(C1, C2) <=> (START-FUEL-OBJ(C1) = START-FUEL-OBJ(C2));

(CLUTCH-STATE(NEW-CLUTCH(C)) = CLUTCH-DISABLED

& ATTR-EQUAL(NEW-CLUTCH(C), CREATE-CLUTCH(C)));

(CLUTCH-STATE(C) = CLUTCH-FREE) =>(CLUTCH-STATE(ENGAGE-CLUTCH(C)) = CLUTCH-ENGAGED

& START-FUEL-OBJ(ENGAGE-CLUTCH(C)) = START-FUEL(START-FUEL-OBJ(C)));

(CLUTCH-STATE(C) = CLUTCH-FREE) =>(CLUTCH-STATE(DISABLE-CLUTCH(C)) = CLUTCH-DISABLED);

(CLUTCH-STATE(C) = CLUTCH-FREE) =>(CLUTCH-STATE(FREE-CLUTCH(C)) = CLUTCH-ENGAGED);

(CLUTCH-STATE(C) = CLUTCH-DISABLED) =>(CLUTCH-STATE(FREE-CLUTCH(C)) = CLUTCH-FREE);

CLUTCH-STATE(C) = CLUTCH-DISABLED => CLUTCH-STATE(ENGAGE-CLUTCH(C)) = CLUTCH-DISABLED;

CLUTCH-STATE(C) = CLUTCH-DISABLED => CLUTCH-STATE(DISABLE-CLUTCH(C)) = CLUTCH-DISABLED;

CLUTCH-STATE(C) = CLUTCH-DISABLED => CLUTCH-STATE(FREE-CLUTCH(C)) = CLUTCH-DISABLED;

CLUTCH-STATE(C) = CLUTCH-FREE => CLUTCH-STATE(FREE-CLUTCH(C)) = CLUTCH-FREE;

CLUTCH-STATE(C) = CLUTCH-ENGAGED => CLUTCH-STATE(ENGAGE-CLUTCH(C)) = CLUTCH-ENGAGED;

CLUTCH-STATE(C) = CLUTCH-ENGAGED => CLUTCH-STATE(DISABLE-CLUTCH(C)) = CLUTCH-ENGAGED;

CLUTCH-STATE(C) = CLUTCH-ENGAGED => CLUTCH-STATE(FREE-CLUTCH(C)) = CLUTCH-ENGAGED;

CLUTCH-STATE(C) = CLUTCH-ENGAGED => CLUTCH-STATE(FREE-CLUTCH(C)) = CLUTCH-ENGAGED

end-class

class CLUTCH-CLASS is

class-sort CLUTCH-CLASS

contained-class CLUTCH

events

FREE-CLUTCH: CLUTCH-CLASS -> CLUTCH-CLASS

DISABLE-CLUTCH: CLUTCH-CLASS -> CLUTCH-CLASS

ENGAGE-CLUTCH: CLUTCH-CLASS -> CLUTCH-CLASS

NEW-CLUTCH-CLASS: -> CLUTCH-CLASS

axioms

NEW-CLUTCH-CLASS() = EMPTY-SET;

fa (C:CLUTCH, CC:CLUTCH-CLASS) in(C, CC) <=> in(ENGAGE-CLUTCH(C), ENGAGE-CLUTCH(CC));

fa (C:CLUTCH, CC:CLUTCH-CLASS) in(C, CC) <=> in(DISABLE-CLUTCH(C), DISABLE-CLUTCH(CC));

fa (C:CLUTCH, CC:CLUTCH-CLASS) in(C, CC) <=> in(FREE-CLUTCH(C), FREE-CLUTCH(CC));
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fa (C:CLUTCH, CC:CLUTCH-CLASS) in(C, CC) <=> in(FREE-CLUTCH(C), FREE-CLUTCH(CC))

end-class

class HOLSTER is

class-sort HOLSTER

sort HOLSTER-STATE

state-attributes HOLSTER-STATE: HOLSTER -> HOLSTER-STATE

methods CREATE-HOLSTER: -> HOLSTER

states

HOLSTER-WAIT: -> HOLSTER-STATE

HOLSTER-WORKING: -> HOLSTER-STATE

events

CLOSE-HOLSTER-SWITCH: HOLSTER -> HOLSTER

RELEASE-HOLSTER-SWITCH: HOLSTER -> HOLSTER

NEW-HOLSTER: -> HOLSTER

axioms

HOLSTER-WAIT <> HOLSTER-WORKING;

(HOLSTER-STATE(NEW-HOLSTER(H)) = HOLSTER-WAIT

& ATTR-EQUAL(NEW-HOLSTER(H), CREATE-HOLSTER(H)));

(HOLSTER-STATE(H) = HOLSTER-WAIT)

=> (HOLSTER-STATE(RELEASE-HOLSTER-SWITCH(H)) = HOLSTER-WORKING);

(HOLSTER-STATE(H) = HOLSTER-WORKING)

=> (HOLSTER-STATE(CLOSE-HOLSTER-SWITCH(H)) = HOLSTER-WAIT);

HOLSTER-STATE(H) = HOLSTER-WAIT

=> HOLSTER-STATE(CLOSE-HOLSTER-SWITCH(H)) = HOLSTER-WAIT;

HOLSTER-STATE(H) = HOLSTER-WORKING

=> HOLSTER-STATE(RELEASE-HOLSTER-SWITCH(H)) = HOLSTER-WORKING

end-class

class HOLSTER-CLASS is

class-sort HOLSTER-CLASS

contained-class HOLSTER

events

CLOSE-HOLSTER-SWITCH: HOLSTER-CLASS -> HOLSTER-CLASS

RELEASE-HOLSTER-SWITCH: HOLSTER-CLASS -> HOLSTER-CLASS

NEW-HOLSTER-CLASS: -> HOLSTER-CLASS

axioms

NEW-HOLSTER-CLASS() = EMPTY-SET;

fa ((H: HOLSTER), HC: HOLSTER-CLASS) in(H, HC)

<=> in(RELEASE-HOLSTER-SWITCH(H), RELEASE-HOLSTER-SWITCH(HC));

fa ((H: HOLSTER), HC: HOLSTER-CLASS) in(H, HC)

<=> in(CLOSE-HOLSTER-SWITCH(H), CLOSE-HOLSTER-SWITCH(HC))

end-class

class MOTOR is

class-sort MOTOR

import FREE-CLUTCH, DISABLE-CLUTCH

sort MOTOR-STATE

attributes

DISABLE-CLUTCH-OBJ: MOTOR -> DISABLE-CLUTCH-SORT

FREE-CLUTCH-OBJ: MOTOR -> FREE-CLUTCH-SORT

state-attributes

MOTOR-STATE: MOTOR -> MOTOR-STATE
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methods

CREATE-MOTOR: -> MOTOR

states

MOTOR-DISABLED: -> MOTOR-STATE

MOTOR-RUNNING: -> MOTOR-STATE

events

STOP-MOTOR: MOTOR -> MOTOR

START-PUMP-MOTOR: MOTOR -> MOTOR

NEW-MOTOR: -> MOTOR

axioms

MOTOR-DISABLED <> MOTOR-RUNNING;

ATTR-EQUAL(M1, M2) <=> (DISABLE-CLUTCH-OBJ(M1) = DISABLE-CLUTCH-OBJ(M2)

& FREE-CLUTCH-OBJ(M1) = FREE-CLUTCH-OBJ(M2));

(MOTOR-STATE(NEW-MOTOR(M)) = MOTOR-DISABLED

& ATTR-EQUAL(NEW-MOTOR(M), CREATE-MOTOR(M)));

(MOTOR-STATE(M) = MOTOR-DISABLED)

=> (MOTOR-STATE(START-PUMP-MOTOR(M)) = MOTOR-RUNNING

& FREE-CLUTCH-OBJ(START-PUMP-MOTOR(M))

= FREE-CLUTCH(FREE-CLUTCH-OBJ(M)));

(MOTOR-STATE(M) = MOTOR-RUNNING)

=> (MOTOR-STATE(STOP-MOTOR(M)) = MOTOR-DISABLED

& DISABLE-CLUTCH-OBJ(STOP-MOTOR(M))

= DISABLE-CLUTCH(DISABLE-CLUTCH-OBJ(M)));

MOTOR-STATE(M) = MOTOR-DISABLED

=> MOTOR-STATE(STOP-MOTOR(M)) = MOTOR-DISABLED;

MOTOR-STATE(M) = MOTOR-RUNNING

=> MOTOR-STATE(START-PUMP-MOTOR(M)) = MOTOR-RUNNING

end-class

class MOTOR-CLASS is

class-sort MOTOR-CLASS

contained-class MOTOR

events

STOP-MOTOR: MOTOR-CLASS -> MOTOR-CLASS

START-PUMP-MOTOR: MOTOR-CLASS -> MOTOR-CLASS

NEW-MOTOR-CLASS: -> MOTOR-CLASS

axioms

NEW-MOTOR-CLASS() = EMPTY-SET;

fa (M:MOTOR, MC:MOTOR-CLASS) in(M, MC)

<=> in(START-PUMP-MOTOR(M), START-PUMP-MOTOR(MC));

fa (M:MOTOR, MC:MOTOR-CLASS) in(M, MC) <=> in(STOP-MOTOR(M), STOP-MOTOR(MC))

end-class

class GUN is

class-sort GUN

import START-TIMER, DISABLE-PUMP, CLOSE-HOLSTER-SWITCH,

FREE-CLUTCH, ENGAGE-CLUTCH, RELEASE-HOLSTER-SWITCH

sort GUN-STATE

attributes

RELEASE-HOLSTER-SWITCH-OBJ:

GUN -> RELEASE-HOLSTER-SWITCH-SORT

ENGAGE-CLUTCH-OBJ: GUN -> ENGAGE-CLUTCH-SORT

FREE-CLUTCH-OBJ: GUN -> FREE-CLUTCH-SORT

CLOSE-HOLSTER-SWITCH-OBJ: GUN -> CLOSE-HOLSTER-SWITCH-SORT
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DISABLE-PUMP-OBJ: GUN -> DISABLE-PUMP-SORT

START-TIMER-OBJ: GUN -> START-TIMER-SORT

state-attributes

GUN-STATE: GUN -> GUN-STATE

methods

CREATE-GUN: -> GUN

states

GUN-DISABLED: -> GUN-STATE

GUN-ENABLED: -> GUN-STATE

GUN-ON: -> GUN-STATE

events

REMOVE-GUN: GUN -> GUN

RELEASE-TRIGGER: GUN -> GUN

DEPRESS-TRIGGER: GUN -> GUN

CUT-OFF-SUPPLY: GUN -> GUN

REPLACE-GUN: GUN -> GUN

NEW-GUN: -> GUN

axioms

GUN-DISABLED <> GUN-ENABLED;

GUN-DISABLED <> GUN-ON;

GUN-ENABLED <> GUN-ON;

ATTR-EQUAL(G1, G2) <=> (RELEASE-HOLSTER-SWITCH-OBJ(G1) = RELEASE-HOLSTER-SWITCH-OBJ(G2)

& ENGAGE-CLUTCH-OBJ(G1) = ENGAGE-CLUTCH-OBJ(G2)

& FREE-CLUTCH-OBJ(G1) = FREE-CLUTCH-OBJ(G2)

& CLOSE-HOLSTER-SWITCH-OBJ(G1) = CLOSE-HOLSTER-SWITCH-OBJ(G2)

& DISABLE-PUMP-OBJ(G1) = DISABLE-PUMP-OBJ(G2)

& START-TIMER-OBJ(G1) = START-TIMER-OBJ(G2));

(GUN-STATE(NEW-GUN(G)) = GUN-DISABLED & ATTR-EQUAL(NEW-GUN(G), CREATE-GUN(G)));

(GUN-STATE(G) = GUN-ENABLED) => (GUN-STATE(REPLACE-GUN(G)) = GUN-DISABLED

& START-TIMER-OBJ(REPLACE-GUN(G)) = START-TIMER(START-TIMER-OBJ(G))

& DISABLE-PUMP-OBJ(REPLACE-GUN(G)) = DISABLE-PUMP(DISABLE-PUMP-OBJ(G))

& CLOSE-HOLSTER-SWITCH-OBJ(REPLACE-GUN(G))

= CLOSE-HOLSTER-SWITCH(CLOSE-HOLSTER-SWITCH-OBJ(G)));

(GUN-STATE(G) = GUN-ON) => (GUN-STATE(CUT-OFF-SUPPLY(G)) = GUN-ENABLED

& FREE-CLUTCH-OBJ(CUT-OFF-SUPPLY(G)) = FREE-CLUTCH(FREE-CLUTCH-OBJ(G)));

(GUN-STATE(G) = GUN-ENABLED) => (GUN-STATE(DEPRESS-TRIGGER(G)) = GUN-ON

& ENGAGE-CLUTCH-OBJ(DEPRESS-TRIGGER(G))

= ENGAGE-CLUTCH(ENGAGE-CLUTCH-OBJ(G)));

(GUN-STATE(G) = GUN-ENABLED) => (GUN-STATE(RELEASE-TRIGGER(G)) = GUN-ON

& FREE-CLUTCH-OBJ(RELEASE-TRIGGER(G)) = FREE-CLUTCH(FREE-CLUTCH-OBJ(G)));

(GUN-STATE(G) = GUN-DISABLED) => (GUN-STATE(REMOVE-GUN(G)) = GUN-ENABLED

& RELEASE-HOLSTER-SWITCH-OBJ(REMOVE-GUN(G))

= RELEASE-HOLSTER-SWITCH(RELEASE-HOLSTER-SWITCH-OBJ(G)));

GUN-STATE(G) = GUN-DISABLED => GUN-STATE(REPLACE-GUN(G)) = GUN-DISABLED;

GUN-STATE(G) = GUN-DISABLED => GUN-STATE(CUT-OFF-SUPPLY(G)) = GUN-DISABLED;

GUN-STATE(G) = GUN-DISABLED => GUN-STATE(DEPRESS-TRIGGER(G)) = GUN-DISABLED;

GUN-STATE(G) = GUN-DISABLED => GUN-STATE(RELEASE-TRIGGER(G)) = GUN-DISABLED;

GUN-STATE(G) = GUN-ENABLED => GUN-STATE(CUT-OFF-SUPPLY(G)) = GUN-ENABLED;

GUN-STATE(G) = GUN-ENABLED => GUN-STATE(REMOVE-GUN(G)) = GUN-ENABLED;

GUN-STATE(G) = GUN-ON => GUN-STATE(REPLACE-GUN(G)) = GUN-ON;

GUN-STATE(G) = GUN-ON => GUN-STATE(DEPRESS-TRIGGER(G)) = GUN-ON;

GUN-STATE(G) = GUN-ON => GUN-STATE(RELEASE-TRIGGER(G)) = GUN-ON;

GUN-STATE(G) = GUN-ON => GUN-STATE(REMOVE-GUN(G)) = GUN-ON

end-class
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class GUN-CLASS is

class-sort GUN-CLASS contained-class GUN

events

REMOVE-GUN: GUN-CLASS -> GUN-CLASS

RELEASE-TRIGGER: GUN-CLASS -> GUN-CLASS

DEPRESS-TRIGGER: GUN-CLASS -> GUN-CLASS

CUT-OFF-SUPPLY: GUN-CLASS -> GUN-CLASS

REPLACE-GUN: GUN-CLASS -> GUN-CLASS

NEW-GUN-CLASS: -> GUN-CLASS

axioms

NEW-GUN-CLASS() = EMPTY-SET;

fa ((G: GUN), GC: GUN-CLASS) in(G, GC) <=> in(REPLACE-GUN(G), REPLACE-GUN(GC));

fa ((G: GUN), GC: GUN-CLASS) in(G, GC) <=> in(CUT-OFF-SUPPLY(G), CUT-OFF-SUPPLY(GC));

fa ((G: GUN), GC: GUN-CLASS) in(G, GC) <=> in(DEPRESS-TRIGGER(G), DEPRESS-TRIGGER(GC));

fa ((G: GUN), GC: GUN-CLASS) in(G, GC) <=> in(RELEASE-TRIGGER(G), RELEASE-TRIGGER(GC));

fa ((G: GUN), GC: GUN-CLASS) in(G, GC) <=> in(REMOVE-GUN(G), REMOVE-GUN(GC))

end-class

class DISPLAY is

class-sort DISPLAY

import GRADE, AMOUNT, VOLUME

sort DISPLAY-STATE

operations ATTR-EQUAL: DISPLAY, DISPLAY -> BOOLEAN

attributes

COST: DISPLAY -> AMOUNT

VOLUME: DISPLAY -> VOLUME

PPG: DISPLAY -> AMOUNT

GRADE: DISPLAY -> GRADE

state-attributes DISPLAY-STATE: DISPLAY -> DISPLAY-STATE

methods

CREATE-DISPLAY: -> DISPLAY

UPDATE-DISPLAY: DISPLAY, COST, VOLUME -> DISPLAY

ZERO-OUT-DISPLAY: DISPLAY -> DISPLAY

states

ZERO-DISPLAY: -> DISPLAY-STATE

INCREMENT-DISPLAY: -> DISPLAY-STATE

events

RESET-DISPLAY: DISPLAY -> DISPLAY

PULSE: DISPLAY -> DISPLAY

NEW-DISPLAY: -> DISPLAY

axioms

ZERO-DISPLAY <> INCREMENT-DISPLAY;

ATTR-EQUAL(D1, D2) <=> (GRADE(D1) = GRADE(D2) & VOLUME(D1) = VOLUME(D2)

& COST(D1) = COST(D2));

DISPLAY-STATE(D) = ZERO-DISPLAY => COST(D) = 0 & VOLUME(D) = 0;

DISPLAY-STATE(D) = INCREMENT-DISPLAY => COST(D) >= 0 & VOLUME(D) >= 0;

COST(D) >= 0;

VOLUME(D) >= 0;

PPG(D) = COST(D) / VOLUME(D);

VOLUME(CREATE-DISPLAY(D)) = 0;

COST(CREATE-DISPLAY(D)) = 0;

GRADE(UPDATE-DISPLAY(D)) = GRADE(D);

VOLUME(UPDATE-DISPLAY(D)) = VOLUME(D) + 1;
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COST(UPDATE-DISPLAY(D)) = COST(D) + 1;

GRADE(ZERO-OUT-DISPLAY(D)) = GRADE(D);

COST(ZERO-OUT-DISPLAY(D)) = 0;

VOLUME(ZERO-OUT-DISPLAY(D)) = 0;

(DISPLAY-STATE(NEW-DISPLAY(D)) = ZERO-DISPLAY

& ATTR-EQUAL(NEW-DISPLAY(D), CREATE-DISPLAY(D)));

(DISPLAY-STATE(D) = ZERO-DISPLAY) => (DISPLAY-STATE(PULSE(D)) = INCREMENT-DISPLAY

& ATTR-EQUAL(PULSE(D), UPDATE-DISPLAY(D)));

(DISPLAY-STATE(D) = INCREMENT-DISPLAY)

=> (DISPLAY-STATE(RESET-DISPLAY(D)) = ZERO-DISPLAY

& ATTR-EQUAL(RESET-DISPLAY(D), ZERO-OUT-DISPLAY(D)));

(DISPLAY-STATE(D) = INCREMENT-DISPLAY) => (DISPLAY-STATE(PULSE(D)) = INCREMENT-DISPLAY

& ATTR-EQUAL(PULSE(D), UPDATE-DISPLAY(D)));

DISPLAY-STATE(D) = ZERO-DISPLAY => DISPLAY-STATE(RESET-DISPLAY(D)) = ZERO-DISPLAY;

DISPLAY-STATE(D) = ZERO-DISPLAY => DISPLAY-STATE(PULSE(D)) = ZERO-DISPLAY;

DISPLAY-STATE(D) = INCREMENT-DISPLAY => DISPLAY-STATE(PULSE(D)) = INCREMENT-DISPLAY;

end-class

class DISPLAY-CLASS is

class-sort DISPLAY-CLASS

contained-class DISPLAY

events

RESET-DISPLAY: DISPLAY-CLASS -> DISPLAY-CLASS

PULSE: DISPLAY-CLASS -> DISPLAY-CLASS

NEW-DISPLAY-CLASS: -> DISPLAY-CLASS

axioms

NEW-DISPLAY-CLASS() = EMPTY-SET;

fa (D:DISPLAY, DC:DISPLAY-CLASS) in(D, DC) <=> in(PULSE(D), PULSE(DC));

fa (D:DISPLAY, DC:DISPLAY-CLASS) in(D, DC) <=> in(RESET-DISPLAY(D), RESET-DISPLAY(DC));

end-class

class CLUTCH-MOTOR-ASSEMBLY is

class-sort CLUTCH-MOTOR-ASSEMBLY

import CLUTCH-MOTOR-ASSEMBLY-AGGREGATE

attributes

MOTOR-OBJ: CLUTCH-MOTOR-ASSEMBLY -> MOTOR-CLASS

CLUTCH-OBJ: CLUTCH-MOTOR-ASSEMBLY -> CLUTCH-CLASS

methods

CREATE-CLUTCH-MOTOR-ASSEMBLY: -> CLUTCH-MOTOR-ASSEMBLY

events NEW-CLUTCH-MOTOR-ASSEMBLY: -> CLUTCH-MOTOR-ASSEMBLY

axioms

ATTR-EQUAL(C1, C2) <=> (CLUTCH-OBJ(C1) = CLUTCH-OBJ(C2)

& MOTOR-OBJ(C1) = MOTOR-OBJ(C2));

ATTR-EQUAL(NEW-CLUTCH-MOTOR-ASSEMBLY(), CREATE-CLUTCH-MOTOR-ASSEMBLY());

SIZE(CLUTCH-OBJ(C)) = 1;

SIZE(MOTOR-OBJ(C)) = 1

end-class

class CLUTCH-MOTOR-ASSEMBLY-CLASS is

class-sort CLUTCH-MOTOR-ASSEMBLY-CLASS

contained-class CLUTCH-MOTOR-ASSEMBLY

events

NEW-CLUTCH-MOTOR-ASSEMBLY-CLASS: -> CLUTCH-MOTOR-ASSEMBLY-CLASS
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axioms NEW-CLUTCH-MOTOR-ASSEMBLY-CLASS() = EMPTY-SET

end-class

aggregate CLUTCH-MOTOR-ASSEMBLY-AGGREGATE is

nodes DISABLE-CLUTCH, FREE-CLUTCH, MOTOR-CLASS, MOTOR, START-FUEL,

CLUTCH-CLASS, CLUTCH

arcs DISABLE-CLUTCH -> CLUTCH: {DISABLE-CLUTCH-SORT -> CLUTCH},

FREE-CLUTCH -> CLUTCH: {FREE-CLUTCH-SORT -> CLUTCH},

MOTOR -> MOTOR-CLASS: {}, CLUTCH -> CLUTCH-CLASS: {},

DISABLE-CLUTCH -> MOTOR: {}, FREE-CLUTCH -> MOTOR: {},

START-FUEL -> CLUTCH: {}

end-aggregate

class GUN-HOLSTER-ASSEMBLY is

class-sort GUN-HOLSTER-ASSEMBLY

import GUN-HOLSTER-ASSEMBLY-AGGREGATE

attributes

GUN-OBJ: GUN-HOLSTER-ASSEMBLY -> GUN-CLASS

HOLSTER-OBJ: GUN-HOLSTER-ASSEMBLY -> HOLSTER-CLASS

methods CREATE-GUN-HOLSTER-ASSEMBLY: -> GUN-HOLSTER-ASSEMBLY

events NEW-GUN-HOLSTER-ASSEMBLY: -> GUN-HOLSTER-ASSEMBLY

axioms

ATTR-EQUAL(G1, G2) <=> (HOLSTER-OBJ(G1) = HOLSTER-OBJ(G2) & GUN-OBJ(G1) = GUN-OBJ(G2));

ATTR-EQUAL(NEW-GUN-HOLSTER-ASSEMBLY(), CREATE-GUN-HOLSTER-ASSEMBLY());

SIZE(HOLSTER-OBJ(G)) = 1;

SIZE(GUN-OBJ(G)) = 1

end-class

class GUN-HOLSTER-ASSEMBLY-CLASS is

class-sort GUN-HOLSTER-ASSEMBLY-CLASS

contained-class GUN-HOLSTER-ASSEMBLY

events NEW-GUN-HOLSTER-ASSEMBLY-CLASS: -> GUN-HOLSTER-ASSEMBLY-CLASS

axioms NEW-GUN-HOLSTER-ASSEMBLY-CLASS() = EMPTY-SET

end-class

aggregate GUN-HOLSTER-ASSEMBLY-AGGREGATE is

nodes RELEASE-HOLSTER-SWITCH, FREE-CLUTCH, ENGAGE-CLUTCH,

CLOSE-HOLSTER-SWITCH, DISABLE-PUMP, START-TIMER, GUN-CLASS,

GUN, HOLSTER-CLASS, HOLSTER

arcs RELEASE-HOLSTER-SWITCH -> HOLSTER: {RELEASE-HOLSTER-SWITCH-SORT -> HOLSTER},

CLOSE-HOLSTER-SWITCH -> HOLSTER: {CLOSE-HOLSTER-SWITCH-SORT -> HOLSTER},

GUN -> GUN-CLASS: {},

HOLSTER -> HOLSTER-CLASS: {},

RELEASE-HOLSTER-SWITCH -> GUN: {},

FREE-CLUTCH -> GUN: {},

ENGAGE-CLUTCH -> GUN: {},

CLOSE-HOLSTER-SWITCH -> GUN: {},

DISABLE-PUMP -> GUN: {},

START-TIMER -> GUN: {}

end-aggregate
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class PUMP is

class-sort PUMP

import PUMP-ID, RESET-DISPLAY, START-PUMP-MOTOR, PUMP-AGGREGATE

sort PUMP-STATE operations ATTR-EQUAL: PUMP, PUMP -> BOOLEAN

attributes

PUMP-ID: PUMP -> PUMP-ID

GUN-HOLSTER-ASSEMBLY-OBJ: PUMP -> GUN-HOLSTER-ASSEMBLY-CLASS

CLUTCH-MOTOR-ASSEMBLY-OBJ:

PUMP -> CLUTCH-MOTOR-ASSEMBLY-CLASS

DISPLAY-OBJ: PUMP -> DISPLAY-CLASS

START-PUMP-MOTOR-OBJ: PUMP -> START-PUMP-MOTOR-SORT

RESET-DISPLAY-OBJ: PUMP -> RESET-DISPLAY-SORT

state-attributes PUMP-STATE: PUMP -> PUMP-STATE

methods

CREATE-PUMP: PUMP-ID -> PUMP

ENABLE-PUMP: PUMP -> PUMP

states

PUMP-DISABLED: -> PUMP-STATE

PUMP-ENABLED: -> PUMP-STATE

events

ENABLE-PUMP: PUMP, PUMP-ID -> PUMP

NEW-PUMP: PUMP-ID -> PUMP

DISABLE-PUMP: PUMP -> PUMP

axioms

PUMP-DISABLED <> PUMP-ENABLED;

ATTR-EQUAL(P1, P2) <=>

(PUMP-ID(P1) = PUMP-ID(P2) & RESET-DISPLAY-OBJ(P1) = RESET-DISPLAY-OBJ(P2)

& START-PUMP-MOTOR-OBJ(P1) = START-PUMP-MOTOR-OBJ(P2)

& DISPLAY-OBJ(P1) = DISPLAY-OBJ(P2)

& CLUTCH-MOTOR-ASSEMBLY-OBJ(P1) = CLUTCH-MOTOR-ASSEMBLY-OBJ(P2)

& GUN-HOLSTER-ASSEMBLY-OBJ(P1) = GUN-HOLSTER-ASSEMBLY-OBJ(P2));

(PUMP-STATE(P) = PUMP-ENABLED) => (PUMP-STATE(DISABLE-PUMP(P)) = PUMP-DISABLED);

(PUMP-STATE(NEW-PUMP(P, A)) = PUMP-DISABLED

& ATTR-EQUAL(NEW-PUMP(P, A), CREATE-PUMP(P, A)));

(PUMP-STATE(P) = PUMP-DISABLED &(X = PUMP-ID(P)))

=> (PUMP-STATE(ENABLE-PUMP(P, X)) = PUMP-ENABLED

& RESET-DISPLAY-OBJ(ENABLE-PUMP(P, X)) = RESET-DISPLAY(RESET-DISPLAY-OBJ(P))

& START-PUMP-MOTOR-OBJ(ENABLE-PUMP(P, X))

= START-PUMP-MOTOR(START-PUMP-MOTOR-OBJ(P)));

(PUMP-STATE(P) = PUMP-DISABLED &(X <> PUMP-ID(P)))

=> PUMP-STATE(ENABLE-PUMP(P, X)) = PUMP-DISABLED;

PUMP-STATE(P) = PUMP-DISABLED => PUMP-STATE(DISABLE-PUMP(P)) = PUMP-DISABLED;

PUMP-STATE(P) = PUMP-ENABLED => PUMP-STATE(ENABLE-PUMP(P, X)) = PUMP-ENABLED

end-class

class REGULAR is

class-sort REGULAR < PUMP

import PUMP

methods CREATE-REGULAR: -> REGULAR

events NEW-REGULAR: -> REGULAR

axioms ATTR-EQUAL(NEW-REGULAR(), CREATE-REGULAR())

end-class
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class REGULAR-CLASS is

class-sort REGULAR-CLASS

contained-class REGULAR

import PUMP-CLASS

events NEW-REGULAR-CLASS: -> REGULAR-CLASS

axioms NEW-REGULAR-CLASS() = EMPTY-SET

end-class

class SOPHISTICATED is

class-sort SOPHISTICATED < PUMP

import PUMP

operations ATTR-EQUAL: SOPHISTICATED, SOPHISTICATED -> BOOLEAN

attributes

VOLUME-SELECT: SOPHISTICATED -> VOLUME

AMOUNT-SELECT: SOPHISTICATED -> AMOUNT

methods

CREATE-SOPHISTICATED: -> SOPHISTICATED

events

NEW-SOPHISTICATED: -> SOPHISTICATED

axioms

ATTR-EQUAL(S1, S2) <=> (PUMP.ATTR-EQUAL(S1, S2)

& AMOUNT-SELECT(S1) = AMOUNT-SELECT(S2) & VOLUME-SELECT(S1) = VOLUME-SELECT(S2));

AMOUNT-SELECT(CREATE-SOPHISTICATED(S)) = 0;

VOLUME-SELECT(CREATE-SOPHISTICATED(S)) = 0;

ATTR-EQUAL(NEW-SOPHISTICATED(), CREATE-SOPHISTICATED())

end-class

class SOPHISTICATED-CLASS is

class-sort SOPHISTICATED-CLASS

contained-class SOPHISTICATED

import PUMP-CLASS

events NEW-SOPHISTICATED-CLASS: -> SOPHISTICATED-CLASS

axioms NEW-SOPHISTICATED-CLASS() = EMPTY-SETend-class

class PUMP-CLASS is

class-sort PUMP-CLASS contained-class PUMP

events

ENABLE-PUMP: PUMP-CLASS, PUMP-ID -> PUMP-CLASS

DISABLE-PUMP: PUMP-CLASS -> PUMP-CLASS

NEW-PUMP-CLASS: -> PUMP-CLASS

axioms

NEW-PUMP-CLASS() = EMPTY-SET;

fa ((P: PUMP), PC: PUMP-CLASS) in(P, PC) <=> in(DISABLE-PUMP(P), DISABLE-PUMP(PC));

fa ((P: PUMP), (PC: PUMP-CLASS), X: PUMP-ID) in(P, PC)

<=> in(ENABLE-PUMP(P, X), ENABLE-PUMP(PC, X))

end-class

aggregate PUMP-AGGREGATE is

nodes FREE-CLUTCH, ENGAGE-CLUTCH, GUN-HOLSTER-ASSEMBLY-AGGREGATE,

GUN-HOLSTER-ASSEMBLY-CLASS, GUN-HOLSTER-ASSEMBLY,

CLUTCH-MOTOR-ASSEMBLY-AGGREGATE, CLUTCH-MOTOR-ASSEMBLY-CLASS,

CLUTCH-MOTOR-ASSEMBLY, GRADE, AMOUNT, VOLUME, DISPLAY-CLASS,

G-9



DISPLAY

arcs FREE-CLUTCH -> GUN-HOLSTER-ASSEMBLY-AGGREGATE: {},

FREE-CLUTCH -> CLUTCH-MOTOR-ASSEMBLY-AGGREGATE: {},

FREE-CLUTCH -> CLUTCH-MOTOR-ASSEMBLY-AGGREGATE: {FREE-CLUTCH-SORT -> CLUTCH},

ENGAGE-CLUTCH -> GUN-HOLSTER-ASSEMBLY-AGGREGATE: {},

ENGAGE-CLUTCH -> CLUTCH-MOTOR-ASSEMBLY-AGGREGATE: {ENGAGE-CLUTCH-SORT -> CLUTCH},

GUN-HOLSTER-ASSEMBLY-AGGREGATE -> GUN-HOLSTER-ASSEMBLY: {},

GUN-HOLSTER-ASSEMBLY -> GUN-HOLSTER-ASSEMBLY-CLASS: {},

CLUTCH-MOTOR-ASSEMBLY-AGGREGATE -> CLUTCH-MOTOR-ASSEMBLY: {},

CLUTCH-MOTOR-ASSEMBLY -> CLUTCH-MOTOR-ASSEMBLY-CLASS: {},

DISPLAY -> DISPLAY-CLASS: {},

GRADE -> DISPLAY: {},

AMOUNT -> DISPLAY: {},

VOLUME -> DISPLAY: {}

end-aggregate

aggregate DOMAIN-THEORY-AGGREGATE is

nodes DISABLE-PUMP, REGULAR-CLASS, REGULAR, SOPHISTICATED-CLASS,

SOPHISTICATED, PUMP-ID, START-PUMP-MOTOR, RESET-DISPLAY,

PUMP-AGGREGATE, PUMP-CLASS, PUMP

arcs DISABLE-PUMP -> PUMP: {DISABLE-PUMP-SORT -> PUMP},

DISABLE-PUMP -> PUMP-AGGREGATE: {},

REGULAR -> REGULAR-CLASS: {},

SOPHISTICATED -> SOPHISTICATED-CLASS: {},

START-PUMP-MOTOR -> PUMP-AGGREGATE: {START-PUMP-MOTOR-SORT -> MOTOR},

RESET-DISPLAY -> PUMP-AGGREGATE: {RESET-DISPLAY-SORT -> DISPLAY},

PUMP-AGGREGATE -> PUMP: {},

PUMP -> PUMP-CLASS: {},

PUMP-ID -> PUMP: {},

START-PUMP-MOTOR -> PUMP: {},

RESET-DISPLAY -> PUMP: {},

PUMP-CLASS -> REGULAR-CLASS: {},

PUMP -> REGULAR: {},

PUMP-CLASS -> SOPHISTICATED-CLASS: {},

PUMP -> SOPHISTICATED: {}

end-aggregate

event START-FUEL is

class-sort START-FUEL-SORT

events START-FUEL: START-FUEL-SORT -> START-FUEL-SORT

end-event

event FREE-CLUTCH is

class-sort FREE-CLUTCH-SORT

events FREE-CLUTCH: FREE-CLUTCH-SORT -> FREE-CLUTCH-SORT

end-event

event DISABLE-CLUTCH is

class-sort DISABLE-CLUTCH-SORT

events DISABLE-CLUTCH: DISABLE-CLUTCH-SORT -> DISABLE-CLUTCH-SORT

end-event
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event ENGAGE-CLUTCH is

class-sort ENGAGE-CLUTCH-SORT

events ENGAGE-CLUTCH: ENGAGE-CLUTCH-SORT -> ENGAGE-CLUTCH-SORT

end-event

event START-TIMER is

class-sort START-TIMER-SORT

events START-TIMER: START-TIMER-SORT -> START-TIMER-SORT

end-event

event CLOSE-HOLSTER-SWITCH is

class-sort CLOSE-HOLSTER-SWITCH-SORT

events

CLOSE-HOLSTER-SWITCH: CLOSE-HOLSTER-SWITCH-SORT -> CLOSE-HOLSTER-SWITCH-SORT

end-event

event RELEASE-HOLSTER-SWITCH is

class-sort RELEASE-HOLSTER-SWITCH-SORT

events RELEASE-HOLSTER-SWITCH: RELEASE-HOLSTER-SWITCH-SORT -> RELEASE-HOLSTER-SWITCH-SORT

end-event

event RESET-DISPLAY is

class-sort RESET-DISPLAY-SORT

events RESET-DISPLAY: RESET-DISPLAY-SORT -> RESET-DISPLAY-SORT

end-event

event START-PUMP-MOTOR is

class-sort START-PUMP-MOTOR-SORT

events START-PUMP-MOTOR: START-PUMP-MOTOR-SORT -> START-PUMP-MOTOR-SORT

end-event

event DISABLE-PUMP is

class-sort DISABLE-PUMP-SORT

events DISABLE-PUMP: DISABLE-PUMP-SORT -> DISABLE-PUMP-SORT

end-event

G.2 Faculty Student Database { Faculty Workload Functional Model

Figures G.1 through G.4 de�ne the Faculty Workload process. This functional model is

translated into the Faculty-Workload class in Section G.3.
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Figure G.1 Faculty Workload Functional Model

Figure G.2 Calculate-Faculty-Workload Functional Model

G-12



Figure G.3 Calculate-Student-Load Functional Model

Figure G.4 Calculate-Course-Load Functional Model
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G.3 Faculty Student Database O-Slang

class SECTION is

class-sort SECTION

import NUMBER

operations ATTR-EQUAL: SECTION, SECTION -> BOOLEAN

attributes NUMBER: SECTION -> NUMBER

methods CREATE-SECTION: -> SECTION

events NEW-SECTION: -> SECTION

axioms

ATTR-EQUAL(S1, S2) <=> (NUMBER(S1) = NUMBER(S2));

ATTR-EQUAL(NEW-SECTION(), CREATE-SECTION())

end-class

class SECTION-CLASS is

class-sort SECTION-CLASS

contained-class SECTION

events NEW-SECTION-CLASS: -> SECTION-CLASS

axioms NEW-SECTION-CLASS() = EMPTY-SET

end-class

class A-CLASS is

class-sort A-CLASS

import PROGRAM

operations ATTR-EQUAL: A-CLASS, A-CLASS -> BOOLEAN

attributes PROGRAM: A-CLASS -> PROGRAM

methods CREATE-A-CLASS: -> A-CLASS

events NEW-A-CLASS: -> A-CLASS

axioms

ATTR-EQUAL(A1, A2) <=> (PROGRAM(A1) = PROGRAM(A2));

ATTR-EQUAL(NEW-A-CLASS(), CREATE-A-CLASS())

end-class

class A-CLASS-CLASS is

class-sort A-CLASS-CLASS

contained-class A-CLASS

events NEW-A-CLASS-CLASS: -> A-CLASS-CLASS

axioms NEW-A-CLASS-CLASS() = EMPTY-SET

end-class

class QUARTER is

class-sort QUARTER

import END-DATE, START-DATE, QUATER-YEAR, QUARTER-NAME

operations ATTR-EQUAL: QUARTER, QUARTER -> BOOLEAN

attributes

QUARTER-NAME: QUARTER -> QUARTER-NAME

QUATER-YEAR: QUARTER -> QUATER-YEAR

START-DATE: QUARTER -> START-DATE

END-DATE: QUARTER -> END-DATE

methods CREATE-QUARTER: -> QUARTER

events NEW-QUARTER: -> QUARTER

axioms
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ATTR-EQUAL(Q1, Q2) <=> (END-DATE(Q1) = END-DATE(Q2)

& START-DATE(Q1) = START-DATE(Q2)

& QUATER-YEAR(Q1) = QUATER-YEAR(Q2)

& QUARTER-NAME(Q1) = QUARTER-NAME(Q2));

ATTR-EQUAL(NEW-QUARTER(), CREATE-QUARTER())

end-class

class QUARTER-CLASS is

class-sort QUARTER-CLASS

contained-class QUARTER

events NEW-QUARTER-CLASS: -> QUARTER-CLASS

axioms NEW-QUARTER-CLASS() = EMPTY-SET

end-class

class COURSE is

class-sort COURSE

import ABET-OTHER, ABET-MATH, ABET-SCIENCE, ABET-DESIGN, LAB-HOURS,

LEXTURE-HOURS, CREDIT-HOURS, DESCRIPTION, TITLE, NUM, TYPE

operations ATTR-EQUAL: COURSE, COURSE -> BOOLEAN

attributes

TYPE: COURSE -> TYPE

NUM: COURSE -> NUM

TITLE: COURSE -> TITLE

DESCRIPTION: COURSE -> DESCRIPTION

CREDIT-HOURS: COURSE -> CREDIT-HOURS

LEXTURE-HOURS: COURSE -> LEXTURE-HOURS

LAB-HOURS: COURSE -> LAB-HOURS

ABET-DESIGN: COURSE -> ABET-DESIGN

ABET-SCIENCE: COURSE -> ABET-SCIENCE

ABET-MATH: COURSE -> ABET-MATH

ABET-OTHER: COURSE -> ABET-OTHER

methods CREATE-COURSE: -> COURSE

events NEW-COURSE: -> COURSE

axioms

ATTR-EQUAL(C1, C2) <=> (ABET-OTHER(C1) = ABET-OTHER(C2)

& ABET-MATH(C1) = ABET-MATH(C2)

& ABET-SCIENCE(C1) = ABET-SCIENCE(C2)

& ABET-DESIGN(C1) = ABET-DESIGN(C2)

& LAB-HOURS(C1) = LAB-HOURS(C2)

& LEXTURE-HOURS(C1) = LEXTURE-HOURS(C2)

& CREDIT-HOURS(C1) = CREDIT-HOURS(C2)

& DESCRIPTION(C1) = DESCRIPTION(C2) & TITLE(C1) = TITLE(C2)

& NUM(C1) = NUM(C2) & TYPE(C1) = TYPE(C2));

ATTR-EQUAL(NEW-COURSE(), CREATE-COURSE())

end-class

class COURSE-CLASS is

class-sort COURSE-CLASS contained-class COURSE

events NEW-COURSE-CLASS: -> COURSE-CLASS

axioms NEW-COURSE-CLASS() = EMPTY-SET

end-class

G-15



class FACULTY is

class-sort FACULTY

import ACADEMIC-RANK, SEX, SSAN, AGE, BIRTHDATE, FIRSTNAME,

INITIAL, LAST-NAME

operations ATTR-EQUAL: FACULTY, FACULTY -> BOOLEAN

attributes

LAST-NAME: FACULTY -> LAST-NAME

INITIAL: FACULTY -> INITIAL

FIRSTNAME: FACULTY -> FIRSTNAME

BIRTHDATE: FACULTY -> BIRTHDATE

AGE: FACULTY -> AGE

SSAN: FACULTY -> SSAN

SEX: FACULTY -> SEX

ACADEMIC-RANK: FACULTY -> ACADEMIC-RANK

methods CREATE-FACULTY: -> FACULTY

events NEW-FACULTY: -> FACULTY

axioms

ATTR-EQUAL(F1, F2) <=> (ACADEMIC-RANK(F1) = ACADEMIC-RANK(F2)

& SEX (F1) = SEX (F2) & SSAN(F1) = SSAN(F2)

& BIRTHDATE(F1) = BIRTHDATE(F2) & FIRSTNAME(F1) = FIRSTNAME(F2)

& INITIAL(F1) = INITIAL(F2) & LAST-NAME(F1) = LAST-NAME(F2));

ATTR-EQUAL(NEW-FACULTY(), CREATE-FACULTY())

end-class

class FACULTY-CLASS is

class-sort FACULTY-CLASS

contained-class FACULTY

events NEW-FACULTY-CLASS: -> FACULTY-CLASS

axioms NEW-FACULTY-CLASS() = EMPTY-SET

end-class

class STUDENT is

class-sort STUDENT

import GPA, WEIGHT, HEIGHT, SEX, SSAN, AGE, BIRTH-DATE, FIRST-NAME,

INIT, LASTNAME

operations ATTR-EQUAL: STUDENT, STUDENT -> BOOLEAN

attributes

LASTNAME: STUDENT -> LASTNAME

INIT: STUDENT -> INIT

FIRST-NAME: STUDENT -> FIRST-NAME

BIRTH-DATE: STUDENT -> BIRTH-DATE

AGE: STUDENT -> AGE

SSAN: STUDENT -> SSAN

SEX: STUDENT -> SEX

HEIGHT: STUDENT -> HEIGHT

WEIGHT: STUDENT -> WEIGHT

GPA: STUDENT -> GPA

methods CREATE-STUDENT: -> STUDENT

events NEW-STUDENT: -> STUDENT

axioms

ATTR-EQUAL(S1, S2) <=> (GPA(S1) = GPA(S2) & WEIGHT(S1) = WEIGHT(S2)

& HEIGHT(S1) = HEIGHT(S2) & SEX (S1) = SEX (S2)

& SSAN(S1) = SSAN(S2) & BIRTH-DATE(S1) = BIRTH-DATE(S2)

& FIRST-NAME(S1) = FIRST-NAME(S2) & INIT(S1) = INIT(S2)
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& LASTNAME(S1) = LASTNAME(S2));

ATTR-EQUAL(NEW-STUDENT(), CREATE-STUDENT())

end-class

class STUDENT-CLASS is

class-sort STUDENT-CLASS

contained-class STUDENT

events NEW-STUDENT-CLASS: -> STUDENT-CLASS

axioms NEW-STUDENT-CLASS() = EMPTY-SET

end-class

class FACULTY-WORKLOAD is

class-sort FACULTY-WORKLOAD

import FACULTY-WORKLOAD-AGGREGATE

operations

ATTR-EQUAL: FACULTY-WORKLOAD, FACULTY-WORKLOAD -> BOOLEAN

GET-SECTIONS: TEACHING, FACULTY -> SECTION-CLASS

COMPUTE-CREDITS: TAUGHT-AS, SECTION-CLASS -> INTEGER

CALCULATE-COURSE-LOAD: FACULTY-WORKLOAD, FACULTY -> INTEGER

GET-STUDENTS-ADVISED: ADVISES, FACULTY -> STUDENT-CLASS

COUNT-STUDENTS: MEMBER-OF, STUDENT-CLASS -> INTEGER

CALCULATE-STUDENT-LOAD: FACULTY-WORKLOAD, FACULTY -> INTEGER, INTEGER

CALCULATE-WORKLOAD: INTEGER, INTEGER, INTEGER -> WORKLOAD

CALCULATE-FACULTY-WORKLOAD: FACULTY-WORKLOAD, NAME -> WORKLOAD

GET-FACULTY: FACULTY-CLASS, NAME, NAME -> FACULTY

GET-COURSE: COURSE-CLASS, NUM, TYPE -> COURSE

GET-SECTIONS-TAUGHT: SECTION-CLASS, FACULTY -> SECTION-CLASS

GET-SECTIONS-OFFERED: SECTION-CLASS, COURSE -> SECTION-CLASS

COMPUTE-SECTION-UNION: SECTION-CLASS, SECTION-CLASS -> TIMES-TAUGHT

COUNT-TIMES-TAUGHT: SECTION-CLASS, COURSE, FACULTY -> TIMES-TAUGHT

GET-TEACHES: TEACHES, FACULTY, COURSE -> TEACHES-LINK

attributes

STUDENT-OBJ: FACULTY-WORKLOAD -> STUDENT-CLASS

FACULTY-OBJ: FACULTY-WORKLOAD -> FACULTY-CLASS

SECTION-OBJ: FACULTY-WORKLOAD -> SECTION-CLASS

COURSE-OBJ: FACULTY-WORKLOAD -> COURSE-CLASS

QUARTER-OBJ: FACULTY-WORKLOAD -> QUARTER-CLASS

A-CLASS-OBJ: FACULTY-WORKLOAD -> A-CLASS-CLASS

MEMBER-OF-OBJ: FACULTY-WORKLOAD -> MEMBER-OF

ADVISES-OBJ: FACULTY-WORKLOAD -> ADVISES

TEACHES-OBJ: FACULTY-WORKLOAD -> TEACHES

OFFERING-OBJ: FACULTY-WORKLOAD -> OFFERING

TAUGHT-AS-OBJ: FACULTY-WORKLOAD -> TAUGHT-AS

SCHEDULED-IN-OBJ: FACULTY-WORKLOAD -> SCHEDULED-IN

TEACHING-OBJ: FACULTY-WORKLOAD -> TEACHING

methods

CREATE-FACULTY-WORKLOAD: -> FACULTY-WORKLOAD

MODIFY-TEACHES: TEACHES, TIMES-TAUGHT, TEACHES-LINK -> TEACHES

UPDATE-TEACHES: FACULTY-WORKLOAD, NUM, NAME, TYPE -> FACULTY-WORKLOAD

events

CALCULATE-FACULTY-WORKLOAD-EVENT: FACULTY-WORKLOAD, NAME -> WORKLOAD

UPDATE-TEACHES-EVENT: FACULTY-WORKLOAD, NUM, NAME, TYPE -> FACULTY-WORKLOAD

NEW-FACULTY-WORKLOAD: -> FACULTY-WORKLOAD

axioms
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ATTR-EQUAL (F1, F2) <=> (A-CLASS-OBJ (F1) = A-CLASS-OBJ (F2)

& QUARTER-OBJ (F1) = QUARTER-OBJ (F2)

& COURSE-OBJ (F1) = COURSE-OBJ (F2)

& SECTION-OBJ (F1) = SECTION-OBJ (F2)

& FACULTY-OBJ (F1) = FACULTY-OBJ (F2)

& STUDENT-OBJ (F1) = STUDENT-OBJ (F2));

UPDATE-TEACHES (F, NUM, NAME, TYPE) = F1

& TEACHES-OBJ (F1) = MODIFY-TEACHES (TEACHES-OBJ (F), TIMES-TAUGHT, TEACHES-LINK)

& TEACHES-LINK = GET-TEACHES(TEACHES-OBJ (F), FACULTY, COURSE)

& TIMES-TAUGHT = COUNT-TIMES-TAUGHT (SECTION-OBJ (F), COURSE, FACULTY)

& COURSE = GET-COURSE (COURSE-OBJ (F), NUM, TYPE)

& FACULTY = GET-FACULTY (FACULTY-OBJ (F), NAME, NAME);

COUNT-TIMES-TAUGHT (SECTION-OBJ (F), COURSE, FACULTY) = TIMES-TAUGHT

& TIMES-TAUGHT = COMPUTE-SECTION-UNION (C, F)

& C = GET-SECTIONS-OFFERED (SECTION-OBJ (F), COURSE)

& F = GET-SECTIONS-TAUGHT (SECTION-OBJ (F), FACULTY);

CALCULATE-FACULTY-WORKLOAD (F, NAME) = WORKLOAD

& WORKLOAD = CALCULATE-WORKLOAD (PHDS, MS, CREDITS)

& <MS, PHDS> = CALCULATE-STUDENT-LOAD (F, FACULTY)

& CREDITS = CALCULATE-COURSE-LOAD (F, FACULTY);

CALCULATE-STUDENT-LOAD (F, FACULTY) = <MS, PHDS>

& MS = COUNT-STUDENTS (MEMBER-OF-OBJ (F), STUDENTS)

& STUDENTS = GET-STUDENTS-ADVISED (ADVISES-OBJ (F), FACULTY);

CALCULATE-COURSE-LOAD (F, FACULTY) = CREDITS

& CREDITS = COMPUTE-CREDITS (TAUGHT-AS-OBJ (F), SECTIONS)

& SECTIONS = GET-SECTIONS (TEACHING-OBJ (F), FACULTY);

ATTR-EQUAL (NEW-FACULTY-WORKLOAD (), CREATE-FACULTY-WORKLOAD ());

ATTR-EQUAL (UPDATE-TEACHES-EVENT (F, N, A, T), UPDATE-TEACHES (F, N, A, T));

ATTR-EQUAL (CALCULATE-FACULTY-WORKLOAD-EVENT (F, N),

CALCULATE-FACULTY-WORKLOAD (F, N))

end-class

class FACULTY-WORKLOAD-CLASS is

class-sort FACULTY-WORKLOAD-CLASS

contained-class FACULTY-WORKLOAD

events NEW-FACULTY-WORKLOAD-CLASS: -> FACULTY-WORKLOAD-CLASS

axioms NEW-FACULTY-WORKLOAD-CLASS() = EMPTY-SET

end-class

aggregate FACULTY-WORKLOAD-AGGREGATE is

nodes MEMBER-OF, MEMBER-OF-LINK, ADVISES, ADVISES-LINK, TEACHES,

TEACHES-LINK, OFFERING, OFFERING-LINK, TAUGHT-AS,

TAUGHT-AS-LINK, SCHEDULED-IN, SCHEDULED-IN-LINK, TEACHING,

TEACHING-LINK, GPA, WEIGHT, HEIGHT, BIRTH-DATE, FIRST-NAME,

INIT, LASTNAME, STUDENT-CLASS, STUDENT, ACADEMIC-RANK, SEX,

SSAN, AGE, BIRTHDATE, FIRSTNAME, INITIAL, LAST-NAME,

FACULTY-CLASS, FACULTY, NUMBER, SECTION-CLASS, SECTION,

ABET-OTHER, ABET-MATH, ABET-SCIENCE, ABET-DESIGN, LAB-HOURS,

LEXTURE-HOURS, CREDIT-HOURS, DESCRIPTION, TITLE, NUM, TYPE,

COURSE-CLASS, COURSE,END-DATE, START-DATE, QUATER-YEAR,

QUARTER-NAME, QUARTER-CLASS, QUARTER, PROGRAM, A-CLASS-CLASS,

A-CLASS, TRIV-127: TRIV, TRIV-128: TRIV, TRIV-129: TRIV,

TRIV-130: TRIV, TRIV-131: TRIV, TRIV-132: TRIV, TRIV-133: TRIV,

TRIV-134: TRIV, TRIV-135: TRIV, TRIV-136: TRIV, TRIV-137: TRIV,
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TRIV-138: TRIV, TRIV-139: TRIV, TRIV-140: TRIV

arcs TRIV-140 -> MEMBER-OF-LINK: { E -> STUDENT-OBJ},

TRIV-140 -> STUDENT: { E -> STUDENT},

TRIV-139 -> MEMBER-OF-LINK: { E -> A-CLASS-OBJ},

TRIV-139 -> A-CLASS: { E -> A-CLASS},

MEMBER-OF-LINK -> MEMBER-OF: {},

TRIV-138 -> ADVISES-LINK: { E -> FACULTY-OBJ},

TRIV-138 -> FACULTY: { E -> FACULTY},

TRIV-137 -> ADVISES-LINK: { E -> STUDENT-OBJ},

TRIV-137 -> STUDENT: { E -> STUDENT},

ADVISES-LINK -> ADVISES: {},

TRIV-136 -> TEACHES-LINK: { E -> COURSE-OBJ},

TRIV-136 -> COURSE: { E -> COURSE},

TRIV-135 -> TEACHES-LINK: { E -> FACULTY-OBJ},

TRIV-135 -> FACULTY: { E -> FACULTY},

TEACHES-LINK -> TEACHES: {},

TRIV-134 -> OFFERING-LINK: { E -> QUARTER-OBJ},

TRIV-134 -> QUARTER: { E -> QUARTER},

TRIV-133 -> OFFERING-LINK: { E -> COURSE-OBJ},

TRIV-133 -> COURSE: { E -> COURSE},

OFFERING-LINK -> OFFERING: {},

TRIV-132 -> TAUGHT-AS-LINK: { E -> SECTION-OBJ},

TRIV-132 -> SECTION: { E -> SECTION},

TRIV-131 -> TAUGHT-AS-LINK: { E -> COURSE-OBJ},

TRIV-131 -> COURSE: { E -> COURSE},

TAUGHT-AS-LINK -> TAUGHT-AS: {},

TRIV-130 -> SCHEDULED-IN-LINK: { E -> SECTION-OBJ},

TRIV-130 -> SECTION: { E -> SECTION},

TRIV-129 -> SCHEDULED-IN-LINK: { E -> QUARTER-OBJ},

TRIV-129 -> QUARTER: { E -> QUARTER},

SCHEDULED-IN-LINK -> SCHEDULED-IN: {},

TRIV-128 -> TEACHING-LINK: { E -> SECTION-OBJ},

TRIV-128 -> SECTION: { E -> SECTION},

TRIV-127 -> TEACHING-LINK: { E -> FACULTY-OBJ},

TRIV-127 -> FACULTY: { E -> FACULTY},

TEACHING-LINK -> TEACHING: {},

STUDENT -> STUDENT-CLASS: {},

FACULTY -> FACULTY-CLASS: {},

SECTION -> SECTION-CLASS: {},

COURSE -> COURSE-CLASS: {},

QUARTER -> QUARTER-CLASS: {},

A-CLASS -> A-CLASS-CLASS: {},

GPA -> STUDENT: {},

WEIGHT -> STUDENT: {},

HEIGHT -> STUDENT: {},

BIRTH-DATE -> STUDENT: {},

FIRST-NAME -> STUDENT: {},

INIT -> STUDENT: {},

LASTNAME -> STUDENT: {},

ACADEMIC-RANK -> FACULTY: {},

SEX -> STUDENT: {},

SEX -> FACULTY: {},

SSAN -> STUDENT: {},

SSAN -> FACULTY: {},

AGE -> STUDENT: {},

AGE -> FACULTY: {},
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BIRTHDATE -> FACULTY: {},

FIRSTNAME -> FACULTY: {},

INITIAL -> FACULTY: {},

LAST-NAME -> FACULTY: {},

NUMBER -> SECTION: {},

ABET-OTHER -> COURSE: {},

ABET-MATH -> COURSE: {},

ABET-SCIENCE -> COURSE: {},

ABET-DESIGN -> COURSE: {},

LAB-HOURS -> COURSE: {},

LEXTURE-HOURS -> COURSE: {},

CREDIT-HOURS -> COURSE: {},

DESCRIPTION -> COURSE: {},

TITLE -> COURSE: {},

NUM -> COURSE: {},

TYPE -> COURSE: {},

END-DATE -> QUARTER: {},

START-DATE -> QUARTER: {},

QUATER-YEAR -> QUARTER: {},

QUARTER-NAME -> QUARTER: {},

PROGRAM -> A-CLASS: {}

end-aggregate

link TEACHING-LINK is

class-sort TEACHING-LINK

sort SECTION, FACULTY

operations ATTR-EQUAL: TEACHING-LINK, TEACHING-LINK -> BOOLEAN

attributes

FACULTY-OBJ: TEACHING-LINK -> FACULTY

SECTION-OBJ: TEACHING-LINK -> SECTION

methods CREATE-TEACHING-LINK: FACULTY, SECTION -> TEACHING-LINK

events NEW-TEACHING-LINK: FACULTY, SECTION -> TEACHING-LINK

axioms

ATTR-EQUAL(T1, T2) <=> (SECTION-OBJ(T1) = SECTION-OBJ(T2)

& FACULTY-OBJ(T1) = FACULTY-OBJ(T2));

SECTION-OBJ(CREATE-TEACHING-LINK(T, S, F)) = S;

FACULTY-OBJ(CREATE-TEACHING-LINK(T, S, F)) = F;

ATTR-EQUAL(NEW-TEACHING-LINK(T, S, F), (CREATE-TEACHING-LINK(T, S, F)))

end-link

association TEACHING is

class-sort TEACHING

link-class TEACHING-LINK

sort SECTION-CLASS, FACULTY-CLASS

operations

IMAGE: TEACHING, SECTION -> FACULTY-CLASS

IMAGE: TEACHING, FACULTY -> SECTION-CLASS

events NEW-TEACHING: -> TEACHING

axioms

NEW-TEACHING() = EMPTY-SET;

fa ((S: TEACHING), (T: SECTION), A: FACULTY)

(ex (F: TEACHING-LINK) in(F, S) & TEACHING-OBJ(F) = T & TEACHING-OBJ(F) = A)

<=> in(A, image(S, T));

fa ((S: TEACHING), (T: SECTION), A: FACULTY)
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(ex (F: TEACHING-LINK) in(F, S) & TEACHING-OBJ(F) = A & TEACHING-OBJ(F) = T)

<=> in(T, image(S, A))

end-association

link SCHEDULED-IN-LINK is

class-sort SCHEDULED-IN-LINK

sort SECTION, QUARTER

operations ATTR-EQUAL: SCHEDULED-IN-LINK, SCHEDULED-IN-LINK -> BOOLEAN

attributes

QUARTER-OBJ: SCHEDULED-IN-LINK -> QUARTER

SECTION-OBJ: SCHEDULED-IN-LINK -> SECTION

methods

CREATE-SCHEDULED-IN-LINK:

QUARTER, SECTION -> SCHEDULED-IN-LINK

events NEW-SCHEDULED-IN-LINK: QUARTER, SECTION -> SCHEDULED-IN-LINK

axioms

ATTR-EQUAL(S1, S2) <=> (SECTION-OBJ(S1) = SECTION-OBJ(S2)

& QUARTER-OBJ(S1) = QUARTER-OBJ(S2));

SECTION-OBJ(CREATE-SCHEDULED-IN-LINK(S, A, Q)) = A;

QUARTER-OBJ(CREATE-SCHEDULED-IN-LINK(S, A, Q)) = Q;

ATTR-EQUAL (NEW-SCHEDULED-IN-LINK(S, A, Q), (CREATE-SCHEDULED-IN-LINK(S, A, Q)))

end-link

association SCHEDULED-IN is

class-sort SCHEDULED-IN

link-class SCHEDULED-IN-LINK

sort SECTION-CLASS, QUARTER-CLASS

operations

IMAGE: SCHEDULED-IN, SECTION -> QUARTER-CLASS

IMAGE: SCHEDULED-IN, QUARTER -> SECTION-CLASS

events NEW-SCHEDULED-IN: -> SCHEDULED-IN

axioms

NEW-SCHEDULED-IN() = EMPTY-SET;

fa ((S: SCHEDULED-IN), A: SECTION) SIZE(IMAGE(S, A)) = 1;

fa ((S: SCHEDULED-IN), (A: SECTION), B: QUARTER)

(ex (Q: SCHEDULED-IN-LINK) in(Q, S) & SCHEDULED-IN-OBJ(Q) = A

& SCHEDULED-IN-OBJ(Q) = B) <=> in(B, image(S, A));

fa ((S: SCHEDULED-IN), (A: SECTION), B: QUARTER)

(ex (Q: SCHEDULED-IN-LINK) in(Q, S) & SCHEDULED-IN-OBJ(Q) = B

& SCHEDULED-IN-OBJ(Q) = A) <=> in(A, image(S, B))

end-association

link TAUGHT-AS-LINK is

class-sort TAUGHT-AS-LINK

sort SECTION, COURSE

operations ATTR-EQUAL: TAUGHT-AS-LINK, TAUGHT-AS-LINK -> BOOLEAN

attributes

COURSE-OBJ: TAUGHT-AS-LINK -> COURSE

SECTION-OBJ: TAUGHT-AS-LINK -> SECTION

methods CREATE-TAUGHT-AS-LINK: COURSE, SECTION -> TAUGHT-AS-LINK

events NEW-TAUGHT-AS-LINK: COURSE, SECTION -> TAUGHT-AS-LINK

axioms

ATTR-EQUAL(T1, T2) <=> (SECTION-OBJ(T1) = SECTION-OBJ(T2)
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& COURSE-OBJ(T1) = COURSE-OBJ(T2));

SECTION-OBJ(CREATE-TAUGHT-AS-LINK(T, S, C)) = S;

COURSE-OBJ(CREATE-TAUGHT-AS-LINK(T, S, C)) = C;

ATTR-EQUAL(NEW-TAUGHT-AS-LINK(T, S, C), (CREATE-TAUGHT-AS-LINK(T, S, C)))

end-link

association TAUGHT-AS is

class-sort TAUGHT-AS

link-class TAUGHT-AS-LINK

sort SECTION-CLASS, COURSE-CLASS

operations

IMAGE: TAUGHT-AS, SECTION -> COURSE-CLASS

IMAGE: TAUGHT-AS, COURSE -> SECTION-CLASS

events NEW-TAUGHT-AS: -> TAUGHT-AS

axioms

NEW-TAUGHT-AS() = EMPTY-SET;

fa ((T: TAUGHT-AS), S: SECTION) SIZE(IMAGE(T, S)) = 1;

fa ((S: TAUGHT-AS), (T: SECTION), A: COURSE)

(ex (C: TAUGHT-AS-LINK) in(C, S) & TAUGHT-AS-OBJ(C) = T & TAUGHT-AS-OBJ(C) = A)

<=> in(A, image(S, T));

fa ((S: TAUGHT-AS), (T: SECTION), A: COURSE)

(ex (C: TAUGHT-AS-LINK) in(C, S) & TAUGHT-AS-OBJ(C) = A & TAUGHT-AS-OBJ(C) = T)

<=> in(T, image(S, A))

end-association

link OFFERING-LINK is

class-sort OFFERING-LINK

sort QUARTER, COURSE

operations ATTR-EQUAL: OFFERING-LINK, OFFERING-LINK -> BOOLEAN

attributes

COURSE-OBJ: OFFERING-LINK -> COURSE

QUARTER-OBJ: OFFERING-LINK -> QUARTER

methods CREATE-OFFERING-LINK: COURSE, QUARTER -> OFFERING-LINK

events NEW-OFFERING-LINK: COURSE, QUARTER -> OFFERING-LINK

axioms

ATTR-EQUAL(O1, O2) <=> (QUARTER-OBJ(O1) = QUARTER-OBJ(O2)

& COURSE-OBJ(O1) = COURSE-OBJ(O2));

QUARTER-OBJ(CREATE-OFFERING-LINK(O, Q, C)) = Q;

COURSE-OBJ(CREATE-OFFERING-LINK(O, Q, C)) = C;

ATTR-EQUAL(NEW-OFFERING-LINK(O, Q, C), (CREATE-OFFERING-LINK(O, Q, C)))

end-link

association OFFERING is

class-sort OFFERING

link-class OFFERING-LINK

sort QUARTER-CLASS, COURSE-CLASS

operations

IMAGE: OFFERING, QUARTER -> COURSE-CLASS

IMAGE: OFFERING, COURSE -> QUARTER-CLASS

events NEW-OFFERING: -> OFFERING

axioms

NEW-OFFERING() = EMPTY-SET;

fa ((Q: OFFERING), (O: QUARTER), A: COURSE)
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(ex (C: OFFERING-LINK) in(C, Q) & OFFERING-OBJ(C) = O & OFFERING-OBJ(C) = A)

<=> in(A, image(Q, O));

fa ((Q: OFFERING), (O: QUARTER), A: COURSE)

(ex (C: OFFERING-LINK) in(C, Q) & OFFERING-OBJ(C) = A & OFFERING-OBJ(C) = O)

<=> in(O, image(Q, A))

end-association

link TEACHES-LINK is

class-sort TEACHES-LINK

sort COURSE, FACULTY

operations ATTR-EQUAL: TEACHES-LINK, TEACHES-LINK -> BOOLEAN

attributes

FACULTY-OBJ: TEACHES-LINK -> FACULTY

COURSE-OBJ: TEACHES-LINK -> COURSE

methods CREATE-TEACHES-LINK: FACULTY, COURSE -> TEACHES-LINK

events NEW-TEACHES-LINK: FACULTY, COURSE -> TEACHES-LINK

axioms

ATTR-EQUAL(T1, T2) <=>(COURSE-OBJ(T1) = COURSE-OBJ(T2)

& FACULTY-OBJ(T1) = FACULTY-OBJ(T2));

COURSE-OBJ(CREATE-TEACHES-LINK(T, C, F)) = C;

FACULTY-OBJ(CREATE-TEACHES-LINK(T, C, F)) = F;

ATTR-EQUAL(NEW-TEACHES-LINK(T, C, F), (CREATE-TEACHES-LINK(T, C, F)))

end-link

association TEACHES is

class-sort TEACHES

link-class TEACHES-LINK

sort COURSE-CLASS, FACULTY-CLASS

operations

IMAGE: TEACHES, COURSE -> FACULTY-CLASS

IMAGE: TEACHES, FACULTY -> COURSE-CLASS

events NEW-TEACHES: -> TEACHES

axioms

ATTR-EQUAL(T1, T2) <=>(AVERAGE-SIZE(T1) = AVERAGE-SIZE(T2)

& TIMES-TAUGHT(T1) = TIMES-TAUGHT(T2));

NEW-TEACHES() = EMPTY-SET;

fa ((C: TEACHES), (T: COURSE), A: FACULTY)

(ex (F: TEACHES-LINK) in(F, C) & TEACHES-OBJ(F) = T & TEACHES-OBJ(F) = A)

<=> in(A, image(C, T));

fa ((C: TEACHES), (T: COURSE), A: FACULTY)

(ex (F: TEACHES-LINK) in(F, C) & TEACHES-OBJ(F) = A & TEACHES-OBJ(F) = T)

<=> in(T, image(C, A))

end-association

link ADVISES-LINK is

class-sort ADVISES-LINK

sort FACULTY, STUDENT

operations ATTR-EQUAL: ADVISES-LINK, ADVISES-LINK -> BOOLEAN

attributes

STUDENT-OBJ: ADVISES-LINK -> STUDENT

FACULTY-OBJ: ADVISES-LINK -> FACULTY

methods CREATE-ADVISES-LINK: STUDENT, FACULTY -> ADVISES-LINK

events NEW-ADVISES-LINK: STUDENT, FACULTY -> ADVISES-LINK
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axioms

ATTR-EQUAL(A1, A2) <=> (FACULTY-OBJ(A1) = FACULTY-OBJ(A2)

& STUDENT-OBJ(A1) = STUDENT-OBJ(A2));

FACULTY-OBJ(CREATE-ADVISES-LINK(A, F, S)) = F;

STUDENT-OBJ(CREATE-ADVISES-LINK(A, F, S)) = S;

ATTR-EQUAL(NEW-ADVISES-LINK(A, F, S), (CREATE-ADVISES-LINK(A, F, S)))

end-link

association ADVISES is

class-sort ADVISES

link-class ADVISES-LINK

sort FACULTY-CLASS, STUDENT-CLASS

operations

IMAGE: ADVISES, FACULTY -> STUDENT-CLASS

IMAGE: ADVISES, STUDENT -> FACULTY-CLASS

events NEW-ADVISES: -> ADVISES

axioms

NEW-ADVISES() = EMPTY-SET;

fa ((F: ADVISES), (A: FACULTY), B: STUDENT)

(ex (S: ADVISES-LINK) in(S, F) & ADVISES-OBJ(S) = A & ADVISES-OBJ(S) = B)

<=> in(B, image(F, A));

fa ((F: ADVISES), (A: FACULTY), B: STUDENT)

(ex (S: ADVISES-LINK) in(S, F) & ADVISES-OBJ(S) = B & ADVISES-OBJ(S) = A)

<=> in(A, image(F, B))

end-association

link MEMBER-OF-LINK is

class-sort MEMBER-OF-LINK

sort STUDENT, A-CLASS

operations ATTR-EQUAL: MEMBER-OF-LINK, MEMBER-OF-LINK -> BOOLEAN

attributes

A-CLASS-OBJ: MEMBER-OF-LINK -> A-CLASS

STUDENT-OBJ: MEMBER-OF-LINK -> STUDENT

methods CREATE-MEMBER-OF-LINK: A-CLASS, STUDENT -> MEMBER-OF-LINK

events NEW-MEMBER-OF-LINK: A-CLASS, STUDENT -> MEMBER-OF-LINK

axioms

ATTR-EQUAL(M1, M2) <=> (STUDENT-OBJ(M1) = STUDENT-OBJ(M2)

& A-CLASS-OBJ(M1) = A-CLASS-OBJ(M2));

STUDENT-OBJ(CREATE-MEMBER-OF-LINK(M, S, A)) = S;

A-CLASS-OBJ(CREATE-MEMBER-OF-LINK(M, S, A)) = A;

ATTR-EQUAL(NEW-MEMBER-OF-LINK(M, S, A), (CREATE-MEMBER-OF-LINK(M, S, A)))

end-link

association MEMBER-OF is

class-sort MEMBER-OF

link-class MEMBER-OF-LINK

sort STUDENT-CLASS, A-CLASS-CLASS

operations

IMAGE: MEMBER-OF, STUDENT -> A-CLASS-CLASS

IMAGE: MEMBER-OF, A-CLASS -> STUDENT-CLASS

events NEW-MEMBER-OF: -> MEMBER-OF

axioms

NEW-MEMBER-OF() = EMPTY-SET;
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fa ((M: MEMBER-OF), S: STUDENT) SIZE(IMAGE(M, S)) = 1;

fa ((S: MEMBER-OF), (M: STUDENT), B: A-CLASS)

(ex (A: MEMBER-OF-LINK) in(A, S) & MEMBER-OF-OBJ(A) = M & MEMBER-OF-OBJ(A) = B)

<=> in(B, image(S, M));

fa ((S: MEMBER-OF), (M: STUDENT), B: A-CLASS)

(ex (A: MEMBER-OF-LINK) in(A, S) & MEMBER-OF-OBJ(A) = B & MEMBER-OF-OBJ(A) = M)

<=> in(M, image(S, B))

end-association

aggregate DOMAIN-THEORY-AGGREGATE is

nodes FACULTY-WORKLOAD-AGGREGATE, FACULTY-WORKLOAD-CLASS, FACULTY-WORKLOAD

arcs FACULTY-WORKLOAD-AGGREGATE -> FACULTY-WORKLOAD: {},

FACULTY-WORKLOAD -> FACULTY-WORKLOAD-CLASS: {}

end-aggregate
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