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Abstract: The complexity and scope of software systems continues to grow. 
One approach to dealing with this growing complexity is the use of intelligent, 
multi-agent systems. However, due in part to its relative infancy when 
compared to other software paradigms, the use of multi-agent systems has yet 
to be used extensively in industry. One reason is the lack of industrial strength 
methods and tools to support multi-agent development. This paper presents the 
organisation-based multi-agent software engineering (O-MaSE) methodology 
framework, which integrates a set of concrete technologies aimed at facilitating 
industrial acceptance. Specifically, O-MaSE is a customisable agent-oriented 
methodology based on consistent, well-defined concepts supported by plug-ins 
to an industrial strength development environment, agentTool III. 
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1 Introduction 

Today’s software industry is tasked with building ever more complex software 
applications. While software development methods and techniques have made great 
strides over the last 30 years, the demand being placed on software is increasing even 
more rapidly. Businesses today are demanding applications that operate autonomously, 
adapt in response to dynamic environments, and interact with other distributed 
applications in order to provide wide-ranging solutions (Jennings et al., 1998; Luck et al., 
2005). This insatiable demand has left the software industry constantly looking for new 
computing metaphors and approaches to allow it to cope. 

Multi-agent system (MAS) technology is a promising approach capable of meeting 
these new demands (Luck et al., 2005). Its central notion – the intelligent  
agent – encapsulates the appropriate characteristics (i.e., autonomy, pro-activity, 
reactivity, and interactivity) necessary to meet the requirements of these new 
applications. Unfortunately, there is a disconnection between the advanced technology 
being created by the multi-agent community and its application in industrial software. 
The obstacles to industrial adoption have been the focus of several discussions. Jennings 
et al. (1998) mention two major obstacles to widespread adoption of agent technologies 
in industry: 

1 the lack of complete methodologies and processes to help designers to specify, 
analyse, and design agent-based applications 

2 the lack of industrial-strength agent-based toolkits. 

Luck et al. (2005) also suggest that the lack of mature methodologies and programming 
tools are the culprit. In a special session at AAMAS 2008, leading MAS researchers and 
engineers were asked to discuss the obstacles currently impeding industrial adoption of 
MAS technology. While there were a variety of opinions, Georgeff (2009) and DeLoach 
(2009a) suggested that standard definitions of agent concepts and agent-oriented 
methodologies are one of the keys to advancing MAS into the mainstream while 
Winikoff (2009) and Calisti and Rimassa (2009) both argued for producing concrete tools 
to support MAS techniques and methodologies. 

Odell et al. (2001) advise that acceptance of any new technology requires techniques 
to reduce the inherent risk of that technology. They go on to assert that acceptance of new 
software development methods requires standard representations for artefacts supporting 



   

 

   

   
 

   

   

 

   

   246 S.A. DeLoach and J.C. García-Ojeda    
 

    
 
 

   

   
 

   

   

 

   

       
 

analysis, specification, and design. Thus, they propose two approaches for gaining 
industry acceptance of MAS technology. First, they suggest presenting the new methods 
as incremental extensions to known and trusted methods. Second, they recommend 
providing engineering tools to support the new methods that are similar to existing 
industrial practice. 

An alternative approach to defining industrial strength methodologies that has gained 
support in the agent-oriented software engineering community is situational method 
engineering, which promotes flexibility in MAS methods and processes (Low et al., 
2009; Molesini et al., 2009; Cossentino et al., 2007). Henderson-Sellers (2005) was one 
of the first to argue that situational method engineering was the key to creating industrial 
strength methodologies as it allows the creation of standard approaches that are widely 
supported while continuing to allow innovation and research. Situational method 
engineering allows method engineers to construct methods (a.k.a. methodologies) from a 
set of existing method fragments (Brinkkemper, 1996). 

As method engineering is a young field, several terms are used ambiguously in the 
literature. Chief among these are method, methodology, process model and process. In 
this paper, the terms method and methodology are used synonymously with process 
model while the term process is used to denote an instance of a process model or method 
that is enacted to develop a software system. Some exceptions to this convention exist in 
the naming of tool components as they have retained their historical names (e.g., the 
‘agentTool process editor’). 

This paper presents an overview of the organisation-based multi-agent software 
engineering (O-MaSE) methodology framework, which integrates a set of concrete 
technologies aimed at facilitating industrial acceptance through situational method 
engineering. Specifically, O-MaSE is a customisable agent-oriented methodology based 
on consistent, well-defined concepts supported by plug-ins to an industrial strength 
development environment. 

The goal of the O-MaSE methodology framework is to allow method engineers to 
build custom agent-oriented methods using a set of method fragments, all of which are 
based on a common meta-model. To achieve this, O-MaSE is defined in terms of a  
meta-model, a set of method fragments, and a set of method construction guidelines. The 
O-MaSE meta-model defines a set of analysis, design, and implementation concepts and a 
set of constraints between them. The method fragments define a set of work products, a 
set of activities that produce work products, and the performers of those activities. 
Finally, method construction guidelines define how the method fragments may be 
combined to create O-MaSE compliant methods. In general, an O-MaSE compliant 
method is an instance of the O-MaSE methodology in which appropriate method 
fragments are assembled into a method such that the method construction guidelines are 
satisfied. Critical to the O-MaSE methodology framework is the agentTool III (aT3) 
integrated development environment that supports the creation of custom O-MaSE 
compliant methods as well as providing the editors, verification tools, and code 
generators for creating complex, adaptive systems using MAS technology. 

O-MaSE has its roots in the original multi-agent systems engineering (MaSE) 
methodology (DeLoach et al., 2001). While MaSE provided a good starting point  
for developing MASs, it had several problems. First, MaSE produced MASs with a fixed 
organisation. Agents developed in MaSE played a limited number of roles and had a 
limited ability to change those roles, regardless of their individual capabilities. In 
addition, MaSE did not include the notion of sub-teams and had no mechanism for 



   

 

   

   
 

   

   

 

   

    O-MaSE: a customisable approach 247    
 

    
 
 

   

   
 

   

   

 

   

       
 

modelling interactions with the environment. Finally, MaSE was utterly inflexible. MaSE 
prescribed a strict set of models that built upon each other; there were no guidelines to 
help a developer deviate from the established method. The aT3 toolset is the successor to 
the original agentTool that was developed in 2000–2001 to support MaSE (DeLoach and 
Wood, 2001). The aT3 toolset is a plug-in to the eclipse platform and extends the eclipse 
process framework (EPF) to handle method customisation. 

While many pressing issues have been tackled in O-MaSE, at least for the moment, 
many tasks critical for a complete software methodology such as management, product 
deployment, and testing and evaluation have been intentionally ignored. Management and 
deployment issues are generally applicable over a wide variety of software projects and 
thus existing approaches can and should be applied. Testing and evaluation is not yet 
included in O-MaSE, as current work has focused strictly on the analysis, design, and 
implementation of MASs; while many traditional techniques can be applied to MASs, the 
need for unique approaches and tools is recognised. Existing research can be used to 
extend O-MaSE in this area (Poutakidis et al., 2009; Nguyen et al., 2008; Lam and 
Barber, 2005; Coelho et al., 2006). 

Following a discussion of background material in Section 2, O-MaSE is introduced in 
Section 3 in terms of its meta-model, method fragments, and guidelines. The aT3 toolkit 
is introduced in Section 4 while Section 5 illustrates the use of O-MaSE on two 
examples. Section 6 presents a comparison of O-MaSE with related methodologies, while 
Section 7 provides a final discussion and describes future work. 

2 Background 

Method engineering is an approach where method engineers construct methods (a.k.a. 
methodologies) from a set of method fragments as opposed to modifying or tailoring 
monolithic, ‘one-size-fits-all’ methods to suit their needs. Method fragments are 
generally created by extracting useful tasks and techniques from existing methods and 
redefining them in terms of a common meta-model. The fragments are then stored in a 
repository for later use. During method creation, method engineers select suitable method 
fragments from the repository and assemble them into complete methods meeting project 
specific requirements (Brinkkemper, 1996). 

While intuitively straightforward, the application of method engineering for 
developing agent-oriented applications is non-trivial. Specifically, there is currently no 
consensus on the main elements distinguishing MASs. While concepts such as agents, 
roles, and goals appear in many MAS techniques and methodologies, the definitions of 
those concepts are inconsistent and often unrelated. Thus, Beydoun et al. (2005) (along 
with others) have suggested that prior to developing a set of method fragments, a well 
defined meta-model of common agent-oriented concepts should be developed and agreed 
upon similar to the object-oriented community. 

Three similar meta-models exist to help apply method engineering to the production 
of custom methods: SPEM 2.0 (OMG, 2008), OPEN (Firesmith and Henderson-Sellers, 
2002), and SEMDM (a.k.a. ISO/IEC 24744) (ISO/IEC, 2007). The software and systems 
process engineering meta-model (SPEM) is “a process engineering meta-model as well as 
conceptual framework, which can provide the necessary concepts for modelling, 
documenting, presenting, managing, interchanging, and enacting developments 
processes” (OMG, 2008). SPEM distinguishes between reusable method content and the 
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way it is applied in actual methodologies. SPEM method content captures and defines the 
key tasks, roles, and work products1 that are used in a software development 
methodology. As shown in Figure 1, tasks define the work that is performed by roles to 
use an input set of work products to create and output set of work products. 

Figure 1 Key SPEM 2.0 method content concepts (see online version for colours) 

 

Source: Diagram derived from Firesmith and Henderson-Sellers (2002) 

Development methodologies are assembled into a set of activities, populated with tasks 
and their associated roles and work products. Thus, activities are aggregates of either 
basic content or other activities. SPEM defines three special types of activities: phases, 
iterations and processes. Phases are special activities that take a period of time and end 
with a major milestone or set of work products. Iterations are activities that group other 
activities that are often repeated. Finally, processes are special activities that specify the 
structure of a software development project. 

In a similar vein, the OPEN process framework (OPF) uses a meta-model-based 
framework that allows designers to select method fragments from a repository in order to 
construct custom methods (Firesmith and Henderson-Sellers, 2002). The OPF is defined 
in three layers: M2, M1, and M0. The M2 layer includes the OPF meta-model, which 
defines the types of method fragments that can be created. The OPF meta-model defines 
methodologies as consisting of stages, work units (activities, tasks, and techniques), 
producers, work products, and languages. The M1 layer includes a repository of method 
fragments and a methodology specific meta-model defining the concepts used within 
those fragments. The method engineer uses predefined method fragments from M1 to 
creating custom methods that are enacted at the M0 level on a specific project. 

ISO/IEC 24744 defines the software engineering meta-model for development 
methodologies (SEMDM), a competing meta-model for defining methodologies. 
SEMDM is unique in its ability to formalise the notion of dual-layer modelling using 
powertypes (Gonzalez-Perez and Henderson-Sellers, 2006). Dual layer modelling refers 
to the situation where instances of methodology concepts (e.g., requirements 
specification, architectural design) are used as classes by developers to create instances of 
those classes (e.g., specific specifications and designs) during the enactment of the 
methodology. SEMDM defines methodologies as consisting of templates of stages, work 
units, work products, model units, and producers along with a set of resources, which 
define the languages, notations, constraints, outcomes and guidelines used. SEMDM also 
defines an action that captures whether particular task of a work unit creates, modifies, or 
uses specific work products. 

The core concepts of SPEM, OPF and SEMDM are parallel. SPEM roles are 
essentially OPF and SEMDM producers; SPEM activities are similar, but not identical, to 
OPF and SEMDM work units; work products are analogous between the three. The 
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difference between activities and work units is that OPF and SEMDM work units 
describe what is to be done, but not when while SPEM mixes the two. O-MaSE was 
originally defined using the OPF. However, due to the popularity of SPEM in the  
agent-oriented software engineering community and the use of the SPEM-based EPF to 
implement the aT3 process editor (APE) (see Section 4), O-MaSE has been redefined here 
in terms of SPEM 2.0. 

In a related effort, the Foundation for Physical Agents Technical Committee  
(FIPA-TC) Methodology group attempted to define reusable method fragments  
from existing agent-oriented methodologies (Seidita et al., 2006). As part of this effort, 
the group is currently defining a design process documentation template 
(http://www.fipa.org/subgroups/DPDF-WG.html), which uses SPEM 2.0 as its base. 

3 The O-MaSE methodology framework 

The O-MaSE methodology framework is based on two meta-models: SPEM 2.0 and the 
O-MaSE meta-model. The SPEM meta-model defines methodology-related concepts 
while the O-MaSE meta-model defines the product related concepts. As shown in  
Figure 2, the definition of O-MaSE consists of three main components: the O-MaSE 
meta-model, method fragments, and guidelines. In general, a method engineer creates 
new O-MaSE compliant methods in aT3 by selecting O-MaSE fragments and combining 
them into a method that is consistent with the method construction guidelines. O-MaSE 
fragments are instances of SPEM elements such as tasks, work products, and roles, and 
are defined in terms of concepts from the O-MaSE meta-model. For example, the  
O-MaSE role model is an instance the SPEM work product and is defined in terms of 
roles, goals and capabilities, each of which are defined in the O-MaSE meta-model. In 
this section, the three O-MaSE components are defined. First, the O-MaSE meta-model is 
defined. Next, a discussion of O-MaSE phases is given followed by an explanation of the 
method fragments. Finally, the guidelines governing the construction of O-MaSE 
compliant methods are examined. 

Figure 2 O-MaSE methodology framework (see online version for colours) 
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3.1 Meta-model 

The O-MaSE meta-model defines the main concepts and relationships used to define 
MASs. The O-MaSE meta-model is based on an organisational approach (DeLoach and 
Valenzuela, 2007; DeLoach et al., 2008) and includes notions that allow for hierarchical, 
holonic, and team-based decomposition of organisations (Horling and Lesser, 2004). The 
O-MaSE meta-model was derived from the organisation model for adaptive 
computational systems (OMACS). OMACS captures the knowledge required of a 
system’s organisational structure and capabilities to allow it to organise and reorganise at 
runtime (DeLoach et al., 2008). The key decision in OMACS-based systems is 
determining which agent to assign to which role in order to achieve which goal. 

Using models such as OMACS at runtime has recently become an important research 
area as it and allows efficient and effective runtime adaptation (Blair et al., 2009). While 
O-MaSE does not focus solely on OMACS-based systems, O-MaSE does provide direct 
support for such systems. As shown in Figure 3, an organisation is composed of five 
entities: goals, roles, agents, domain model, and policies (shaded entities correspond 
directly to OMACS entities and multiplicities of 0..* are omitted for clarity). Each of 
these entities is discussed below. 

Figure 3 O-MaSE meta-model (see online version for colours) 

 

Note: Shaded entities are from OMACS. 

In the traditional artificial intelligence sense, a goal represents a desirable state (Russell 
and Norvig, 2003) or the objective of a computational procedure (van Lamsweerde et al., 
1998). In agent-oriented circles, van Riemsdijk et al. (2008, p.714) define a goal as “a 
mental attitude representing preferred progressions of a particular MAS”. This definition 
captures the notion of individually distinct goals that require specific actions to reach a 
particular state. As such, O-MaSE uses goals to define the objectives of the organisation. 
A role defines a position within an organisation whose behaviour is expected to achieve a 
particular goal or set of goals (due to the naming conflict between O-MaSE roles and 
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methodology-related roles, the term method-role is used to refer to methodology-related 
roles throughout the remainder of this paper). Agents are assigned to play those roles and 
perform the behaviour expected of those roles. Agents are autonomous entities that can 
perceive and act upon their environment (Russell and Norvig, 2002). To carry out 
perception and action, an agent possesses a set of capabilities. Capabilities can be used to 
capture soft abilities (i.e., algorithms) or hard abilities (i.e., physical sensors or effectors). 
An agent that possesses all the capabilities required to play a role, may be assigned that 
role in the organisation. Capabilities can be defined as 

1 a set of sub-capabilities 

2 a set of actions that may interact with the environment 

3 a plan that uses actions in specific ways. 

Organisational agents (OAs) are organisations that act as agents in a higher-level 
organisation and thus capture the notion of organisational hierarchy. As agents, OAs may 
possess capabilities, coordinate with other agents, and be assigned to play roles. OAs are 
similar to the notion of non-atomic holons in the ASPECS methodology (Cossentino et 
al., 2009). Therefore, OAs represent an extension to the traditional agent-group-role 
(AGR) model (Ferber and Gutknecht, 1998; Ferber et al., 2003) and the organisational 
meta-model proposed by Odell et al. (2005). 

The domain model is used to capture the key elements of the environment in which 
agents will operate. These elements are captured as domain object types from the 
environment, which includes agents, and the relationships between those object types. It 
can also be used to capture general environment properties that describe how the objects 
behave and interact (DeLoach and Valenzuela, 2007). A designer may use entities 
defined in the O-MaSE model (goals, roles, agents, etc.) along with entities defined in the 
domain model to specify organisational policies to constrain how an organisation may 
behave in a particular situation. Policies are often used to specify liveness and safety 
properties of the system being designed. 

Protocols define interactions between roles or between the organisation and external 
actors. Protocols are generally defined as patterns of communication between such 
entities (Odell et al., 2001, 2000). A protocol can be of two types, external or internal. 
External protocols specify interactions between the organisation and external actors (i.e., 
humans or other software applications), while internal protocols specify interactions 
between agents playing specific roles in the organisation. Either messages or actions can 
be used to define protocols. Messages are typically used for communications; however, 
actions may be used to modify the environment as a means of communication (Holland 
and Melhuish, 1999). 

3.2 Phases 

SPEM uses phases to organise the various activities of a development method. While  
O-MaSE explicitly defines activities and tasks (see overview in Table 1), it does not 
define specific phases. Because there are numerous ways to organise activities, O-MaSE 
makes no commitments to a predefined set of phases. Instead, O-MaSE allows method 
engineers to organise Activities in different ways based on project need. For instance,  
O-MaSE has been used to support modern iterative, incremental approaches as proposed 
by Royce (1998) and as implemented in the popular rational unified process (RUP) (Kroll 
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and Kruchten, 2003; Kruchten, 2000). However, O-MaSE has also been used in several 
projects using much simpler approaches such as the classical waterfall model (Royce, 
1970). 
Table 1 O-MaSE method fragments 

Activities Tasks Work products 
created/modified 

Responsible  
method-roles 

Requirements 
gathering 

Requirements 
specification 

Requirements spec Requirements engineer 

Problem analysis Model goals Goal model Goal modeller 

 Refine goals   

 Model domain Domain model Domain modeller 

Solution analysis Model organisation 
interfaces 

Organisation model Organisation modeller 

 Model roles Role model Role modeller 

 Define roles Role description 
document 

 

 Define role goals Role goal model  

Architecture design Model agent classes Agent class model Agent class modeller 

 Model protocols Protocol model Protocol modeller 

 Model policies Policy model Policy modeller 

Low level design Model plans Agent plan model Plan modeller 

 Model capabilities Capabilities model Capabilities modeller 

 Model actions Action model Action modeller 

Code generation Generate code Source code Programmer 

Figure 4 shows an example of using an iterative, incremental approach with O-MaSE. 
Here, the goal of the inception phase is to establish what is and is not part of the product. 
The inception phase is broken into two iterations, the first focusing solely on problem 
analysis, while the second continues to refine the problem analysis while doing some 
preliminary solution analysis. The elaboration phase, whose goal is to demonstrate an 
architecture that can support key requirements, is also broken into two iterations. In 
Iteration 3, the solution analysis is further refined while initial architecture design  
work begins. In Iteration 4, solution analysis is finalised, more architecture design is 
carried out, and preliminary low level design is done to support an executable prototype. 
The goal of the construction phase is to produce an acceptable version of the system 
within cost and schedule. It starts with Iteration 5 where the architecture design is 
finalised and the low level design and code generation of the initial features is performed. 
Iteration 6 continues with the low level design and code generation for the next set of 
features. 

Figure 5 shows an example of using O-MaSE with a waterfall approach. In this case, 
there are three main phases: requirements analysis, design, and implementation. In this 
case, the main activities are allocated as expected, with problem and solution analysis 
done in the requirements analysis phase, architecture and low level design done during 
the design phase and code generation done during the implementation phase. 

sdeloach
Line

sdeloach
Line

sdeloach
Line

sdeloach
Line

sdeloach
Line
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Figure 4 Using iterative, incremental phases in O-MaSE (see online version for colours) 

 

Figure 5 Using waterfall phases with O-MaSE (see online version for colours) 

 

Therefore, the definition of a complete O-MaSE compliant method requires the method 
engineer to distribute activities and tasks to phases, as defined by the overall approach 
(iterative, incremental, waterfall, etc.). As this will be unique for each system being 
developed, there are no hard and fast rules on what activities should be placed in which 
phase. However, there are dependencies between the various fragments that must be 
maintained. These dependencies are captured as method construction guidelines as 
described in Section 3.6. As the construction of O-MaSE compliant methods can be 
somewhat confusing, method construction is supported by the APE as described in 
Section 4.2; this support includes automated validation of methods using the method 
construction guidelines. 

3.3 Activities 

Table 1 shows six activities currently covered by O-MaSE: requirements gathering, 
problem analysis, solution analysis, architecture design, low level design, and code 
generation. Requirements gathering is the process of identifying software requirements 
from a variety of sources. Typically, requirements are classified as either functional 
requirements, which define the functions required by the software, or non-functional 
requirements, which specify traits of the software such as performance quality and 
usability that are not directly related to software function. 
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The goal of the problem analysis is to capture the purpose of the product and 
document the environment in which it will be deployed. O-MaSE captures this 
information in a goal model, which captures the purpose of the product, and a domain 
model that captures the environment in which the product exits. The objective of solution 
analysis is to translate the purpose and environment of the project into a description of 
the required system behaviour and interactions with external entities such as users and 
existing systems. This behaviour is captured as roles and interactions in the organisation 
model and role model. 

Once the goals, environment, behaviour, and interactions of the system are known, 
architecture design is used to create a high-level description of the main system 
components and their interactions. The architecture is captured in agent class models, 
protocols, and policies. This high-level description is then used to drive low level design, 
where the detailed specification of the internal agent behaviour is defined. Low-level 
agent behaviour is captured in plan, capability and action models. This low-level 
specification of agent behaviour is then used to implement the individual agents during 
code generation. While not currently defined in O-MaSE, system creation ends with 
testing, evaluation, and deployment of the system. Fortunately, the nature of the O-MaSE 
framework allows it to be extended based on current research and state of practice 
methods and techniques and thus incorporation of these activities is straightforward. 

3.4 Tasks 

Next, the typical tasks, work products, and method-roles used in O-MaSE are defined. 
While Table 1 shows tasks as being associated with specific activities, this is not always 
the case. As with the allocation of activities to phases, O-MaSE does not require specific 
Tasks to be performed in specific activities. For instance, even though the model 
protocols task is generally part of the architecture design activity, there is nothing to 
preclude a method engineer from including it in a solution analysis activity to define the 
protocols between roles defined in a role model. The only hard and fast requirements are 
contained in the method construction guidelines in Section 3.6. 

Each task is defined below with a general description of the task objective along with 
a description of the steps used to produce the associated work products. 

Throughout this paper, O-MaSE concepts, tasks, and models are illustrated using a 
temperature monitoring system (TMS) example as derived from (Bakshi et al., 2005). 
The TMS is a distributed, sensor system, where each node has a processor and a 
temperature system. During operation, each node monitors the temperature gradient 
between itself and its neighbours (those within one-hop). If this temperature gradient 
exceeds a given threshold, a local alarm occurs; if the node can corroborate this reading 
with a larger set of neighbours (those within ten metres) it triggers a global alarm. Each 
node is responsible to ‘push’ its temperature reading to its neighbours at a set rate. 
However, when a node needs to corroborate a temperature gradient, the node is required 
to ‘pull’ that data from all nodes within ten metres. 

3.4.1 Requirements specification 

There are several techniques for gathering software requirements. In general, there are 
several steps in requirements specification including elicitation, analysis, specification, 
negotiation, and validation. In many cases, traditional techniques (Pressman, 2010) for 
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gathering requirements (e.g., data flow diagrams, use cases, and event-response tables) 
will be sufficient, while in other cases newer approaches focused toward multi-agent 
systems are applicable (Castro et al., 2002; Fuentes-Fernández et al., 2009). O-MaSE 
assumes that either traditional or multi-agent focused requirements gathering techniques 
are sufficient and thus does not stipulate a specific technique; the method engineer is free 
to use any existing technique deemed appropriate. 

3.4.2 Model goals 

The objective of the model goals task is to transform the initial system requirements into 
a set of structured goals for the system. Goal models are widespread in many  
agent-oriented methodologies (DeLoach et al., 2001; Giorgini et al., 2005; Padgham and 
Winikoff, 2002). The deliverable of the model goals task is an initial goal model. 

The typical approach to modelling goals is AND/OR decomposition (van 
Lamsweerde and Letier, 2000). The objective of this approach is to refine the overall goal 
of the system into a set of sub-goals. If all the sub-goals must be achieved in order to 
achieve the parent goal, the parent is AND-refined, while if the sub-goals represent 
alternative ways to achieve the parent goal, the parent goal is OR-refined. 

An O-MaSE goal model for the TMS system is shown in Figure 6. The overall  
goal, monitor temperature is AND-refined into three sub-goals: MonitorTemp, 
CorroborateTemp, and NotifyUser. Essentially, the goal model creates a high-level 
specification of what the system should do. Each goal in the model is annotated by the 
keyword ‘goal’. A line between two goals with an ‘and’ keyword at the parent end is 
used to represent AND-refinement while a line with an ‘or’ keyword at the parent is used 
to represent OR-refinement. 

Figure 6 Goal model (see online version for colours) 

 

3.4.3 Refine goals 

The refine goals task captures the dynamic aspects of the goal model and further defines 
each goal using a technique called attribute-precede-trigger analysis. The result is a 
refined version of the goal model called a goal model for dynamic systems (GMoDS) 
goal model (DeLoach and Miller, 2010). 

The refine goals task is used to 

1 capture any sequential constraints among goals 

2 determine which goals should be created in response to events that occur at runtime 

3 document parameters required to define a unique goal state. 
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If goal A must be completed before goal B can be pursued, then it is said that goal A 
precedes goal B. As the TMS system operates in parallel, there are no precedence 
relations in the goal model. New goals are often generated in response to specific events 
that occur within the environment or system and multiple instances of such goals may be 
active at any time. In the TMS system, new instances of the CorroborateTemp and 
NotifyUser goals are created whenever a local alarm or global alarm is raised. When 
multiple instances of a goal may exist, parameters are used to uniquely define and 
identify each goal. With a NotifyUser goal, which is created each time a global alarm is 
raised, a user would need to know the temperature reading as well as the location of the 
node that raised the alarm. 

Figure 7 Refined goal model (see online version for colours) 

 

A GMoDS version of the goal model for the TMS system is shown in Figure 7. Triggers 
are represented by arrows decorated with an event name and a set of event parameters. 
When instantiated, the initialise goal is assigned to an agent to determine how many 
MonitorTemp goals should be created to monitor the entire area. These MonitorTemp 
goals are assigned to agents who use their sensing capabilities to monitor the temperature. 
When the sensed temperature exceeds the preset threshold t, the agent raises the 
localTempAlarm(temp,loc) event that triggers the instantiation of the CorroborateTemp 
goal. This goal is assigned to an appropriate agent who attempts to corroborate the 
reading. If it does, the agent raises a globalAlarm(temp,loc) event, which causes the 
instantiation of a NotifyUser goal. The NotifyUser goal is then assigned to an agent 
capable of interacting with the user. 

3.4.4 Model domain 

The aim of the model domain task is to capture the object types, relationships, and 
behaviours that define the domain in which agents will sense and act. O-MaSE uses a 
simple domain model to capture the object types that agents interact and reason about. 
The domain model captures the environment as a set of object types and agents that are 
situated in the environment. Object types are defined by a name and a set of attributes. In 
O-MaSE, domain object types are similar to object classes rather than instances. 



   

 

   

   
 

   

   

 

   

    O-MaSE: a customisable approach 257    
 

    
 
 

   

   
 

   

   

 

   

       
 

The domain model is developed using traditional domain modelling or domain 
analysis techniques common to many object oriented development methodologies 
(Prieto-Diaz and Arango, 1991). Object types from the domain model are commonly used 
to specify goal and event parameters in the goal model, to define message parameters in 
the protocol model, to specify constraints in the policy model, and to specify the result of 
agent actions in the action model. 

The domain model of the TMS system is shown in Figure 8. As this is a simple 
system, the model is somewhat small. However, in order to be able to understand the goal 
model of Figure 7, one must understand the semantics of each attribute and parameter. 
Thus, the domain model defines the object types temperature, threshold, and rate as base 
floating point types while area is defined as a circle with a radius. Each location is 
denoted by an xLoc and yLoc attribute. 

Figure 8 Domain model (see online version for colours) 

 

3.4.5 Model organisation interfaces 

The objective of the model organisation interfaces task is to identify the organisation’s 
interfaces with external entities, whether they are other agents, organisations, or actors 
external to the system. 

To capture the organisation’s interfaces, various classes of external entities are 
scrutinised to determine if the organisation needs to interact with them. If the 
organisation is a sub-organisation (an OA) of a higher-level organisation, the interactions 
between the roles/agents in the higher-level organisation and the OA define the initial set 
of interactions with this sub-organisation. However, if this is a stand-alone, or top-level 
organisation, the developer should considers interactions required with users as well as 
existing systems or databases to find the appropriate interfaces. Once identified, protocols 
are identified between the organisation and the external entities. There should be a 
protocol for each type of interaction and thus there can be more than one protocol with a 
given external entity. The interfaces are defined in an organisation model, which depicts 
a single organisation interacting with a set of external actors. All external entities are 
modelled as external actors. The details of the protocols are defined later via the model 
protocols task. 
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Figure 9 shows the organisation model for the TMS system. The TMS system is a 
single-level organisation that interfaces directly with a single user. The user issues 
controls the system via the commands protocol, while the system provides feedback to 
the user via the alarms interaction protocol. 

Figure 9 Organisation model (see online version for colours) 

 

3.4.6 Model roles 

The model roles task identifies all the roles in the organisation as well as their 
interactions with each other and with external actors. The result of the model roles task is 
a role model. The goal of role modelling is to assign each leaf goal from the organisation 
goal model to a specific role. As a first cut, a single role is often created for each leaf 
goal. However, it is sometimes beneficial to enable a single role to achieve multiple types 
of goals. However, it is also true that organisations that are more flexible can be designed 
by having multiple roles capable of achieving the same type of goal. The designer must 
also identify interactions between roles as well as with external actors. Interactions with 
external actors can be derived directly from the organisation model if provided. 

Figure 10 Role model (see online version for colours) 

 

The TMS role model in Figure 10 defines four roles, one for each leaf goal in  
Figure 7: Initiator, TempMonitor, TempCorroborator, and UserInterface. Each role 
requires various capabilities, which include hardware sensors, such as ReadTemperature, 
as well as software algorithm such as GradientComputation. Although not stipulated in 
the model itself, the TempMonitor and TempCorroborator roles are designed to run on 
remote sensor platforms while the UserInterface and InitiatorRoles can execute on any 
capable computer. Notice that the user actor defined in the organisation model is also in  
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the role model. Each role is further defined using either the define roles or the define role 
goals tasks described next. 

3.4.7 Define roles 

The purpose of the define roles task is to define the behaviour and capabilities required 
for an agent to play a role. In addition, constraints may also be specified. In the define 
roles task, the designer specifies the capabilities required by a role, the goals the role is 
able to achieve, constraints associated with the role, and the plan(s) that implement the 
role (If the required capabilities and goals that can be achieved by the roles have already 
been defined in the role model, these may be omitted). These plans are developed using 
model plan task as described in Section 3.4.12. The role description document for the 
TMS system is shown in Table 2. In this case, there is a single plan associated with each 
role. If a role may be used to achieve multiple goals, then the role may possess multiple 
plans. 
Table 2 Role description document 

Role Achieves Requires Plan Constraints 

Initiator Initialise AreaDivision DivideArea None 
UserInterface NotifyUser UserInterface ControlSys None 
TempMonitor MonitorTemp ReadTemperature 

GradientComputation 
Monitor None 

TempCorroborator CorroborateTemp TempSensor 
Location 

Corroborate None 

3.4.8 Define role goals 

In the define role goals task, role behaviour is defined in terms of a role goal model. The 
starting point for a role goal model is the leaf goal from the organisation that is to be 
achieved by the role. Thus, the top goal of a role goal model is a leaf goal from the 
organisation goal model. 

The role goal models have the same semantics as the organisation goal models 
created with the model goals and refine goals tasks described in Sections 3.4.2 and 3.4.3. 
In fact, the approach taken to define the goal model is the same as well. The key 
difference between an organisation goal model and a role goal model is in the level of 
functionality that can be used to achieve the leaf goals. At the role level, each leaf goal is 
associated with a capability that can achieve that goal; at the organisation-level, each leaf 
goal is associated with a role capable of achieving it. 

The TempCorroborator role goal model is shown in Figure 11. Precedence is denoted 
by a ‘precedes’ arrow; in this case, the corroborate goal cannot be pursued until the 
PullTemps goal has been achieved. When started, the role must pull temperature readings 
from all agents with a certain distance. Once that is accomplished, it must corroborate its 
reading against those it has pulled. Finally, if the high temperature reading is 
corroborated, then the RaiseSystemEvent goal will cause the agent to raise a NotifyUser 
event at the system level. 
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Figure 11 TempCorroborator role goal model (see online version for colours) 

 

3.4.9 Model agent classes 

The model agent classes task identifies the types of agents that may participate in the 
organisation. Agent classes may be defined to play specific roles, or they may be defined 
in terms of capabilities, which implicitly define the types of roles that may be played. An 
agent class is a template for a type of agent in the system. Each agent class identifies the 
capabilities that it possesses or the roles it can play (or both). In an open system where 
specific agents are not known a priori, an agent class model may not be used as agents 
register themselves and their capabilities directly with the system; the roles these agents 
may play is based entirely on the capabilities required for the various roles. 

Figure 12 shows an agent class model for the TMS system. As the system consists of 
homogeneous sensor nodes and a user interface device, there are only two agent types in 
the system: TempSensor and Notifier. A functioning TempSensor agent is implicitly 
capable of playing both the TempMonitor and TempCorroborator roles, while a Notifier 
agent is capable of playing the Initiator and UserInterface roles. Notice that the protocols 
specified in the role model are inherited by the appropriate agent types in the agent class 
model and that the user actor is also included. 

Figure 12 Agent class model (see online version for colours) 
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3.4.10 Model protocols 

The purpose of the model protocols task is to define the details of the interactions 
between agents or roles. Since protocols can be specified in organisation models, role 
models and agent class models, the method engineer may decide which set of protocols to 
define. If the role model protocols are defined via protocol models, agent classes playing 
those roles should inherit those protocols. When using aT3 to design systems, aT3 
provides automated checks to ensure the consistency of these protocols between the 
various models. The protocol model produced defines the types of messages sent between 
the two entities and is essentially the same as the AUML (Bauer et al., 2000) and UML 
(Rumbaugh et al., 2004) interaction models. In each of these models, messages are 
specified on arrows between lifelines and allowing looping and alternative control flows. 

Figure 13 shows the protocol model for the monitorArea protocol in the TMS system. 
In this case, the initiator sends a monitor(area) request to the TempMonitor. The 
‘alternative’ frame provides an option for the TempMonitor role to return either a refuse() 
or accept() message. 

Figure 13 Protocol model (monitorArea) (see online version for colours) 

 

3.4.11 Model capabilities 

The model capabilities task is used to define the internal structure of the capabilities 
possessed by agents in the organisation. The result of the model capabilities task is a 
capability model. Each capability may be modelled as an action or a plan. An action is an 
atomic functionality possessed by an agent and defined using the model actions task as 
described in Section 3.4.13. A plan is an algorithmic definition (defined via a state 
machine) of a capability that uses actions and implements protocols. Each plan is defined 
using the model plans task as presented in Section 3.4.12. 

A portion of the capability model for the TMS system is shown in Figure 14.  
Notice that the AreaDivision capability is represented as a plan, specifically the 
DivideAreaPlan, while ReadTemperature is represented as a complex capability with a 
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plan, getTemperature, and a sub-capability, TempSensor. In this case, the getTemperature 
plan uses the TempSensor by calling its readSensor action. 

Figure 14 Capabilities model (see online version for colours) 

 

3.4.12 Model plans 

The purpose of the model plans task is either to capture how an agent can achieve a 
specific type of goal using a set of actions (which includes sending and receiving 
messages) or to define a soft capability. The result of the model plans task is a plan 
model. 

A plan model is specified in terms of a simple finite state machine where states 
contain action sequences and transitions contain inter-agent communications. Two 
special actions, send and receive, are used to denote sending and receiving of messages 
on transitions. User defined actions are carried out sequentially within states. Each action 
must be defined as part of a capability possessed by the agent performing the plan. Once 
in a state, the task remains in that state until processing is complete and a transition out of 
the state is enabled. Variables used in actions and messages are globally visible within 
the plan. 

Figure 15 Plan model (getTemperature) (see online version for colours) 
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The getTemperature plan (which is part of the ReadTemperature capability) is shown in 
Figure 15. It is initialised by receiving a monitor message from the initiator. It uses a 
timer to access its temperature sensor (via the readSensor()action) at the appropriate rate. 
It then computes the gradient. If the gradient exceeds the threshold it calls raiseAlarm, 
otherwise, it returns to the wait state. While in the wait state, the plan can respond to 
requests from corroborator roles to get the current temperature, once it is defined. 

3.4.13 Model actions 

The model actions task defines the low-level actions used by agents to perform plans and 
achieve goals. Actions belong to capabilities possessed by agents. Actions are typically 
defined as a function with a signature and a set of pre and post-conditions. In some cases, 
actions may be modelled by providing detailed algorithmic information. If using 
automatic code generation techniques, this information is generally captured as a function 
or operation in the language being generated. In either case, the action model is usually 
just a textual document. 

readSensor() 
Pre: true 
Post: readSensor > minTemp ∧ readSensor < maxTemp 

In the readSensor example, since the action reads a sensor inputs, there is no precondition 
and the only guarantee about the output is that it will fall within the advertised sensor 
range. 

3.4.14 Model policies 

The model policies task defines a set of formally specified rules that describe how an 
organisation may or may not behave in particular situations. During the organisation 
design, the policy modeller captures the desired and/or required properties of the system 
and writes them in natural language. Once all the policies have been identified, they can 
be formally specified if needed. For example, the following policy specifies that  
each TempSensor agent should be assigned to play both the TempMonitor and 
TempCorroborator roles. 

∀a:TempSensor, ∃g1:MonitorTemp, g2:CorroborateTemp | 
 assigned(a, TempMonitor, g1) 
 ∧ assigned(a, TempCorroborator, g2) 

Policies have been used in multi-agent system engineering for some time and several 
languages, frameworks, enforcement and checking mechanisms have been developed 
(Bradshaw et. al, 2003; Shoham and Tennenholtz, 1995; Harmon et al., 2007, 2008). In 
general, policies are used to restrict agent behaviour and may be enforced at design time 
or at runtime. How policies are enforced is a critical decision that affects the way the 
policy model is used during development. If there is no runtime mechanism designed or 
provided by the runtime environment, designs and implementations must be evaluated to 
ensure they conform to the policies. 
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3.4.15 Generate code 

The purpose of the generate code task is to take all the design models created during the 
development and convert them into code that correctly implements the models. 
Obviously, there are numerous approaches to code generation based on the runtime 
platform and implementation language chosen. 

The aT3 toolkit includes an automatic code generation framework. Currently, the only 
platform supported is JADE (Bellifemine et al., 2007) coupled with our cooperative 
robotics organisation-based simulator (DeLoach, 2009b). To support OMACS-based 
systems, the organisation-based agent (OBA) architecture (Figure 16) was created. The 
control component uses XML specifications of the organisation goal, role, and agent 
models to perform reasoning about goals, the organisation state, and the assignment of 
agents to roles. The O-MaSE models produced during low level design are used to define 
the role behaviour in the execution component. The OBA architecture supports significant 
reuse as much of the OMACS reasoning is standard and thus much of the control 
component code is reusable. A complete description of the architecture can be found in 
(DeLoach, 2009b). 

Figure 16 OBA architecture (see online version for colours) 

 

3.5 Method-roles 

Twelve method-roles have been identified as part of the O-MaSE methodology: 
requirements engineer, goal modeller, domain modeller, organisation modeller, role 
modeller, agent class modeller, protocol modeller, policy modeller, plan modeller, 
capabilities modeller, action modeller, and programmer. Each O-MaSE method-role is 
responsible for carrying out the tasks by applying the appropriate techniques to produce 
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the work products shown in Table 1. Obviously, this requires the ability to apply the 
various techniques and to understand the work products that are both inputs to and 
outputs from those tasks. 

3.6 Method construction guidelines 

Table 3 shows the method construction guidelines (called process construction guidelines 
in previously published papers) for the tasks defined in Table 1. These method 
construction guidelines are defined in terms of a pre-condition and post-condition. The 
pre-condition specifies the set of work products that must be available prior to the task 
being undertaken while the post-conditions specify the work products produced by the 
task. For example, for the model goals task, either a requirements spec must be available 
or a goal model/GMoDS and a role model must be available. The requirements spec is 
used when the model goals task is used to model system-level goals while the goal 
model/GMoDS and role model are used when the task is used to model role-level goals. 
Disjunctive pre-conditions generally specify alternative ways the Task can be used. 
However, it does not limit what information can be used in the definition of a model.  
For instance, the model domain task only requires a requirements spec as input; however, 
that does not mean that other work products such as goal models cannot be used in the 
task. This additional information is generally documented in the individual task 
definitions. 
Table 3 Method construction guidelines 

Task Pre-condition Post-condition 

Requirements specification True Requirements spec 
Model goals Requirements spec  

∧ ((Goal Model ∨ GMoDS) ∧ Role Model) 
Goal model 

Refine goals Goal Model GMoDS 
Model domain Requirements Spec Domain model 
Model organisation 
interfaces 

Requirements Spec ∧ GMoDS Organisation model 

Model roles GMoDS ∧ Organisation Model Role model 

Define roles Role Model Role description 
Model agent classes GMoDS ∨ Role Model ∨ Organisation Model Agent class model 

Model protocols Role Model ∨ Agent Class Model Protocol model 

Model policies GMoDS ∨ Organisation Model 
∨ Role Description ∨ Agent Class Model 

Policy model 

Model plans (GMoDS ∧ Role Model)  
∨ (GMoDS ∧ Agent Class Model) 

Plan model 

Model capabilities Role Model ∧ Agent Class Model  
∨ Domain Model 

Capability model 

Model actions Capability Model ∧ Domain Model Action model 

Code generation (Plan Model ∨ Protocol Model)  
∧ (Capability Model ∨ Action Model) 

Source code 
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aT3 is based on agentTool 1 and 2, which supported the original MaSE methodology. The 
original versions of agentTool were written as standalone Java tools that supported 
graphical model creation, protocol verification, semi-automatic analysis to design 
transformations, and code generation. 

aT3 is a completely new development and was developed as a set of eclipse plug-ins. 
Eclipse (http://www.eclipse.org/) is an open-source integrated development environment 
that supports easy extension through its plug-in-based architecture. Eclipse was chosen as 
the base for aT3 due to this extensibility, support for graphic-based editors, and for the 
ability to create methods, designs, and code within the same environment. In addition, the 
EPF (http://www.eclipse.org/epf/) provides basic tools that support building custom 
methods. 

In aT3, there is a separate plug-in for each O-MaSE model and each plug-in accesses 
a single core plug-in that implements the O-MaSE meta-model. This multi-plug-in 
architecture supports the goal of allowing O-MaSE to be highly tailorable and extensible. 
None of the models are required and new models may be incorporated into the tool by 
adding a new plug-in to create/edit the model and new consistency rules to verify 
consistency with other models. 

The aT3 development environment actually includes four components that are 
integrated into a single tool. These components are the graphical editor, the process 
editor, the verification framework, and a code generation facility. Each component is 
discussed below. 

4 agentTool III 

The aT3 development environment is built on the eclipse platform (Garcia-Ojeda et al., 
2009b; DeLoach et al., 2009). The core elements of aT3 are the model creation tools that 
support the analysis, design, and implementation of multi-agent systems following the  
O-MaSE methodology. aT3 also provides verification and metrics computation 
components, as well as the ability to compose, verify, and maintain custom O-MaSE 
complaint methods. The aT3 project webpage (http://agentTool.cis.ksu.edu/) contains the 
latest version of aT3 for download and includes tutorials, documentation, and examples. 

4.1 Graphical editor 

The aT3 graphical editor supports the graphical editing of each of the O-MaSE models 
described in Section 3.4. These models, when combined, define the design of a  
MAS using concepts from the O-MaSE meta-model. A designer creates models in aT3 by 
dragging model elements from a palette and placing them onto the drawing panel.  
Built-in validation ensures that only valid connections are made between the appropriate 
model elements. To edit the internal details of model elements, aT3 also provides pop-up 
panels for items such as agent attributes and event parameters. 

A screenshot of aT3 is shown in Figure 17. On the left side of the screen, the eclipse 
package explorer allows the user to organise and store O-MaSE models in projects. 
Generally, subdirectories within projects refer to sub-organisations in the system design, 
thus the package explorer file structure mimics the hierarchical structure of the system. 
The model shown is an agent class diagram. The icons shown in the palette on the right 
side of the screen show the valid model elements and relations that may be added to the 
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model. To add a model element to the model, users simply click on the model element in 
the palette and then click where they want to place the model element in the model. Once 
the model element has been placed in the model, it may be edited or moved to another 
location. The protocol model elements are slightly different in that they are added 
between two actors or agents. To add a protocol, the user first clicks on the protocol icon 
in the palette and then on the two actors/agents that participate in the protocol. After 
placing the protocol, the name may be edited. To add relationships between model 
elements, the user also clicks on the desired relationship in the palette and then click on 
two model elements already in the model. Relationships have fixed names that may not 
be edited. 

Figure 17 aT3 graphical editor (see online version for colours) 

 

4.2 Process editor 

The APE is based on the EPF and allows method engineers to compose O-MaSE 
compliant methods (Garcia-Ojeda et al., 2009a). APE provides five basic structures: a 
method fragment library, the process editor, a set of task constraints, a process 
consistency checker, and a process management tool as shown in Figure 18. The library 
is a repository of O-MaSE compliant method fragments, which can be extended by APE 
users. The process editor allows users to create and maintain O-MaSE compliant 
methods. The task constraints view helps method engineers specify method construction 
guidelines to constrain how tasks can be assembled, while the process consistency 
mechanism verifies the consistency of custom methods against those constraints. Finally, 
the process management tool provides a way to measure project progress using earned 
value analysis. For more details, see Garcia-Ojeda et al. (2009a). 
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Figure 18 agentTool process editor (see online version for colours) 
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4.3 Verification framework 

The aT3 verification framework gives designers a way to maintain consistency between 
their O-MaSE models using a predefined set of rules. Since methods are customised, this 
rule set can also be customised by turning on and off certain rules. Each time a model is 
saved, the verification framework checks that document against all related documents in 
the current project using the currently enabled rules. Verification problems are shown to 
the user through the eclipse problems panel similar to compiler errors and warnings as 
shown in Figure 17. 

4.4 Code generation facility 

Automatic code generation is also available in aT3. Currently, the only platform targeted 
has been JADE (Bellifemine et al., 2007). However, a framework has been created 
consisting of the organisation, operation, social, and environment levels. At the 
organisation level, agents and roles are chosen for achieving specific goals. At the 
operation level, agents achieve goals by performing actions based on their available 
capabilities. At the social level, agent’s interactions are captured via messaging, while at 
the environment level, the knowledge of object types and relationships are generated. 
Due to the detail of the O-MaSE models, the aT3 JADE generator is capable of generating 
100% of the code necessary to create functional JADE systems. The generated code relies 
on pre-written Java code for each action specified in the action model. 

5 Examples 

In order to demonstrate our approach to assembling customised methods using O-MaSE, 
two examples deriving custom O-MaSE methods are presented. Readers can find 
applications of O-MaSE in other fields such as information systems (DeLoach et al., 
2008), robotics (Garcia-Ojeda et al., 2008), and cooperative software agents  
(Garcia-Ojeda et al., 2009a). The first example is an adaptive sensor network (ASN) that, 
while highly adaptive, is computationally expensive. The second example is a much more 
straightforward sensor-based building monitoring system (BMS) whose operation relies 
on relatively simple sensors with little computational overhead. 

5.1 Adaptive sensor networks 

The first example is the development of an ASN system. The ASN is designed to be able 
to detect and track vehicles moving over a large area. Multiple sensor types will be 
deployed including motion detectors, magnetometers, and heat detectors. In addition, 
special radiation sensors will be deployed to determine if any vehicles are radioactive. 
Sensors will be deployed in overlapping patterns based on the probability of vehicles 
actually being in that area. To maximise battery life, sensors will be turned off as much as 
possible and only awakened when needed. Generally, a few motion detector sensors will 
be on to detect possible vehicles. When a vehicle is detected, additional sensors will be 
turned on to verify its location and track the vehicle as it moves. 

Therefore, an ASN system must be able respond to specific events that occur in the 
environment as well as be able to reason about individual sensor capabilities and  
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re-organise to achieve the desired system functionality. This highly adaptive behaviour is 
exactly what OMACS systems are designed to achieve and thus the system must be 
designed to include all OMACS required entities as shown in Figure 3. 

Figure 19 ASN method (see online version for colours) 

 

Figure 19 shows an overview of the method for developing an ASN. As shown, the 
method uses an iterative approach with three phases (inception, elaboration, and 
construction) and four iterations. Since the ASN systems requires an OMACS-based 
approach, it is necessary to ensure that all OMACS entities are produced as work 
products. In general, an OMACS-based method should produce a goal model, role model, 
agent class model, and policy model. The additional domain, organisation, protocol, 
capability, plan, and action models were added to support development of the base 
models or to support code generation. The right side of Figure 19 shows the process 
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consistency checker for the APE. As shown, there are no inconsistencies and thus the 
method is O-MaSE compliant. As this method is designed to produce a highly adaptive, 
OMACS-based system, 14 out of the 15 O-MaSE tasks, or 93%, are used to define the 
method. As demonstrated here, methods used to create systems that are more complex 
tend to be larger in terms of number of O-MaSE tasks required. 

5.2 Building monitoring system 

The second example is also taken from sensor network domain to illustrate the flexibility 
of O-MaSE within a single domain. In this case, a BMS will be developed. In this case, 
the BMS will have a predefined set of sensor types and each sensor will be deployed to a 
fixed location. Each sensor will be hardwired to the building’s electrical supply, so power 
consumption is not an issue. Each sensor will sense at regular intervals and send its data 
to its neighbours for verification. All verified data will be sent via a predefined path to a 
central computer. Each sensor will be modelled as an agent that achieves a specific set of 
goals; the system will not need to reason about its capabilities or reorganise. While 
another contractor will design the internal operation of the individual agents, each agent 
will have to conform to system specific policies to ensure compatibility between agents. 

Figure 20 Building monitoring system (see online version for colours) 

 

Given the well-defined nature of the system, a straightforward waterfall development 
approach is chosen. Appropriate models are selected based on the implementation needs. 
Because there is no need for adaptivity in terms of reassigning agent responsibility, an 
organisational approach is not required. Therefore, a straightforward agent-centred 
approach is taken where agents are designed to achieve specific goals. Figure 20 shows 
the method developed for the project. The method consists of three different phases: 
requirements engineering, analysis, design, and implementation. In this case, only eight 
out of 15, or 53% of tasks defined by O-MaSE are used in this method. When compared 
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to the previous example, this method is much simpler and thus more appropriate to this 
specific system development. Again, the right side of Figure 20 shows that the method is 
O-MaSE compliant. 

6 Related work 

This section provides a comparison of O-MaSE against several other well-known  
agent-oriented software engineering methodologies in three different categories: process 
features, model features, and supportive features. These categories are taken from the 
evaluation of the APSECS methodology when compared to PASSI, INGENIAS, 
ANEMONA, Gaia, ROADMAP, Tropos, Prometheus, and ADELFE (Cossentino et al., 
2009). ASPECS is a modern agent-oriented methodology focused on complex, 
organisation-based system following a holonomic perspective; it is similar in many 
aspects to O-MaSE as is discussed below. Instead of reproducing a complete evaluation 
here (most of which would essentially duplicate the ASPECS evaluation), a discussion of 
the unique aspects of O-MaSE is provided as related to these categories and the other 
methodologies. For the complete evaluation of the other methodologies, the reader is 
referred to Section 6 of Cossentino et al. (2009), which includes evaluations of the 
aforementioned methodologies with respect to the same three categories. The three basic 
categories were derived from the four categories used by Tran and Low (2005). Each 
category is defined below along with a discussion of the unique aspects of O-MaSE as 
compared to the other methodologies. 

6.1 Process features 

The process features category attempts to judge generality and completeness of a 
methodology. Questions used to evaluate methodologies in this category include 

1 standard lifecycle(s) supported 

2 standard development activities included 

3 whether or not the methodology is domain dependent or independent. 

Each of the methodologies studied claim to allow iterative and incremental lifecycles 
based on modern approaches. However, the methodologies generally fail to specify the 
exact relationships between the various activities that would allow activities to be placed 
appropriately in varying iterations. Support is available for methodologies whose 
processes have been formally defined such as INGENIAS, PASSI, and O-MaSE. 

Most of the modern methodologies considered cover the entire development lifecycle 
from requirements through design and implementation and/or deployment. Only the early 
methodologies such as Gaia and Tropos cover only analysis and design activities. A 
unique aspect of O-MaSE is the ease with which it can be extended. Due to its inherent 
design as a set of fragments, new tasks and models may be easily added without  
causing changes to existing methods. For example, related work on design metrics for 
OMACS-based systems resulted in the addition of several additional tasks and work 
products to current version of O-MaSE as released in aT3 such as system flexibility 
(Robby et al., 2006). 
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6.2 Model features 

The model features category attempts to judge the focus of the process models and their 
completeness in terms of handling non-agent concepts. Criteria used to evaluate 
methodologies in this category include 

1 agent focused versus organisation focused 

2 support for levels of system decomposition 

3 support for modelling interactions with the environment 

4 support for modelling of domain knowledge 

5 formal foundation and semantics. 

In terms of focus, several of the earlier methodologies such as PASSI, Prometheus, and 
ADELFE are agent focused, while the newer methodologies tend to be organisation 
focused. O-MaSE appears to be unique in its support for both points of view as 
demonstrated in the example methods of Sections 5.1 and 5.2. As Cossentino et al. (2009) 
point out, within the organisation-based approaches, some focus on concepts of agents, 
roles, and groups while other highlight norms, which moves toward the concepts of 
electronic institutions (Noriega and Sierra, 2002). Again, O-MaSE shows its flexibility by 
supporting either approach. 

In terms of modelling complex systems via levels of system decomposition, only the 
holonomic methodologies, ANEMONA and ASPECS provide such support. Here,  
O-MaSE provides a hierarchical decomposition approach using agent organisations 
(AOs), which are closely related to holarchies. 

O-MaSE also provides support for modelling of the environment and interactions 
with the environment. One of the main purposes of the O-MaSE domain model is for 
capturing object types and their relationships in the environment while actions allow 
developers to specify the effects of agent operations on those environment objects. 
Because protocols may be specified in terms of actions (as well as messages), complex 
interactions with the environment may also be modelled. 

While O-MaSE does not use formal notations except in the case of policies, the 
formalisation of its meta-model does allow the use of formal model checking techniques 
to provide predictive metrics. For instance, Robby et al. (2006) describe a system 
flexibility metric that measures how many different ways an OMACS-based system can 
achieve its overall goal. Automated techniques for computing such metrics have been 
incorporated into aT3. 

6.3 Supportive features 

Finally, the supportive features category looks at the methodology’s support for 
standards, tools, and complex system concepts. Criteria used to evaluate methodologies 
in this category include 

1 tool and library support 

2 support for open versus closed agent systems 

3 support for dynamic, self-organising, and reconfiguring systems. 
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A distinguishing aspect of O-MaSE is its tool support. As discussed above, aT3 provides 
and integrated environment (with eclipse) that supports method engineering, model 
development and verification, design level predictive metrics, and automatic and manual 
code generation. Because it is based on the eclipse plug-in approach, aT3 is extremely 
extensible; new method fragments, new models, and new code generation, deployment, 
and testing tools can be added by adding new plug-ins. The INGENIAS IDK also 
supports similar aspects although the process editor is not fully integrated with IDK. 

Cossentino et al. (2009) point out that APSECS is “the only process that supports 
both open and dynamic systems and merges an agent-oriented approach with a 
knowledge-engineering approach”. Clearly, O-MaSE also supports these areas. While 
ASPECS focuses more heavily on the use of domain knowledge by specific references to 
its ontology, O-MaSE, being based on OMACS, has a more precisely defined mechanism 
to support dynamic, reconfigurable open systems. In addition, the second main use of the 
O-MaSE domain model is to capture ontologies in support of open systems. 

7 Conclusions and future work 

The O-MaSE methodology framework integrates a suite of technologies aimed at 
removing impediments to the industrial acceptance of agent technology. O-MaSE 
provides a customisable agent-oriented methodology based on consistent, well-defined 
concepts supported by plug-ins to an industrial strength development environment. The 
O-MaSE methodology framework allows developers to create custom agent-oriented 
methods using a set of well-defined method fragments that support a variety of system 
types and complexities. This is achieved in O-MaSE via the O-MaSE meta-model, a set 
of method fragments, and a set of method construction guidelines. Each aspect of the  
O-MaSE methodology framework is supported by the aT3 integrated development 
environment, which supports method creation and maintenance, model creation and 
verification, and code generation and maintenance. 

The main advantages of this approach are 

1 O-MaSE supports agent-centred, organisation centred, closed or open agent systems, 
based on the method fragments used in an appropriate custom method 

2 each O-MaSE method fragment is defined over a common meta-model that also 
directly supports complex adaptive systems based on the OMACS organisation 
model and its associated architectures and algorithms 

3 the O-MaSE method construction guidelines define how method fragments may be 
combined in to assemble O-MaSE compliant methods 

4 O-MaSE is fully support by aT3, which supports the creation and implementation of 
O-MaSE compliant method as well as supporting the creation and verification of 
systems using those methods. 

Because O-MaSE and aT3 provide a comprehensive environment for developing  
multi-agent and organisation-based systems, it also provides an excellent platform for 
additional research and development. We plan to continue investigating formal 
compositional approaches for building complex, adaptive systems using semi-automatic  
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design-time metrics as well as automatic runtime composition using O-MaSE models 
(Oyenan et al., 2009). This work will be integrated by extending O-MaSE with new 
method fragments as well as adding new functionality in aT3. 

A very important area that should be investigated further is the integration of  
O-MaSE concepts with other MAS meta-models, which have been the subject of much 
research (Azaiez et al., 2006; Bernon et al., 2005; Beydoun et al., 2009). When 
development of O-MaSE started in 2005 (DeLoach, 2006), there were no meta-models 
that captured the key elements required to support OMACS-based systems, namely a 
direct relation between agents, roles, goals, and capabilities. Thus, the O-MaSE  
meta-model was developed in parallel with recently published meta-models. However, 
new work in synthesising common MAS meta-models, specifically the FAML  
meta-model (Beydoun et al., 2009), provides great promise of producing a general  
meta-model capable of supporting standardisation of concepts across the agent 
community. While FAML does not currently support all the required concepts and 
relations to support an OMACS-based systems (there is currently no notion of 
capabilities at design or runtime that are possessed by agents and required to play specific 
roles), the extensibility of FAML has been shown. Future work on O-MaSE should 
include a detailed study of extending more general meta-model such as FAML to replace 
the O-MaSE meta-model. Such use of common meta-models would significantly enhance 
the overall goal of many MAS researchers of combining reusable method fragments from 
multiple MAS methodologies. 

Another area of future work would be to recast O-MaSE in terms of ISO/IEC 24744, 
the SEMDM. Using SEMDM as the basis of O-MaSE would allow a more precise 
description of the relationship between the modelling of methodology elements and their 
instances during methodology enactment. It would also allow a more precise description 
of the relationships between the process and products currently captured in the O-MaSE 
method construction guidelines via the SEMDM action element. Finally, SEMDM would 
allow for a more precise definition of how the O-MaSE (or extended FAML) meta-model 
and modelling notations relate to specific work products. 

We are also interested in approaches for dealing with human agents as part of the 
system. We are currently studying how humans and agents can exist together within 
multi-agent teams. We are looking at extending the OMACS model and thus, by 
extension the O-MaSE (or an extended version of FAML) meta-model. Clearly, such an 
extension should ensure backward compatibility and will likely require the integration of 
new method fragments into O-MaSE. 

We are also investigating how to model and reason about agent interactions at 
runtime. Again, this will likely require introducing new concepts into the O-MaSE  
(or FAML) meta-model, such as first-class interactions and interaction goals, as well as 
providing new models for capturing such information. 
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Notes 
1 Technically, SPEM 2.0 defines task definitions, role definitions, and work product definitions 

as method content with task uses, role uses, and work product uses being instances of those 
definitions in actual methods. This paper refers to both forms as tasks, roles or work products. 


